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Abstract. We consider the problem of authenticated group key exchange among n
parties communicating over an insecure public network. A number of solutions to this
problem have been proposed; however, all prior provably secure solutions do not scale
well and, in particular, require O(n) rounds. Our main contribution is the first scalable
protocol for this problem along with a rigorous proof of security in the standard model
under the DDH assumption; our protocol uses a constant number of rounds and requires
only O(1) “full” modular exponentiations per user. Toward this goal (and adapting
work of Bellare, Canetti, and Krawczyk), we first present an efficient compiler that
transforms any group key-exchange protocol secure against a passive eavesdropper to
an authenticated protocol which is secure against an active adversary who controls all
communication in the network. This compiler adds only one round and O(1) commu-
nication (per user) to the original scheme. We then prove secure—against a passive
adversary—a variant of the two-round group key-exchange protocol of Burmester and
Desmedt. Applying our compiler to this protocol results in a provably secure three-
round protocol for authenticated group key exchange which also achieves forward
secrecy.
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1. Introduction

Protocols for authenticated key exchange (AKE) allow parties communicating over an
insecure public network to establish a common secret key (a session key) and furthermore
to be guaranteed that they are indeed sharing this key with each other (i.e., with their
intended partners). Protocols for securely achieving AKE are fundamental to much
of modern cryptography and network security. For one, they are crucial for allowing
symmetric-key cryptography to be used for encryption/authentication of data among
parties who have no alternate “out-of-band” mechanism for agreeing upon a common
key. They are also instrumental for constructing “secure channels” on top of which higher-
level protocols can be designed, analyzed, and implemented in a modular manner. Thus,
a detailed understanding of AKE—especially the design of provably secure protocols
for achieving it—is critical.

The case of two-party AKE has been extensively investigated (see, e.g., [25], [12],
[26], [10], [35], [6], [38], and [22]–[24]) and is fairly well-understood; furthermore, a
variety of efficient and provably secure protocols for two-party AKE are known. Less
attention has been given to the case of group AKE where a session key is to be established
among n > 2 parties; we survey relevant previous work in the sections that follow. Group
AKE protocols are essential for applications such as secure video- or tele-conferencing,
and also for collaborative (peer-to-peer) applications which are likely to involve a large
number of users. The recent foundational papers of Bresson et al. [17], [15], [16] (building
on [10], [11], and [8]) were the first to present a formal model of security for group AKE
and the first to give rigorous proofs of security for particular protocols. These represent
an important initial step, yet much work remains to be done to improve the efficiency
and scalability of existing solutions.

1.1. Our Contributions in Relation to Prior Work

The efficiency of a group AKE protocol should scale well with the number of users
so as to remain practical even when the number of users is large. (In Section 1.3 we
discuss in detail the complexity measures we use to evaluate the efficiency of protocols
in this setting.) Unfortunately, prior work is somewhat limited in this respect; we may
summarize the “state-of-the-art” for provably secure group AKE protocols as follows
(we exclude here centralized protocols in which a designated group manager generates
and distributes keys; such schemes place a high burden on one participant who is a single
point of failure and who must also be trusted to generate keys properly):

• The most efficient solutions are those of Bresson et al. [17], [15], [16] which
adapt previous work of Steiner et al. [40]. Unfortunately, these protocols do not
scale well: to establish a key among n participants, they require n rounds and
additionally require (for some players) O(n) “full” modular exponentiations and
O(n) communication.
• Subsequent to the present work, a constant-round protocol for group AKE has

been proven secure in the random oracle model1 [14]. This protocol does not

1 The random oracle model [9] assumes a public random function to which all parties (including the
adversary) have access. This random function is instantiated using a cryptographic hash function (e.g., SHA-1),
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achieve forward secrecy (see [26]), and the exposure of a user’s long-term secret
key exposes all session keys previously generated by this user. The protocol is also
not symmetric, and the initiator must perform O(n) encryptions and send O(n)
communication.

The above solutions represent the best-known provably secure protocols even under
various relaxations of the problem. For example, we are aware of no previous constant-
round protocol with a full proof of security in the standard (i.e., non-random oracle)
model even for the weaker case of security against a passive eavesdropper (but see
footnote 2). Clearly, an O(n)-round protocol is not scalable and is unacceptable when
the number of parties grows large or when network latency is the performance bottleneck.

Our main result is the first constant-round and fully scalable protocol for group AKE
which is provably secure in the standard model (i.e., without assuming the existence of
“random oracles”). Security is proved via reduction to the decisional Diffie–Hellman
(DDH) assumption using the same security model as other recent work in this area [17],
[15], [16], [14]. Our protocol also achieves forward secrecy [26] in the sense that expo-
sure of principals’ long-term secret keys does not compromise the secrecy of previous
session keys. (We of course also require that exposure of multiple session keys does not
compromise the secrecy of unexposed session keys; see the formal model in Section 2.)
Our three-round protocol remains practical even for large groups: it requires each user
to send only O(1) communication and to compute only three “full” modular exponen-
tiations and O(n log n) modular multiplications, generate two signatures, and perform
O(n) signature verifications (the cost of which can be improved by using signatures that
allow for “batch verification” [7]).

The difficulty of analyzing protocols for group AKE has led to a number of ad hoc
approaches to this problem and has seemingly hindered the development of practical and
provably secure solutions (as evidenced by the many published protocols later found to
be flawed; see the attacks given in [37] and [14]). To manage this complexity, we propose
and analyze a scalable compiler for this setting which enables a modular approach and
therefore greatly simplifies the design and analysis of group AKE protocols. Our compiler
transforms any group key-exchange protocol which is secure against a passive eaves-
dropper to one which is secure against a stronger—and more realistic—active adversary
who controls all communication in the network. If the original protocol achieves forward
secrecy, the compiled protocol does too. Our compiler is inspired by earlier work of Bel-
lare et al. [6], who show a compiler with similar functionality. Although their compiler
does indeed apply to multi-party protocols, their primary motivation was the two-party
setting. The compiler we show here is specifically tailored for the group setting, and it
scales better than the compiler of [6]. Further discussion appears in Section 1.2.

As an immediate illustration of the advantages of a modular approach, note that our
compiler may be applied to the group key-exchange protocol of Steiner et al. [40] to
yield a group AKE protocol with comparable efficiency to that of [17] but with a much
simpler security proof which holds even for groups of polynomial size.

appropriately modified to have the desired domain and range. Although proofs of security in this model provide
heuristic evidence for the security of a given protocol, there exist schemes which are secure in the random
oracle model but are insecure for any instantiation of the random oracle [21].
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As an additional contribution, we investigate the security of the well-known Burmes-
ter–Desmedt protocol [19], [20] for unauthenticated group key exchange.2 Adapting
their work, we present a two-round group key-exchange protocol and rigorously prove
its security—against a passive adversary—under the DDH assumption. Applying our
above-mentioned compiler to this protocol gives our main result.

1.2. Survey of Previous Work

Group key exchange. A number of works have considered extending the two-party
Diffie–Hellman protocol [25] to the multi-party setting [28], [39], [19], [40], [4], [33],
[34]. Best known among these are perhaps the works of Ingemarsson et al. [28], Bur-
mester and Desmedt [19], and Steiner et al. [40]. Ingemarsson et al. and Steiner et al.
assume only a passive (eavesdropping) adversary; furthermore, no proofs of security
appear to be given by Ingemarsson et al. (and we are not aware of any subsequent proof
of security for their protocol). Security of the Burmester–Desmedt protocol is discussed
in footnote 2 and Section 4.

Key-exchange (KE) protocols are intended to be secure against a passive adversary
only. Authenticated key-exchange (AKE) protocols are designed to be secure against the
stronger class of adversaries who—in addition to eavesdropping—control all commu-
nication in the network (see Section 2). A number of protocols for authenticated group
key exchange have been suggested [29], [13], [2], [3], [41]; unfortunately, none of these
works presents rigorous security proofs in a well-defined model (indeed, attacks on some
of these protocols have been shown [37]). Tzeng and Tzeng [42] prove security of a group
AKE protocol using a non-standard adversarial model and assuming a reliable broadcast
channel (an assumption we do not make here). Their protocol does not achieve forward
secrecy, and an explicit attack on their protocol has been identified [14].

Provably secure protocols. Bresson et al. [17], [15], [16], building on earlier work of
Bellare and Rogaway in the two-party setting [10], [11], [8], give the first formal model
of security for group AKE and the first provably secure protocols for this setting. (A
stronger model of security for group AKE, based on work of Canetti and Krawczyk [23],
has been proposed more recently [31].) The protocols of Bresson et al. are all based on
work of Steiner et al. [40], and require O(n) rounds to establish a key among n users.
The initial work [17] deals with the case where the subset of participants sharing a key
does not undergo frequent changes, and shows a protocol that achieves forward secrecy
under the computational Diffie–Hellman assumption in the random oracle model (as
noted there, however, the protocol can also be proven secure in the standard model using
the DDH assumption). Unfortunately, the proof of security applies only for groups of
constant size (see Theorem 1 of [17]).

Later work [15], [16] focuses on the dynamic case where users join or leave the
group and the session key must be updated whenever this occurs. Although we do not

2 Since no security proof appears in the proceedings version [19], the Burmester–Desmedt protocol has
often been considered “heuristic” and not provably secure (see, e.g., [17] and [14]). Subsequent to our work
we became aware of a security proof for a variant of their protocol against a passive adversary [18] (see
also [20]). Section 4 contains further discussion.
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Table 1. High-level comparison of provably secure protocols for group AKE. Efficiency
comparisons are given in Table 2.

Standard model? Forward secrecy? Polynomial group size?

Bresson et al. [17] Yes Yes No
Boyd–Nieto [14] No No Yes
Here Yes Yes Yes

explicitly address this issue, note that dynamic group membership can always be handled
by running the group AKE protocol from scratch among members of the new group.
For the case when individual members join and leave, the complexity of the protocol
given here is only slightly worse than the Join and Remove algorithms of [15] and [16].
The protocol given here seemingly performs even better relative to [15] and [16] when
merging two large groups, or when partitioning a group into two groups of roughly
equal size (see [1] for performance comparisons). Adapting the protocol presented here
to handle dynamic membership even more efficiently, however, remains an interesting
topic for future research.

More recently (in work subsequent to ours), a constant-round group AKE protocol
with a security proof in the random oracle model has been shown [14]. We have already
discussed in the previous section the various drawbacks of this protocol.

We summarize previous provably secure protocols, and compare them with the present
work, in Table 1. We compare the efficiency of these protocols (with respect to various
complexity measures) in Table 2, below.

Compilers for KE protocols. A modular approach such as that used here has been used
previously in the design and analysis of KE protocols. For example, Mayer and Yung [36]
give a compiler which converts any two-party protocol into a centralized (asymmetric)
group protocol; their compiler invokes the original protocol O(n) times, however, and is
therefore not scalable. In work with similar motivation as our own, Bellare et al. [6] also
show a compiler (the “BCK compiler”) which converts unauthenticated protocols into
authenticated protocols. (We remark, however, that their model is slightly different from
ours—and thus their compiler does not directly apply to our setting—in that they assume
parties agree a priori on unique, matching session ids.) At a high level, applying the BCK
compiler to an n-party protocol can be viewed as providing O(n2) authenticated channels
between each pair of parties. In contrast, our compiler may be viewed as providing a
single authenticated “broadcast” channel to these n parties (although, as discussed below,
we do not assume that broadcast is available as a primitive in our network). The compiler
we show here is also more computationally efficient than O(n2) invocations of the BCK
compiler.

Burmester and Desmedt [18] suggest a method (specific to their protocol) to achieve
security against an active adversary. Their method requires zero-knowledge (ZK) proofs
of knowledge, and it seems that (minimally) these ZK proofs need to be non-malleable
and secure under concurrent executions in order for their protocol to be provably secure
in the model considered here. The authenticated group KE protocol given here is com-
putationally more efficient and has better round complexity than what could be achieved
using their approach.
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One can also view the work of Bresson et al. [17] as providing a “compiler” specific
for the protocol of Steiner et al. [40]. Even for this application, their compiler results
in an exponential degradation of the concrete security reduction; thus, their proof only
applies to groups of constant size (see Theorem 1 of [17]). In contrast, our proofs apply
to polynomial-size groups.

1.3. Complexity Measures for Group AKE Protocols

We measure the efficiency of group AKE protocols in a number of standard ways which
we now describe for completeness. This is followed by a comparison of the efficiency
of our main protocol with that obtained in previous work.

Round complexity. The round complexity of a protocol is simply the number of rounds
until the protocol terminates. Note, however, that this must be more carefully defined
in the presence of an active adversary who controls the scheduling of all messages in
the network (indeed, the very notion of a “round” is not well-defined in this model,
and an adversary can make the time complexity arbitrarily large by refusing to deliver
any messages). We measure the round complexity assuming the “best-case” scenario:
an adversary who delivers all messages intact to the appropriate recipient(s) as soon as
they are sent. Messages which can be sent by parties simultaneously are considered to
occur in the same round.

Message complexity. We measure the message complexity in terms of the maximum
number of messages sent by any single user; this seems more useful in determining the
scalability of a protocol. We consider the message complexity in both the point-to-point
and “broadcast” models. In the point-to-point model each message sent to a different
party is counted separately, while in the “broadcast” model we assume that sending the
same message to multiple parties incurs the same cost as sending that message to a
single party; equivalently, we assume a “broadcast channel” and measure the number of
messages a player sends to that channel. We stress, however, that the abstraction of a
broadcast channel is used only for measuring the complexity, and we do not assume that a
true broadcast channel is available when proving security of our protocols. In particular,
an active adversary still has complete control over all communication in the network (and
can deliver different messages to different parties), and if a player U is corrupted then
that player can send different messages to different parties. Further discussion appears
at the beginning of Section 3.1.

Communication complexity. As in the case of message complexity, we measure com-
munication complexity in terms of the maximum number of bits communicated by any
single party, and consider both point-to-point and “broadcast” models.

With the above in mind, we compare in Table 2 the complexity of our main protocol to
that of previous work [17], [14] (recall that our main protocol is obtained by applying the
compiler of Section 3 to the group KE protocol of Section 4). As for computational costs,
the protocol of [17] requires some players to compute O(n) “full” modular exponenti-
ations (in addition to O(1) signatures and O(1) signature verifications); the protocol of
[14] requires the initiator of the protocol to perform O(n) public-key encryptions and
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Table 2. Complexity of provably-secure protocols for group AKE in terms of the number of parties n. See
text for explanation of what “point-to-point” and “broadcast” refer to.

Messages (per user) Communication (per user)

Rounds Point-to-point Broadcast Point-to-point Broadcast

Bresson et al. [17] O(n) 2 2 O(n) O(n)
Boyd–Nieto [14] 1 O(n) 1 O(n2) O(n)

Here 3 O(n) 3 O(n) O(1)

one signature computation; and our protocol requires each player to compute O(n log n)
modular multiplications and to verify O(n) signatures (in addition to O(1) signature
computations and three “full” modular exponentiations). As we have already noted, the
cost of signature verification in our protocol can be improved using techniques for batch
verification [7].

1.4. Outline

In Section 2 we review the security model of Bresson et al. [17]. We present our compiler
in Section 3 and a two-round protocol secure against passive adversaries in Section 4.
Applying our compiler to this protocol gives our main result: an efficient, fully scalable,
and constant-round group AKE protocol.

2. The Model and Preliminaries

For strings x1, . . . , xn , we let y = x1| · · · |xn be a string which unambiguously encodes
x1, . . . , xn so that, in particular, it is possible to recover the {xi } from y correctly. As this
can be achieved using standard techniques, we do not dwell on it further.

Our security model is the one of Bresson et al. [17] which builds on prior work from
the two-party setting [10], [11], [8] and which has been widely used to analyze group
KE protocols (see [15], [16], and [14]). We explicitly define notions of security for both
passive and active adversaries; this will be necessary for stating and proving meaningful
results about our compiler in Section 3.

Participants and initialization. We assume for simplicity a fixed, polynomial-size set
P = {U1, . . . ,U�} of potential participants. Any subset of P may decide at any point
to establish a session key, and we do not assume that these subsets are always the same
size or always include the same participants. Before the protocol is run for the first time,
an initialization phase occurs during which each participant U ∈ P runs an algorithm
G(1k) to generate public/private keys (P KU , SKU ). Each player U stores SKU , and the
vector 〈P Ki 〉1≤i≤|P| is known by all participants (and is also known by the adversary).

Adversarial model. In the real world a protocol determines how principals behave in
response to signals from their environment. In our model these signals are sent by the
adversary. Each principal can execute the protocol multiple times with different partners;
this is modeled by allowing each principal an unlimited number of instances with which
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to execute the protocol. We denote instance i of user U as �i
U . A given instance may

be used only once. Each instance�i
U has associated with it the variables statei

U , termi
U ,

acci
U , usedi

U , pidi
U , sidi

U , and ski
U with the following semantics (following [8]):

• statei
U represents the current (internal) state of instance �i

U . The variables termi
U

and acci
U take boolean values indicating whether the instance has terminated or

accepted, respectively. When an instance has terminated, it is done sending and
receiving messages. A terminated instance may also possibly accept; acceptance
is meant to represent (informally) that the instance does not detect any incorrect
behavior.
• pidi

U , the partner ID of instance�i
U , is a set containing the identities of the players

in the group with whom�i
U intends to establish a session key (including U itself).

The session ID sidi
U provides a means of determining which instances are taking

part in a given execution of the protocol; its exact function is discussed further
below. Finally, ski

U is the session key whose computation is the goal of the protocol.

For the most part, we only explicitly refer to pidi
U , sidi

U , and ski
U (the remaining variables

are left implicit).
The adversary is assumed to have complete control over all communication in the

network. An adversary’s interaction with the principals in the network (more specifically,
with the various instances) is modeled by the following oracles:

• Send(U, i,M)—This sends message M to instance�i
U , and outputs the reply gen-

erated by this instance. Since protocols in the group setting may wait to receive mes-
sages from multiple parties before generating any reply, we write
Send(U, i,M1| · · · |M�) to denote sending messages M1, . . . ,M� to this instance
(in response, the oracle generates the reply the instance would generate in response
to this sequence of messages).

We allow the adversary to prompt the unused instance�i
U to initiate the protocol

with partners U2, . . . ,Un by calling Send(U, i,U2| · · · |Un). In this case, pidi
U is

set to {U,U2, . . . ,Un}.
• Execute(U1, i1, . . . ,Un, in)—This executes the protocol between the (unused) in-

stances {�i j

Uj
}1≤ j≤n , and outputs the transcript of the execution. The pid of each in-

stance is set to {U1, . . . ,Un}. For simplicity, we refer to such a query by
Execute(U1, . . . ,Un) and assume the {Ui } are in lexicographic order.
• Reveal(U, i)—This outputs session key ski

U for a terminated instance �i
U .

• Corrupt(U )—This outputs the long-term secret key SKU of player U .
• Test(U, i)—This query is allowed only once, at any time during the adversary’s

execution. A random bit b is generated; if b = 1 the adversary is given ski
U , and if

b = 0 the adversary is given a random session key.

A passive adversary is given access to the Execute, Reveal, Corrupt, and Test oracles,
while an active adversary is additionally given access to the Send oracle. Although the
Execute oracle can be simulated via repeated calls to the Send oracle, allowing Execute
queries allows for a tighter definition of forward secrecy as well as a more exact concrete
security analysis.
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Partnering. Partnering is defined via session IDs and partner IDs. The session ID sidi
U

for instance�i
U is a protocol-specified function of all communication sent and received

by �i
U ; for our purposes, we make the strictest definition and set sidi

U equal to the
concatenation of all messages sent and received by �i

U during its execution (where the
messages are ordered by round, and within each round lexicographically by the identities
of the purported senders). As we have already discussed above, pidi

U is a set containing
the identities of the players in the group with whom�i

U intends to establish a session key
(including U itself), and is defined when the adversary initiates execution of the protocol
via either the Send or Execute oracles. We say terminated instances �i

U and � j
U ′ (with

U = U ′) are partnered iff (1) pidi
U = pid j

U ′ and (2) sidi
U = sid j

U ′ . Our definition of
partnering is much simpler than that of [17] since, in our protocols, all messages are sent
to all other members of the group taking part in the protocol.

We remark that two instances �i
U , � j

U of the same user U cannot be partnered (i.e.,
we require U = U ′ above). This definitional choice is motivated by our intuitive notion
of “partnering,” but has technical consequences as well. In particular, it implies that no
deterministic protocol can be secure with respect to the definitions given here; see the
discussion in Section 2.1.

Correctness. Of course, we wish to rule out “useless” protocols from consideration. In
the standard way, we require that for all U,U ′, i, j such that sidi

U = sid j
U ′ , pidi

U = pid j
U ′ ,

and acci
U = acc j

U ′ = TRUE, it is the case that ski
U = sk j

U ′ = NULL.

Freshness. Following [8], [17], and [30], we define a notion of freshness appropriate
for the goal of forward secrecy. An instance �i

U is fresh unless one of the following
is true: (1) at some point the adversary queried Reveal(U, i) or Reveal(U ′, j), where
�

j
U ′ is partnered with �i

U ; or (2) a query Corrupt(V ) with V ∈ pidi
U was asked be-

fore a query of the form Send(U ′, j, ∗), where U ′ ∈ pidi
U . We remark that our def-

inition of freshness results in a stronger definition of forward secrecy than that given
by [8].

Definitions of security. Event Succ occurs if the adversary A queries the Test oracle
on an instance�i

U which is still fresh at the conclusion of the experiment and for which
acci

U = TRUE, and A correctly guesses the bit b used by the Test oracle in answering

this query. The advantage of A in attacking protocol P is defined as AdvA,P(k)
def=

|2 · Pr[Succ] − 1|. We say protocol P is a secure group key-exchange (KE) protocol if
it is secure against a passive adversary; that is, for any PPT passive adversary A it is the
case that AdvA,P(k) is negligible. We say protocol P is a secure group authenticated
key-exchange (AKE) protocol if it is secure against an active adversary; that is, for any
PPT active adversary A it is the case that AdvA,P(k) is negligible.

To enable a concrete security analysis, we define AdvKE-fs
P (t, qex) to be the maximum

advantage of any passive adversary attacking P , running in time t , and making qex calls
to the Execute oracle. Similarly, we define AdvAKE-fs

P (t, qex, qs) to be the maximum
advantage of any active adversary attacking P , running in time t , making qex calls to the
Execute oracle, and making qs calls to the Send oracle.
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Protocols without forward secrecy. The definitions above already incorporate the re-
quirement of forward secrecy since the adversary has unrestricted access to the Cor-
rupt oracle in each case. Our compiler may also be applied to KE protocols which
do not achieve forward secrecy. For completeness, we define AdvKE

P (t, qex) and
AdvAKE

P (t, qex, qs) in a manner completely analogous to the above, with the excep-
tion that the adversary in each case can only access the Corrupt oracle immediately
after the initialization stage but before it makes any other oracle queries (this models
“static” corruption of players before any executions of the protocol are carried out). This
is stronger (and more realistic) than the usual model which simply disallows Corrupt
queries altogether.3

Authentication. We do not define any notion of explicit authentication or, equivalently,
confirmation that the other members of the group were the ones participating in the
protocol (such a definition may be derived by adapting the definition of [10] from the
two-party setting). However, it is not hard to see that any group AKE protocol resulting
from our compiler does indeed achieve explicit authentication.

2.1. Notes on the Definition

Deterministic and non-interactive protocols. We claim that for any deterministic KE
protocol P there exists an adversary A with AdvKE

P (t, 2) ≈ 1 (for some small value
of t). To see this, consider the adversary who queries Execute(U1, i,U2, i,U3, i) and
Execute(U1, j,U2, j,U3, j), followed by Reveal(U1, i) and Test(U1, j). Since P is
deterministic, we have that ski

U1
= sk j

U1
and so the adversary can easily succeed with

probability essentially 1 (assuming the session keys are long enough). Crucial to this
attack is the fact that�i

U1
and� j

U1
are not partnered (and so� j

U1
is fresh); note that if we

were to allow two instances of the same user to be partnered then in fact all the relevant
instances above (i.e., �i

U1
, � j

U1
, . . ., �i

U3
, � j

U3
) would be partnered (since they all have

identical values of sid and pid) and so the above attack would be ruled out.
A corollary of the above is that no non-interactive KE protocol is secure with respect

to our definitions. We remark that there do exist non-interactive KE schemes satisfying
weaker definitions of security.

Insider attacks. Although the definitions given above are standard for the analysis
of group KE protocols [17], [15], [16], [14], there are a number of concerns they do
not address. For one, the definitions do not offer complete protection against malicious
insiders or users who do not honestly follow the protocol. The definitions also do not
ensure any form of “agreement” (in the sense of [27]); in fact, since the model gives
the adversary complete control over all communication in the network (i.e., in addition
to delaying messages, the adversary may modify messages or refuse to deliver them at
all!) full-fledged agreement is clearly impossible. Finally, the definitions do not protect
against “denial of service” attacks in which, for example, an honest instance might
“hang” indefinitely; this is a consequence of the adversary’s ability to refuse to deliver
messages.

3 We thank an anonymous referee for suggesting that we use this stronger model.
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Some of these concerns can be addressed, at least partially, by making suitable changes
to existing protocols. For example, it seems that the following approach can be used
following any group AKE protocol to achieve confirmation that all (non-corrupted) par-
ticipants have computed a matching session key: after computing key sk, each player
Ui computes xi = H(sk|sid|Ui ), signs xi , broadcasts xi and the corresponding signa-
ture, and computes the “actual” session key sk′ = H(sk|sid|⊥) (here, H is modeled
as a random oracle and “⊥” represents some distinguished string); other players check
the validity of the broadcast values in the obvious way. Although this does not provide
agreement (since an adversary can still refuse to deliver messages to some of the par-
ticipants), it does ensure the equality of any keys generated by partnered instances. For
further discussion about insider attacks and a proof that a variant of the above approach
is secure (in the standard model), see [31].

3. A Scalable Compiler for Group AKE Protocols

3.1. Description of the Compiler

We show here a compiler transforming any secure group KE protocol P to a secure group
AKE protocol P ′ (recall that a group KE protocol protects against a passive adversary
only, while a group AKE protocol additionally protects against an active adversary).
Without loss of generality, we assume that in the original protocol P each message sent
by an instance�i

U includes the sender’s identity U as well as a sequence number which
begins at 1 and is incremented each time �i

U sends a message (in other words, the j th
message sent by an instance �i

U has the form U | j |m). Furthermore, because the KE
protocol discussed in Section 4 has this property, we assume for simplicity that every
message of the original protocol P is sent—via point-to-point links—to every member
of the group taking part in the execution of the protocol; that is,�i

U sends each message
to all users in pidi

U . (We discuss briefly below the case when P does not satisfy this.)
For simplicity, we refer to this as “broadcasting a message” but stress that we do not
assume a broadcast channel and, in particular, an active adversary can deliver different
messages to different members of the group or refuse to deliver a message to some of
the participants. (Also, if the adversary learns the secret key of a party V via a Corrupt
query, the adversary can send different messages on behalf of V to different members
of the group.)

Let 	 = (Gen,Sign,Vrfy) be a signature scheme which is strongly unforgeable
under adaptive chosen message attack (where “strong” means that an adversary is also
unable to forge a new signature for a previously signed message), and let Succ	(t)
denote the maximum advantage of any adversary running in time t in forging a new
message/signature pair. We assume that the signature length is independent of the length
of the message signed; this is easy to achieve in practice by hashing the message (using a
collision-resistant hash function) before signing. Given protocol P as above, our compiler
constructs a new protocol P ′ as follows:

1. During the initialization phase, each party U ∈ P generates the verification/signing
keys (P K ′U , SK ′U )by running Gen(1k). This is in addition to any keys (P KU , SKU )

generated as part of the initialization phase for P .
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2. Let U1, . . . ,Un be the identities (in lexicographic order) of users wishing to estab-
lish a common key, and let U = {U1, . . . ,Un}. Each user Ui begins by choosing a
random nonce ri ∈ {0, 1}k and broadcasting Ui |0|ri (note we assign this message
the sequence number “0”). After receiving the initial broadcast message from all
other parties, each instance� j

U (for U ∈ U) sets nonces j
U = U1|r1| · · · |Un|rn and

stores this as part of its state information.
3. The members of the group now execute P with the following changes:
• Whenever instance�i

U is supposed to broadcast U | j |m as part of protocol P , the
instance computes σ ← SignSK ′U

( j |m|noncesi
U ) and then broadcasts U | j |m|σ .

• When instance�i
U receives message V | j |m|σ , it checks that: (1) V ∈ pidi

U\{U },
(2) j is the next expected sequence number for messages from V , and, finally,
(3) VrfyP K ′V

( j |m|noncesi
U , σ ) = 1. If any of these are untrue, �i

U aborts the

protocol and sets acci
U = FALSE and ski

U = NULL. Otherwise, �i
U continues as

it would in P upon receiving message V | j |m.
4. Assuming it has not already aborted the protocol, each instance computes the

session key as in P .

In case messages in P are not broadcast to the entire group, step 3 in the above may
be modified as follows: Whenever instance�i

U is supposed to send U | j |m to player U ′,
the instance computes σ ← SignSK ′U

( j |m|U ′|noncesi
U ) and then sends U | j |m|σ to U ′.

(Verification is changed in the obvious way.)

3.2. Proof of Security

We now prove that the compiler of the previous section converts any group KE protocol
into a group AKE protocol. This holds regardless of whether or not the original protocol
achieves forward secrecy (of course, if the original protocol does not achieve forward
secrecy then the compiled one does not achieve it either).

Before giving the formal proof we present a high-level overview. In the proof we
will transform any active adversaryA′ attacking protocol P ′ into a passive adversaryA
attacking protocol P . A natural first attempt is to haveA query its Execute oracle for each
unique value of nonces defined throughout the course of the experiment. This results in
a transcript T of an execution of P , which can then be “patched” by A (by generating
appropriate signatures) to yield a transcript T ′ of an execution of P ′. The appropriate
messages of T ′ can then be returned to A′ as it makes the relevant Send queries. We
would then like to claim that this yields a “good” simulation since, roughly speaking,
A′ is “limited” to sending messages already contained in T ′ (because A′ cannot forge
signatures and, except with negligible probability, nonces do not repeat).

Unfortunately, such an approach does not quite work since A′ might make a Corrupt
query and then send messages that are not contained in the “patched” transcript T ′. That
is,A′ might query Send1(U, �, ∗) and then, at some later point in time, corrupt a player
V ∈ pid�U . This will allow A′ to sign messages on behalf of V and therefore to send
arbitrary messages to, e.g.,��

U . Note that although��
U is no longer fresh (and soA need

not be concerned with the secrecy of the session key generated by that instance), the
messages output by this instance must still be properly simulated by A. Unfortunately,
there does not seem to be any general way that A can perform such a simulation.
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To avoid this potential problem, we adopt the following modified approach (infor-
mally): for all but (at most) one value of nonces, adversary A will respond to the Send
queries of A′ by running protocol P ′ itself. A will be able to perform this efficiently
by making the necessary Corrupt queries to obtain any private information needed to
execute the underlying protocol. For the (at most one) value of nonces that A does not
simulate on its own,Awill use its Execute oracle to obtain a transcript of P and simulate
an execution of P ′ (as discussed above). In essence,A is guessing thatA′ will eventually
issue a Test query for an instance associated with this singular value of nonces, which
degrades the concrete security by a factor of roughly qs. (We remark that when forward
secrecy is not a concern the above issue does not arise and so a tighter security reduction
is possible.) A formal proof follows.

Theorem 1. If P is a secure group KE protocol achieving forward secrecy, then P ′

given by the above compiler is a secure group AKE protocol achieving forward secrecy.
Namely,

AdvAKE-fs
P ′ (t, qex, qs) ≤ AdvKE-fs

P (O(t ′), qex)+ qs

2
· AdvKE-fs

P (O(t ′), 1)

+ |P| · Succ	(O(t
′))+ q2

s + qexqs

2k
,

where t ′ represents the maximum time required to execute an entire experiment involving
an adversary running in time t attacking protocol P ′.

For the case when P may not achieve forward secrecy, we have

AdvAKE
P ′ (t, qex, qs) ≤ AdvKE

P

(
O(t ′), qex + qs

2

)
+ |P| · Succ	(O(t

′))+ q2
s + qexqs

2k
,

where t ′ is as above.

Proof. In the proof we focus on the case when P achieves forward secrecy and discuss
briefly at the end the case when it does not. Given an active adversary A′ attacking P ′,
we will construct a passive adversary A attacking P; relating the success probabilities
ofA′ andA gives the stated result. Before describingA, we first define events Forge and
Repeat and bound their respective probabilities. Let Forge be the event that A′ outputs
a new, valid message/signature pair with respect to the public key P K ′U of some user
U ∈ P before querying Corrupt(U ). (More formally, Forge is the event thatA′ makes a
query of the form Send(V, i,U | j |m|σ)where VrfyP K ′U

( j |m|noncesi
V , σ ) = 1 but σ was

not previously output by any instance of the as-yet-uncorrupted player U as a signature
on j |m|noncesi

V .) It is straightforward to show that PrA′,P ′ [Forge] ≤ |P|·Succ	(O(t ′)).
Let Repeat be the event that a nonce used by any user in response to a Send query

was used previously by that user (in response to either an Execute or a Send query). It
is immediate that PrA′,P ′ [Repeat] ≤ (qsqex + q2

s )/2
k .

Informally, we will consider separately the cases when A′ asks its Test query to an
instance initialized via an Execute query, and the case whenA′ asks its Test query to an
instance initialized via a Send query. More formally, let Ex be the event that A′ makes
its query Test(U, i) to an instance �i

U such that A′ never made a query of the form
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Send(U, i, ∗) (and therefore did make an Execute query involving this instance). We

also define Se
def= Ex. We will separately bound the probabilities of PrA′,P ′ [Succ ∧ Ex]

and PrA′,P ′ [Succ∧Se] by constructing appropriate passive adversariesA1 andA2 (each
attacking P).

The initial behavior of adversaries A1/A2 is the same, and so we describe it once
and for all. Recall that as part of the initial setup, adversary A1/A2 is given public keys
{P KU }U∈P if any are defined as part of protocol P . First,A1/A2 obtains all secret keys
{SKU }U∈P using multiple Corrupt queries. Next,A1/A2 runs Gen(1k) to generate keys
(P K ′U , SK ′U ) for each U ∈ P . The set of public keys {P K ′U , P KU }U∈P is then given to
A′. A1/A2 then runs A′ and simulates the oracle queries of A′ in the manner described
below. We stress thatA1/A2 now has the secret information of all parties in the network;
yet, since P provides forward secrecy, this does not affect the security of P against
passive attacks.4

We first describe the simulation provided by A1. At a high level, A1 simply runs
A′ as a subroutine and simulates the Execute queries of A′ using queries to its own
Execute oracle. All Send oracle queries of A′ are answered by having A1 execute
protocol P ′ itself; again, the key point is that A1 can do this since it has the secret keys
of all the parties. If event Se occurs, A1 aborts and outputs a random bit; otherwise, it
outputs whatever bit is eventually output byA′. We now describe the simulation in more
detail.

Execute queries. WhenA′ makes a query Execute(U1, . . . ,Un) (with the U ’s assumed
to be in lexicographic order),A1 sends the same query to its Execute oracle and receives in
return a transcript T of an execution of P . Next,A1 chooses random r1, . . . , rn ∈ {0, 1}k
and sets nonces = U1|r1| · · · |Un|rn . To simulate a transcript T ′ of an execution of P ′,A1

sets the initial messages of T ′ to {Ui |0|ri }1≤i≤n . Furthermore, for each message U | j |m in
transcript T , algorithm A1 computes signature σ ← SignSK ′U

( j |m|nonces) and places
U | j |m|σ in T ′. When done, the complete transcript T ′ is given to A′.

Send queries. As discussed earlier, when A′ makes a Send query the response is
computed by having A1 execute protocol P ′ itself (recording state as necessary).

Reveal/Test queries. Any Reveal queries made by A′ to instances initiated via an
Execute query are answered by havingA1 make the appropriate query to its own Reveal
oracle. Specifically, when A′ queries Reveal(U, �) for an instance for which acc�U =
TRUE, let T ′ def= sid�U be the transcript of the execution of P ′ for instance ��

U . Let T
denote the underlying transcript of protocol P that is contained within transcript T ′,
obtained by simply “stripping” the signatures from T ′. Assuming ��

U was initiated
via an Execute query made by A′, there exists an Execute query made by A1 which
resulted in this transcript;A1 makes a Reveal query to the appropriate instance belonging
to the lexicographically first user involved in this query, and then returns the result
to A′.

4 Indeed, our definition of freshness ensures that all instances initialized by an Execute query are (potentially)
fresh even if all parties involved have been corrupted.
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Reveal queries made by A′ to instances initiated via a Send query are answered in
the obvious way by A1 (in particular, A1 simply computes the appropriate session key
itself).

When A makes its Test query Test(U, i), A1 checks whether A′ has ever made a
query of the form Send(U, i, ∗) (i.e., whether event Se has occurred). If so, A1 aborts
and outputs a random bit. Otherwise (namely, if event Ex has occurred), A1 issues the
appropriate Test query to its own oracle, returns the result to A′, and outputs whatever
A′ outputs.5

The simulation provided byA1 is perfect (even if Repeat or Forge occurs) unlessA1

aborts due to the occurrence of event Se. Thus,

Pr
A1,P

[Succ] = Pr
A′,P ′

[Succ ∧ Ex]+ 1
2 · Pr
A′,P ′

[Se]. (1)

Furthermore, |2 · PrA1,P [Succ]− 1| ≤ AdvKE-fs
P (O(t ′), qex) because A1 makes at most

qex queries to its Execute oracle.
Before describingA2, we introduce some terminology. Denote the initial Send query

to an instance (denoting a request for protocol initiation) by Send0; note that for any
particular instance��

U this query always has the form Send0(U, �,U1| · · · |Un). Denote
the second Send query to an instance by Send1; for an instance ��

U as before, we may
assume without loss of generality that this query has the form Send1(U, �, (U1|0|r1)| · · ·
|(Un|0|rn)) with ri ∈ {0, 1}k for all i and the {Ui } appearing in lexicographic order.
Following a Send1 query to instance��

U , define nonces�U = U1|r1| · · · |U |r �U | · · · |Un|rn

where r �U is the nonce generated by ��
U and the position of U |r �U is chosen so as to

maintain the lexicographic ordering of the U ’s.
We now describe A2. At a high level, A2 guesses that Se will occur and furthermore

guesses in advance the first Send1 query corresponding to the eventual Test query ofA′.
This Send query to some instance��

U (and all Send queries to instances partnered with
��

U ) will be simulated by having A2 make the appropriate query to its Execute oracle
to obtain a transcript T , “patch” T (by generating appropriate signatures) to obtain a
modified transcript T ′, and then use T ′ in the natural way (i.e., send the appropriate
message from T ′ in response to the Send queries of A′). All other Send queries of A′
(as well as all Execute queries) will be answered by havingA2 simulate execution of P ′

itself. If Ex, Forge, or Repeat occurs, A2 aborts and outputs a random bit; otherwise,
it makes the appropriate Test query, forwards the result to A′, and outputs whatever A′
outputs. The key point here is that as long as neither Forge nor Repeat occurs, A′ is
(informally) “limited” to sending to ��

U (and partnered instances) messages contained
in T ′; adversary A′ can do otherwise only if it queries Corrupt(V ) for some V ∈ pid�U ,
but then��

U is no longer fresh (we assume without loss of generality thatA′ only makes
a Test query to a fresh instance, since it cannot succeed otherwise).

We now provide the details. First, A2 chooses a random α ∈ {1, . . . , qs/2} (note that
qs/2 is an upper bound on the number of Send1 queries made byA′). It then simulates the

5 There is a slight subtlety here, in that A1 must make sure that its Test query is made to a fresh instance
(and it is possible that two Execute queries ofA1 result in the same transcript T ). This is ensured by always
havingA1 direct its Reveal/Test queries to an appropriate instance of the lexicographically first user involved
in the corresponding Execute query, using the fact that two instances associated with the same user cannot be
partnered (by definition).
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oracle calls of A′ as described below (to aid the simulation, A2 maintains a list Nonces
whose function will become clear). A2 aborts immediately (and outputs a random bit)
if Repeat or Forge occurs.

Execute queries. All Execute queries ofA′ are answered by havingA2 execute protocol
P ′ itself (A2 can do this efficiently because it has the secret keys of all players), resulting
in a value nonces and a transcript T ′. A2 stores (nonces,∅) in Nonces and returns T ′

to A′.

Send queries. These queries are handled as follows:

• On query Send0(U, �, ∗),A2 chooses random r �U ∈ {0, 1}k and replies with U |0|r �U .
• On the αth Send1 query (say, to an instance ��

U ), the values of pid�U and nonces�U
are defined (by the previous Send0 query to this instance and the current query,
respectively). A2 first looks in Nonces for an entry of the form (nonces�U ,∅); if
such an entry exists,A2 aborts and outputs a random bit. Also, ifA′ had previously
asked a Corrupt query to any user V ∈ pid�U then A2 aborts and outputs a random
bit. Otherwise, A2 queries Execute(pid�U ), receives in return a transcript T , and
stores (nonces�U , T ) in Nonces.A2 then finds the message of the form U |1|m in T ,
computes the signature σ ← SignSK ′U

(1|m|nonces�U ), and returns U |1|m|σ to A′.
• On any other Send query to an instance �i

U , A2 looks in Nonces for an entry of
the form (noncesi

U , T ). If no such entry exists,A2 stores (noncesi
U ,∅) in Nonces.

In this case or if T = ∅, A2 responds by executing protocol P ′ itself ; recall again
that A2 can do this since it has the secret information of all players. On the other
hand, if T = ∅ this implies thatA2 has received T in response to its single Execute
query. Now,A2 verifies correctness of the incoming messages as in the specification
of the compiler and terminates the instance if verification fails. Additionally, A2

aborts (and outputs a random bit) ifA′ had previously asked a Corrupt query to any
user V ∈ pidi

U . Otherwise,A2 locates the appropriate message U | j |m in transcript
T , computes the signature σ ← SignSK ′U

( j |m|nonces�U ), and replies to A′ with
U | j |m|σ .

Corrupt queries. These are answered in the obvious way.

Reveal queries. WhenA′ queries Reveal(U, �) for a terminated instance��
U , the value

of nonces�U is defined.A2 finds an entry (nonces�U , T ) in Nonces and aborts (and outputs
a random bit) if T = ∅. Otherwise, if T = ∅ it means that A2 has executed protocol P ′

itself; A2 can therefore compute the appropriate session key and return it to A′.

Test query. When A′ queries Test(U, i) for a terminated instance, A2 finds an entry
(nonces�U , T ) in Nonces. If T = ∅, thenA2 aborts and outputs a random bit. Otherwise,
A2 makes the appropriate Test query (for one of the instances it activated via its single
Execute query) and returns the result to A′.

Let Bad denote Forge∪Repeat, and recall thatA2 aborts immediately if Bad occurs.
From the above simulation, we may also note that A2 aborts if Ex occurs (since in this
case T = ∅ when A′ makes its Test query). On the other hand, if neither Bad nor Ex
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occur, then A2 does not abort (i.e., it correctly guesses the value of α) with probability
exactly 2/qs. Furthermore, the simulation is perfect in caseA2 does not abort. Putting this
together (and letting Guess denote the probability that A2 correctly guesses α) implies

Pr
A2,P

[Succ] = 2

qs
· PrA′,P ′ [Succ ∧ Se ∧ Bad]+ 1

2 · Pr[Ex ∨ Guess ∨ Bad]. (2)

Furthermore,
∣∣2 · PrA2,P [Succ]− 1

∣∣ ≤ AdvKE-fs
P (O(t ′), 1) sinceA2 makes only a single

query to its Execute oracle.
Using (1) and (2) we obtain (in the following, Pr[·] always denotes PrA′,P ′ [·])
|2 · Pr
A′,P ′

[Succ]− 1|

= 2 · |Pr[Succ ∧ Ex]+ Pr[Succ ∧ Se ∧ Bad]+ Pr[Succ ∧ Se ∧ Bad]− 1
2 |

≤ AdvKE-fs
P (O(t ′), qex)

+ 2 · |Pr[Succ ∧ Se ∧ Bad]+ Pr[Succ ∧ Se ∧ Bad]− 1
2 Pr[Se]|

≤ AdvKE-fs
P (O(t ′), qex)

+ qs

2
· AdvKE-fs

P (O(t ′), 1)

+
∣∣∣∣2 · Pr[Succ ∧ Se ∧ Bad]− Pr[Se]− qs

2
Pr[Ex ∨ Bad]

−
(qs

2
− 1

)
Pr[Se ∧ Bad]+ qs

2

∣∣∣∣,
using the fact that

Pr[Ex ∨ Guess ∨ Bad] = Pr[Ex ∨ Bad]+ Pr[Guess ∧ Se ∧ Bad]

= Pr[Ex ∨ Bad]+
(

1− 2

qs

)
· Pr[Se ∧ Bad].

Continuing, and using Pr[Ex ∨ Bad]+ Pr[Se ∧ Bad] = 1, we have

|2 · Pr
A′,P ′

[Succ]− 1|

≤ AdvKE-fs
P (O(t ′), qex)+ qs

2
· AdvKE-fs

P (O(t ′), 1)

+ |2 · Pr[Succ ∧ Se ∧ Bad]− Pr[Se]+ Pr[Se ∧ Bad]|
= AdvKE-fs

P (O(t)′, qex)+ qs

2
· AdvKE-fs

P (O(t ′), 1)

+ |2 · Pr[Succ ∧ Se ∧ Bad]− Pr[Se ∧ Bad]|
≤ AdvKE-fs

P (O(t ′), qex)+ qs

2
· AdvKE-fs

P (O(t ′), 1)+ Pr[Bad].

Since Pr[Bad] ≤ Pr[Forge]+ Pr[Repeat], this gives the desired result.
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For the case when P does not achieve forward secrecy, we can construct an adversary
A that “merges” the behavior of A1 and A2; furthermore, A will not have to guess (as
A2 does) the first Send1 query corresponding to the eventual Test query of A′. In more
detail: A issues Corrupt queries in exactly the same way that A1/A2 do (note that all
these queries are made at the outset, before any other oracle queries are made). Then A
simulates the experiment forA′ in the following way: Execute queries ofA′ are handled
as A1 does; Send queries of A′ when no members of pid are corrupted are all handled
asA2 does for Send queries corresponding to its “guess”; and Send queries ofA′ when
some member of pid is corrupted are handled by having A run the protocol itself. (The
key point is thatA does not have to worry thatA′ will later corrupt some player since all
of the Corrupt queries of A′ must now be made at the outset.) A aborts (and outputs a
random bit) if either Forge or Repeat occurs; otherwise,A outputs whateverA′ outputs.
Since A makes at most qex + qs/2 queries to its Execute oracle, the claimed bound
follows.

We remark that the above theorem is a generic result that applies to the invocation of
the compiler on an arbitrary group KE protocol P . For specific protocols, a better exact
security analysis may be obtainable.

4. A Constant-Round Group KE Protocol

In this section we describe an efficient, two-round group KE protocol which achieves for-
ward secrecy. Applying the compiler of the previous section to this protocol immediately
yields (via Theorem 1) an efficient, three-round group AKE protocol achieving forward
secrecy. The security of the present protocol is based on the decisional Diffie–Hellman
(DDH) assumption [25], which we describe now. LetG be a cyclic group of prime order
q and let g be a fixed generator of G. Informally, the DDH problem is to distinguish
between tuples of the form (gx , gy, gxy) (called Diffie–Hellman tuples) and (gx , gy, gz)

where z ∈ Zq\{xy} is random6 (called random tuples); G is said to satisfy the DDH
assumption if these two distributions are computationally indistinguishable. More for-
mally, define Advddh

G
(t) as the maximum value, over all distinguishing algorithms D

running in time at most t , of

|Pr[x, y←Zq : D(gx , gy, gxy)=1]−Pr[x, y←Zq; z←Zq\{xy} : D(gx , gy, gz)=1]|,
where we assume that g is fixed and known to algorithm D. Given the above,G satisfies
the DDH assumption if Advddh

G
(t) is “small” for “reasonable” values of t . (This definition

is appropriate for a concrete security analysis; for asymptotic security one would consider
an infinite sequence of groups G = {Gk}k≥1 and require that Advddh

Gk
(t (k)) be negligible

in k for all polynomials t .) One standard way to generate a group assumed to satisfy
the DDH assumption is to choose primes p, q such that p = βq + 1 and let G be the
subgroup of order q in Z∗p. However, other choices of G are also possible.

6 Our definition is slightly non-standard in that we restrict random tuples to have z = xy. Since this occurs
with probability 1/q (for randomly chosen z), our modification has essentially no consequence. We introduce
the modification because it simplifies the proof of Theorem 2 somewhat.
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The protocol presented here is essentially the protocol of Burmester and Desmedt [19],
except that hereG is a cyclic group of prime order assumed to satisfy the DDH assumption
(in [19],Gwas taken to be an arbitrary cyclic group assumed to satisfy the computational
Diffie–Hellman (CDH) assumption). Our work was originally motivated by the fact that
no proof of security appears in the proceedings version of [19]; furthermore, subsequent
work in this area (e.g., [17] and [14]) has implied that the Burmester–Desmedt protocol
was “heuristic” and had not been proven secure. Subsequent to our work, however, we
became aware that a proof of security for a variant of the Burmester–Desmedt protocol
appears in the pre-proceedings of Eurocrypt ’94 [18] (see also [20]). Even so, we note
the following:

• Burmester and Desmedt show only that an adversary cannot compute the entire
session key; in contrast, we show that the session key is indistinguishable from
random.
• Burmester and Desmedt give a proof of security only for an even number of partic-

ipants n. They recommend using an asymmetric modified protocol (in which one
player simulates the actions of two players) for the case of n odd.
• Finally, Burmester and Desmedt make no effort to optimize the concrete security

of the reduction (and do not achieve a tight reduction to the CDH problem); indeed,
this issue was not generally considered at that time.

For these reasons, we believe it is important to present a full proof of security for this
protocol (taking care to achieve as tight a security reduction as possible) in a precise and
widely accepted model.

As required by our compiler, the protocol below ensures that players send every
message to all members of the group via point-to-point links; although we refer to
this as “broadcasting” we stress that no broadcast channel is assumed (in any case, the
distinction is moot since we are dealing here with a passive adversary). For simplicity,
in describing our protocol we assume a group G and a generator g ∈ G have been fixed
in advance and are known to all parties in the network; however, this assumption can be
avoided at the expense of an additional round in which the first player simply generates
and broadcasts these values (that this remains secure follows from the fact that we are
now considering a passive adversary). When n players U1, . . . ,Un wish to generate a
session key, they proceed as follows (the indices are taken modulo n so that player U0 is
Un and player Un+1 is U1):

Round 1. Each player Ui chooses a random ri ∈ Zq and broadcasts zi = gri .
Round 2. Each player Ui broadcasts Xi = (zi+1/zi−1)

ri .
Key computation. Each player Ui computes their session key as

ski = (zi−1)
nri · Xn−1

i · Xn−2
i+1 · · · Xi+n−2.

It may be easily verified that all users compute the same key gr1r2+r2r3+···+rnr1 .
Note that each user computes only three full-length exponentiations in G since n �

q in practice (typically, q ≈ 2160 while n � 232). We do not explicitly include
sender identities and sequence numbers as required by the compiler of the previous
section; however, as discussed there, it is easy to modify the protocol to include this
information.
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Theorem 2. The above protocol is a secure group KE protocol achieving forward
secrecy. Namely,

AdvKE-fs
P (t, qex) ≤ 4 · Advddh

G
(t ′)+ 2 · qex

|G| ,

where t ′ = t + O(|P| · qex · texp) and texp is the time to perform exponentiations
in G.

Proof. The overall structure of our proof is as follows: assume for now an adversary
who eavesdrops on a single execution of the protocol, and consider the joint distribution
of (T, sk), where T = ({zi }, {Xi }) is a transcript of an execution of the protocol and sk is
the resulting session key; we refer to this distribution as Real. We first show that, under
the DDH assumption, no efficient adversary can distinguish between the distributions
Real and Fake, where Fake is a distribution in which (as in the case of Real) all the
{zi } are uniformly distributed in G, but in which (in contrast to the case of Real) all the
{Xi } are uniformly distributed inG subject to the constraint

∏
i Xi = 1 (in this informal

discussion, we do not describe the distribution of the session key in Fake). We then
show that in distribution Fake, the value of the session key is uniformly distributed in
G, independent of the value of the transcript. Security of the original protocol, at least
for an adversary making only a single Execute query, follows immediately. The case of
an adversary making multiple Execute queries can be dealt with using a straightforward
hybrid argument, but we show an improved analysis resulting in a tighter concrete security
reduction.

A natural approach for the first step described above (namely, showing that Real and
Fake are indistinguishable) is to proceed via a sequence of n hybrid distributions in which
(roughly speaking) one Xi at a time is replaced with a random group element (subject
to the above-mentioned constraint). To obtain a tighter concrete security reduction, we
instead use the random self-reducibility [38], [5] of the DDH assumption. Due to the
dependence between the {Xi } we were unable to show a “one step” reduction. Instead,
we proceed in two steps via an intermediate distribution Fake′, where each step modifies
the distribution of a subset of the {Xi }. We now give the details.

Let ε(·) def= Advddh
G
(·). We consider first an adversary making a single Execute query

and show that AdvKE-fs
P (t, 1) ≤ 4 · ε(t ′′), where t ′′ = t + O(n · texp) and n is the number

of parties involved in the Execute query. We then discuss how to extend the proof for the
case of multiple Execute queries without affecting the tightness of the security reduction.

Since there are no public keys, we simply ignore Corrupt queries. Assume an adversary
A making a single query Execute(U1, . . . ,Un). We stress that the number of parties n
is chosen by the adversary; since the protocol is symmetric and there are no public keys,
however, the identities of the parties are unimportant for our discussion.

Let n = 3s + k where k ∈ {3, 4, 5} and s ≥ 0 is an integer (we assume n > 2 since
the protocol reduces to the standard Diffie–Hellman protocol [25] for the case n = 2).
A detailed proof requires a slightly different analysis for each of the possible values of
k and depending on whether or not s = 0; we describe here the proof for k = 5, s > 0
(proofs for the other cases follow using similar arguments). Considering an execution of
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the protocol as described above, define �i,i+1 = gri ri+1 and note that

Xi
def=
(

zi+1

zi−1

)ri

= gri ri+1

gri−1ri
= �i,i+1

�i−1,i
.

Furthermore, the (common) session key is equal to

sk1
def= (zn)

nr1 Xn−1
1 · · · Xn−1 = (�n,1)

n Xn−1
1 · · · Xn−1.

Thus, in a real execution of the protocol the distribution of the transcript T and the
resulting session key sk is given by the following, denoted Real:

Real
def=




r1, . . . , rn ← Zq;
z1 = gr1 , z2 = gr2 , . . . , zn = grn ;
�1,2 = gr1r2 , �2,3 = gr2r3 , . . . , �n−1,n = grn−1rn , �n,1 = grnr1;
X1 = �1,2/�n,1, X2 = �2,3/�1,2, . . . , Xn = �n,1/�n−1,n ;
T = (z1, . . . , zn, X1, . . . , Xn); sk = (�n,1)

n · (X1)
n−1 · · · Xn−1

: (T, sk)



.

We next define a distribution Fake′ in the following way: random exponents {ri } are
selected as in the case of Real. The {zi } are also computed exactly as in Real. However,
the values �1,2, �2,3, �3,4, as well as every value �j, j+1 with j ≥ 6 a multiple of 3 (i.e.,
every third subsequent � value), are now chosen uniformly at random from G (rather
than computed as in Real). Formally (recall n = 3s + 5 and s ≥ 1):

Fake′ def=




r1, . . . , rn ← Zq;
z1 = gr1 , z2 = gr2 , . . . , zn = grn ;
�1,2, �2,3, �3,4 ← G; �4,5 = gr4r5;
for i = 1 to s:

let j = 3i + 3

�j−1, j = grj−1rj , �j, j+1 ← G, �j+1, j+2 = grj+1rj+2;
�n,1 = grnr1;
X1 = �1,2/�n,1, X2 = �2,3/�1,2, . . . , Xn = �n,1/�n−1,n ;
T = (z1, . . . , zn, X1, . . . , Xn); sk = (�n,1)

n · (X1)
n−1 · · · Xn−1

: (T, sk)




.

Claim. For any algorithm A running in time t we have

|Pr[(T, sk)← Real : A(T, sk) = 1]− Pr[(T, sk)← Fake′ : A(T, sk) = 1]|

≤ ε(t ′′)+ 1

|G| .

Proof. Given algorithm A, consider the following algorithm D which takes as input
a triple (g1, g2, g3) ∈ G3 (where furthermore a generator g ∈ G is fixed): D gen-
erates (T, sk) according to distribution Dist′, runs A(T, sk), and outputs whatever A
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outputs. Distribution Dist′ is defined as follows (note that this distribution depends on
g1, g2, g3):

Dist′ def=




α0, β0, α
′
0, β
′
0, r0, {αi , βi , γi , ri }si=1 ← Zq;

z1 = gα0 gβ0
2 , z2 = g1, z3 = g2, z4 = gα

′
0 g
β ′0
1 , z5 = gr0;

�1,2 = gα0
1 gβ0

3 , �2,3 = g3, �3,4 = g
α′0
2 g

β ′0
3 , �4,5 = zr0

4 ;
for i = 1 to s:

let j = 3i + 3

zj = gγi g1, zj+1 = gαi gβi

2 , zj+2 = gri ;
�j−1, j = zri−1

j , �j, j+1 = gαi
1 gβi

3 zγi

j+1, �j+1, j+2 = zri
j+1;

�n,1 = zrs
1 ;

X1 = �1,2/�n,1, X2 = �2,3/�1,2, . . . , Xn = �n,1/�n−1,n;
T = (z1, . . . , zn, X1, . . . , Xn); sk = (�n,1)

n · (X1)
n−1 · · · Xn−1

: (T, sk)




.

We first examine the above distribution when (g1, g2, g3) is chosen uniformly at
random from the set of Diffie–Hellman tuples (i.e., g1 = gx , g2 = gy , and g3 = gxy);
we refer to the resulting distribution as Dist′ddh:

Dist′ddh =




x, y, α0, β0, α
′
0, β
′
0, r0, {αi , βi , γi , ri }si=1 ← Zq;

z1 = gα0 gyβ0 , z2 = gx , z3 = gy, z4 = gα
′
0 gxβ ′0 , z5 = gr0;

�1,2 = gxα0 gxyβ0 , �2,3 = gxy, �3,4 = gyα′0 gxyβ ′0 , �4,5 = zr0
4 ;

for i = 1 to s:

let j = 3i + 3

zj = gγi gx , zj+1 = gαi gyβi , zj+2 = gri ;
�j−1, j = zri−1

j , �j, j+1 = gxαi gxyβi zγi

j+1, �j+1, j+2 = zri
j+1;

�n,1 = zrs
1 ;

X1 = �1,2/�n,1, X2 = �2,3/�1,2, . . . , Xn = �n,1/�n−1,n;
T = (z1, . . . , zn, X1, . . . , Xn); sk = (�n,1)

n · (X1)
n−1 · · · Xn−1

: (T, sk)




,

where all we have done is substitute g1 = gx , g2 = gy , and g3 = gxy (for x, y ∈ Zq

chosen at random at the beginning of the experiment) into the definition of Dist′. We
claim that Dist′ddh is identical to Real. To see this, first notice that {Xi }, T, and sk are
computed identically in both, and so it suffices to look at the distribution of the z’s and
the �’s. It is not hard to see that in Dist′ddh, the {zk}nk=1 are uniformly and independently
distributed in G, exactly as in Real. It remains to show that for all k ∈ {1, . . . , n}, the
tuple (zk, zk+1, �k,k+1) in Dist′ddh is a Diffie–Hellman tuple (as in Real). This can be
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verified by inspection. We conclude that

Pr[x, y← Zq : D(gx , gy, gxy) = 1] = Pr[(T, sk)← Real : A(T, sk) = 1]. (3)

We now examine distribution Dist′ in case (g1, g2, g3) is chosen uniformly from the
space of random tuples (we refer to the resulting distribution as Dist′rand):

Dist′rand=




x, y, α0, β0, α
′
0, β
′
0, r0, {αi , βi , γi , ri }si=1 ← Zq; z← Zq\{xy};

z1 = gα0 gyβ0 , z2 = gx , z3 = gy, z4 = gα
′
0 gxβ ′0 , z5 = gr0;

�1,2 = gxα0 gzβ0 , �2,3 = gz, �3,4 = gyα′0 gzβ ′0 , �4,5 = zr0
4 ;

for i = 1 to s:

let j = 3i + 3

zj = gγi gx , zj+1 = gαi gyβi , zj+2 = gri ;
�j−1, j = zri−1

j , �j, j+1 = gxαi gzβi zγi

j+1, �j+1, j+2 = zri
j+1;

�n,1 = zrs
1 ;

X1 = �1,2/�n,1, X2 = �2,3/�1,2, . . . , Xn = �n,1/�n−1,n;
T = (z1, . . . , zn, X1, . . . , Xn); sk = (�n,1)

n · (X1)
n−1 · · · Xn−1

: (T, sk)




,

where all we have done is substitute g1 = gx , g2 = gy , and g3 = gz (for x, y, z
chosen at the beginning of the experiment) into the definition of Dist′. We claim that
Dist′rand is statistically close to Fake′. As before, we need only examine the distribution
of the z’s and the �’s. It is again not hard to see that in Dist′rand the {zk} are uniformly
and independently distributed in G, as in Fake′. By inspection, we see also that �4,5,
{�j−1, j , �j+1, j+2}j=3i+3; i=1,...,s , and �n,1 are distributed identically in Dist′rand and Fake′

(in each case these values are completely determined by the {zk}). It only remains to
show that in Dist′rand, the distribution on each of the remaining �’s is statistically close to
the uniform one. Take�j, j+1 (for some i ∈ {1, . . . , s} and j = 3i+3) as a representative
example. Since αi , βi are used only in computing zj+1 and �j, j+1, the joint distribution
of zj+1, �j, j+1—conditioned on arbitrary values of all other �’s and z’s—is given by

logg zj+1 = αi + y · βi ,

logg �j, j+1 = x · αi + z · βi + γi logg zj+1

= (x + 1) · αi + (z + y) · βi ,

whereαi , βi are chosen uniformly and independently fromZq . Using the fact that z = xy,
the above (viewed as linear equations in the variables αi , βi ) are linearly independent. It
follows that�j, j+1 is uniformly distributed inG, independent of zj+1 and everything else.
(We remark that this argument is essentially the same as that used in [38] and [5, Lemma
5.2].) A similar argument applies for�1,2 and�3,4. The only value left is�2,3. Because of
our restriction on the choice of z, the value logg �2,3 in Dist′rand is distributed uniformly
in Zq\{xy}. This is statistically close (within a factor of 1/|G|) to the distribution of
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logg �2,3 in Fake′. We conclude that

Pr[x, y ← Zq; z← Zq\{xy} : D(gx , gy, gz) = 1]

≥ Pr[(T, sk)← Fake′ : A(T, sk) = 1]− 1

|G| . (4)

The running time of D is t ′′, the running time of A plus O(n) exponentiations in G.
The claim now follows easily from (3) and (4) and the definition of ε.

We now introduce one final distribution in which all the �’s are chosen uniformly and
independently at random from G:

Fake
def=




r1, . . . , rn ← Zq;
z1 = gr1 , . . . , zn = grn ;
�1,2, . . . , �n−1,n, �n,1 ← G;
X1 = �1,2/�n,1, X2 = �2,3/�1,2, . . . , Xn = �n,1/�n−1,n;
T = (z1, . . . , zn, X1, . . . , Xn); sk = (�n,1)

n · (X1)
n−1 · · · Xn−1

: (T, sk)



.

Claim. For any algorithm A running in time t we have

∣∣Pr[(T, sk)← Fake′ : A(T, sk) = 1]− Pr[(T, sk)← Fake : A(T, sk) = 1]
∣∣ ≤ ε(t ′′).

Proof. Given algorithm A, consider the following algorithm D which takes as input
a triple (g1, g2, g3) ∈ G3 (where furthermore a generator g ∈ G is fixed): D generates
(T, sk) according to distribution Dist, runs A(T, sk), and outputs whatever A outputs.
Distribution Dist is defined as follows (note that this distribution depends on g1, g2, g3):

Dist
def=




r1, r2, {αi , βi , α
′
i , β
′
i , γi }si=0 ← Zq;

z1 = gα0 gβ0
2 , z2 = gr1 , z3 = gr2 , z4 = gα

′
0 g
β ′0
2 , z5 = gγ0 g1;

�1,2, �2,3, �3,4 ← G; �4,5 = g
α′0
1 g

β ′0
3 zγ0

4 ;
for i = 1 to s:

let j = 3i + 3

zj = gαi gβi

2 , zj+1 = gα
′
i g
β ′i
2 , zj+2 = gγi g1;

�j−1, j = gαi
1 gβi

3 zγi−1
j , �j, j+1 ← G, �j+1, j+2 = g

α′i
1 g

β ′i
3 zγi

j+1;
�n,1 = gα0

1 gβ0
3 zγs

1 ;
X1 = �1,2/�n,1, X2 = �2,3/�1,2, . . . , Xn = �n,1/�n−1,n;
T = (z1, . . . , zn, X1, . . . , Xn); sk = (�n,1)

n · (X1)
n−1 · · · Xn−1

: (T, sk)




.

The remainder of the proof is very similar to the proof of the previous claim. We first
examine the above distribution when (g1, g2, g3) is chosen uniformly at random from
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the set of Diffie–Hellman tuples (we refer to the resulting distribution as Distddh):

Distddh =




x, y, r1, r2, {αi , βi , α
′
i , β
′
i , γi }si=0 ← Zq;

z1 = gα0 gyβ0 , z2 = gr1 , z3 = gr2 , z4 = gα
′
0 gyβ ′0 , z5 = gγ0 gx ;

�1,2, �2,3, �3,4 ← G; �4,5 = gxα′0 gxyβ ′0 zγ0
4 ;

for i = 1 to s:

let j = 3i + 3

zj = gαi gyβi , zj+1 = gα
′
i gyβ ′i , zj+2 = gγi gx ;

�j−1, j = gxαi gxyβi zγi−1
j ,

�j, j+1 ← G, �j+1, j+2 = gxα′i gxyβ ′i zγi

j+1;
�n,1 = gxα0 gxyβ0 zγs

1 ;
X1 = �1,2/�n,1, X2 = �2,3/�1,2, . . . , Xn = �n,1/�n−1,n;
T = (z1, . . . , zn, X1, . . . , Xn); sk = (�n,1)

n · (X1)
n−1 · · · Xn−1

: (T, sk)




,

where all we have done is substitute g1 = gx , g2 = gy , and g3 = gxy (for x, y ∈
Zq chosen at random at the beginning of the experiment) into the definition of Dist.
We claim that Distddh is identical to Fake′. As in the proof of the previous claim, we
need only focus on the z’s and the �’s. It is again easy to see that in Distddh the {zk}
are uniformly and independently distributed in G (as in Fake′). It is also immediate
that in both distributions we have �1,2, �2,3, �3,4, and {�j, j+1}j=3i+3; i=1,...,s distributed
uniformly and independently in G. As for the remaining �’s, take �j−1, j (for some
i ∈ {1, . . . , s} and j = 3i + 3) as a representative example. We claim that in Distddh

the tuple (zj−1, zj , �j−1, j ) is a Diffie–Hellman tuple, as is the case in Fake′. To see this,
note that zj−1 = gγi−1+x , zj = gαi+yβi and

�j−1, j = gxαi+xyβi zγi−1
j = gxαi+xyβi+γi−1αi+γi−1 yβi .

Thus, (zj−1, zj , �j−1, j ) is a Diffie–Hellman tuple as desired. We conclude that

Pr[x, y ← Zq : D(gx , gy, gxy) = 1] = Pr[(T, sk)← Fake′ : A(T, sk) = 1]. (5)

We now examine distribution Dist when (g1, g2, g3) is chosen uniformly from the set
of random tuples (we refer to the resulting distribution as Distrand):

Distrand=




x, y, r1, r2, {αi , βi , α
′
i , β
′
i , γi }si=0 ← Zq; z← Zq\{xy};

z1 = gα0 gyβ0 , z2 = gr1 , z3 = gr2 , z4 = gα
′
0 gyβ ′0 , z5 = gγ0 gx ;

�1,2, �2,3, �3,4 ← G; �4,5 = gxα′0 gzβ ′0 zγ0
4 ;

for i = 1 to s:

let j = 3i + 3

zj = gαi gyβi , zj+1 = gα
′
i gyβ ′i , zj+2 = gγi gx ;

�j−1, j = gxαi gzβi zγi−1
j ,

�j, j+1 ← G, �j+1, j+2 = gxα′i gzβ ′i zγi

j+1;
�n,1 = gxα0 gzβ0 zγs

1 ;
X1 = �1,2/�n,1, X2 = �2,3/�1,2, . . . , Xn = �n,1/�n−1,n;
T = (z1, . . . , zn, X1, . . . , Xn); sk = (�n,1)

n · (X1)
n−1 · · · Xn−1

: (T, sk)




,
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where all we have done is substitute g1 = gx , g2 = gy , and g3 = gz (for x, y, z
chosen at the beginning of the experiment) into the definition of Dist. We claim that
Distrand is identical to Fake. It is easy to verify that in Distrand the {zk} are uniformly
and independently distributed in G. We need to show that the �’s are also uniformly
distributed, independent of each other and the z’s (as is the case in Fake). This clearly
holds for �1,2, �2,3, �3,4, and {�j, j+1}j=3i+3; i=1,...,s . For the remaining �’s, take �4,5 as
a representative example. Since α′0, β

′
0 are used only in computing z4 and �4,5, the joint

distribution of z4 and �4,5—conditioned on arbitrary values of all other z’s and �’s—is
given by

logg z4 = α′0 + y · β ′0,
logg �4,5 = x · α′0 + z · β ′0 + γ0 logg z4

= (x + 1) · α′0 + (z + y) · β ′0,
where α′0, β

′
0 are uniformly and independently distributed in Zq . Using the fact that

z = xy, the above (viewed as linear equations in the variables α′0, β
′
0) are linearly

independent. It follows that �4,5 is uniformly distributed in G, independent of z4 and
everything else. We conclude that

Pr[x, y ← Zq; z← Zq\{xy} : D(gx , gy, gz) = 1]

= Pr[(T, sk)← Fake : A(T, sk) = 1]. (6)

The running time of D is t ′′:, the running time of A plus O(n) exponentiations in G.
The claim now follows readily from (5) and (6) and the definition of ε.

In experiment Fake, let wi,i+1
def= logg �i,i+1 for 1 ≤ i ≤ n. Given T, the values

w1,2, . . . , wn,1 are constrained by the following n equations (only n − 1 of which are
linearly independent):

logg X1 = w1,2 − wn,1,

...

logg Xn = wn,1 − wn−1,n.

Furthermore, sk = gw1,2+w2,3+···+wn,1 ; equivalently, we have

logg sk = w1,2 + w2,3 + · · · + wn,1.

Since this final equation is linearly independent from the set of equations above, sk is
independent of T. This implies that even for a computationally unbounded adversaryA,

Pr[(T, sk0)← Fake; sk1 ← G; b← {0, 1} : A(T, skb) = b] = 1
2 .

Combining this with the previous two claims shows that AdvKE-fs
P (t, 1) ≤ 4·ε(t ′′)+2/|G|.

For the case of qex > 1, a standard hybrid argument immediately shows that

AdvKE-fs
P (t, qex) ≤ qex · AdvKE-fs

P (t, 1).
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Tighter concrete security can be obtained by again using the random self-reducibility
of the DDH problem [5, Lemma 5.2]. In particular, given a tuple (g1, g2, g3) ∈ G3

and a fixed generator g, one can efficiently generate qex tuples L = {(g1
1, g1

2, g1
3), . . . ,

(gqex
1 , gqex

2 , gqex
3 )} such that (1) if (g1, g2, g3) is a Diffie–Hellman tuple, then all tuples in

L are Diffie–Hellman tuples whose first two components are randomly distributed inG2

(independently of anything else); (2) if (g1, g2, g3) is a random tuple, then all tuples in
L are randomly distributed in G3 (again, independently of anything else). In the second
case, with all but probability qex/|G|, it will be the case that logg gi

3 = logg gi
1 · logg gi

2
for all i .

Paralleling the preceding proof, we may define distributions Realqex , Fake′qex
, Dist′qex

,
Fakeqex , and Distqex which simply consist of qex (independent) copies of each of the
corresponding distributions; in the case of Dist′qex

and Distqex we use the corresponding
tuple (gi

1, gi
2, gi

3) for the i th copy. Corresponding to the first claim, one can then show
that for any algorithm A running in time t ,

|Pr[(�T, �sk)←Realqex :A(�T, �sk)=1]−Pr[(�T, �sk)←Fake′qex
:A(�T, �sk)=1]|≤ε(t ′),

where t ′ is as in the statement of the theorem. (We remark that we no longer lose the
factor O(1/|G|) since the tuples in L are now completely random when (g1, g2, g3) is
not a Diffie–Hellman tuple.) Corresponding to the second claim, one could show that
for any algorithm A running in time t ,

|Pr[(�T, �sk)← Fake′qex
: A(�T, �sk) = 1]− Pr[(�T, �sk)← Fakeqex : A(�T, �sk) = 1]|

≤ ε(t ′)+ qex

|G| .

Finally, using the same techniques as above, it is straightforward to see that even for a
computationally unbounded A,

Pr[(�T, �sk0)← Fake; �sk1 ← G
qex; b← {0, 1} : A(T, �skb) = b] = 1

2 .

Putting these together gives the result of the theorem.

References

[1] Y. Amir, Y. Kim, C. Nita-Rotaru, and G. Tsudik. On the Performance of Group Key Agreement Protocols.
Proc. 22nd International Conference on Distributed Computing Systems (ICDCS), IEEE, Piscataway,
NJ, 2002, pp. 463–464. Full version available at http://www.cnds.jhu.edu/publications/.

[2] G. Ateniese, M. Steiner, and G. Tsudik. Authenticated Group Key Agreement and Friends. Proc. 5th
Annual ACM Conference on Computer and Communications Security, ACM, New York, 1998, pp. 17–26.

[3] G. Ateniese, M. Steiner, and G. Tsudik. New Multi-Party Authentication Services and Key Agreement
Protocols. IEEE Journal on Selected Areas in Communications, vol. 18, no. 4 (2000), pp. 628–639.

[4] C. Becker and U. Wille. Communication Complexity of Group Key Distribution. Proc. 5th Annual ACM
Conference on Computer and Communication Security, ACM, New York, 1998, pp. 1–6.

[5] M. Bellare, A. Boldyreva, and S. Micali. Public-Key Encryption in a Multi-User Setting: Security Proofs
and Improvements. Advances in Cryptology—Eurocrypt 2000, LNCS vol. 1807, B. Preneel, ed., Springer-
Verlag, Berlin, 2000, pp. 259–274.

[6] M. Bellare, R. Canetti, and H. Krawczyk. A Modular Approach to the Design and Analysis of Authenti-
cation and Key Exchange Protocols. Proc. 30th Annual ACM Symposium on Theory of Computing, ACM,
New York, 1998, pp. 419–428.



112 J. Katz and M. Yung

[7] M. Bellare, J. Garay, and T. Rabin. Fast Batch Verification for Modular Exponentiation and Digital
Signatures. Advances in Cryptology—Eurocrypt ’98, LNCS vol. 1403, K. Nyberg ed., Springer-Verlag,
Berlin, 1998, pp. 236–250.

[8] M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated Key Exchange Secure Against Dictionary
Attacks. Advances in Cryptology—Eurocrypt 2000, LNCS vol. 1807, B. Preneel, ed., Springer-Verlag,
Berlin, 2000, pp. 139–155.

[9] M. Bellare and P. Rogaway. Random Oracles Are Practical: A Paradigm for Designing Efficient Protocols.
Proc. 1st Annual ACM Conference on Computer and Communications Security, ACM, New York, 1993,
pp. 62–73.

[10] M. Bellare and P. Rogaway. Entity Authentication and Key Distribution. Advances in Cryptology—Crypto
’93, LNCS vol. 773, D. R. Stinson, ed., Springer-Verlag, Berlin, 1993, pp. 232–249.

[11] M. Bellare and P. Rogaway. Provably-Secure Session Key Distribution: The Three Party Case. Proc. 27th
Annual ACM Symposium on Theory of Computing, ACM, New York, 1995, pp. 57–66.

[12] R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutten, R. Molva, and M. Yung. Systematic Design of
Two-Party Authentication Protocols. IEEE Journal on Selected Areas in Communications, vol. 11, no. 5
(1993), pp. 679–693.

[13] C. Boyd. On Key Agreement and Conference Key Agreement. Australasian Conference on Information
Security and Privacy—ACISP ’97, LNCS vol. 1270, V. Varadharajan, J. Pieprzyk, and Y. Mu, eds.,
Springer-Verlag, Berlin, 1997, pp. 294–302.

[14] C. Boyd and J.M.G. Nieto. Round-Optimal Contributory Conference Key Agreement. Public-Key Cryp-
tography, LNCS vol. 2567, Y. Desmedt, ed., Springer-Verlag, Berlin, 2003, pp. 161–174.

[15] E. Bresson, O. Chevassut, and D. Pointcheval. Provably Authenticated Group Diffie–Hellman Key
Exchange—The Dynamic Case. Advances in Cryptology—Asiacrypt 2001, LNCS vol. 2248, C. Boyd,
ed., Springer-Verlag, Berlin, 2001, pp. 290–309.

[16] E. Bresson, O. Chevassut, and D. Pointcheval. Dynamic Group Diffie–Hellman Key Exchange under
Standard Assumptions. Advances in Cryptology—Eurocrypt 2002, LNCS vol. 2332, L. Knudsen, ed.,
Springer-Verlag, Berlin, 2002, pp. 321–336.

[17] E. Bresson, O. Chevassut, D. Pointcheval, and J.-J. Quisquater. Provably Authenticated Group Diffie–
Hellman Key Exchange. Proc. 8th Annual ACM Conference on Computer and Communications Security,
ACM, New York, 2001, pp. 255–264.

[18] M. Burmester and Y. Desmedt. A Secure and Efficient Conference Key Distribution System. Pre-
proceedings of Eurocrypt ’94, Scuola Superiore Guilielmo Reiss Romoli, 1994, pp. 279–290. Available
at http://www.cs.fsu.edu/∼burmeste/pubs.html.

[19] M. Burmester and Y. Desmedt. A Secure and Efficient Conference Key Distribution System. Advances in
Cryptology—Eurocrypt ’94, LNCS vol. 950, A. De Santis, ed., Springer-Verlag, Berlin, 1995, pp. 275–
286.

[20] M. Burmester and Y. Desmedt. A Secure and Scalable Group Key Exchange System. Information Pro-
cessing Letters, vol. 94, no. 3 (2005), pp. 137–143.

[21] R. Canetti, O. Goldreich, and S. Halevi. The Random Oracle Methodology, Revisited. Proc. 30th Annual
ACM Symposium on Theory of Computing, ACM, New York, 1998, pp. 209–218.

[22] R. Canetti and H. Krawczyk. Key-Exchange Protocols and Their Use for Building Secure Channels.
Advances in Cryptology—Eurocrypt 2001, LNCS vol. 2045, B. Pfitzmann, ed., Springer-Verlag, Berlin,
2001, pp. 453–474.

[23] R. Canetti and H. Krawczyk. Universally Composable Notions of Key Exchange and Secure Channels.
Advances in Cryptology—Eurocrypt 2002, LNCS vol. 2332, L. Knudsen, ed., Springer-Verlag, Berlin,
2002, pp. 337–351.

[24] R. Canetti and H. Krawczyk. Security Analysis of IKE’s Signature-Based Key-Exchange Protocol. Ad-
vances in Cryptology—Crypto 2002, LNCS vol. 2442, M. Yung, ed., Springer-Verlag, Berlin, 2002,
pp. 143–161.

[25] W. Diffie and M. Hellman. New Directions in Cryptography. IEEE Transactions on Information Theory,
vol. 22, no. 6 (1976), pp. 644–654.

[26] W. Diffie, P. van Oorschot, and M. Wiener. Authentication and Authenticated Key Exchanges. Designs,
Codes, and Cryptography, vol. 2, no. 2 (1992), pp. 107–125.

[27] M. Fischer, N. Lynch, and M. Patterson. Impossibility of Distributed Consensus with One Faulty Process.
Journal of the ACM, vol. 32, no. 2 (1985), pp. 374–382.



Scalable Protocols for Authenticated Group Key Exchange 113

[28] I. Ingemarsson, D.T. Tang, and C.K. Wong. A Conference Key Distribution System. IEEE Transactions
on Information Theory, vol. 28, no. 5 (1982), pp. 714–720.

[29] M. Just and S. Vaudenay. Authenticated Multi-Party Key Agreement. Advances in Cryptology—Asiacrypt
1996, LNCS vol. 1163, K. Kim and T. Matsumoto, eds., Springer-Verlag, Berlin, 1996, pp. 36–49.

[30] J. Katz, R. Ostrovsky, and M. Yung. Forward Secrecy in Password-Only Key-Exchange Protocols. Se-
curity in Communication Networks (SCN 2002), LNCS vol. 2576, S. Cimato, C. Galdi, and G. Persiano,
eds., Springer-Verlag, Berlin, 2002, pp. 29–44.

[31] J. Katz and J.S. Shin. Modeling Insider Attacks on Group Key Exchange Protocols. Proc. 12th ACM
Conference on Computer and Communications Security, ACM, New York, 2005, pp. 180–189.

[32] J. Katz and M. Yung. Scalable Protocols for Authenticated Group Key Exchange. Advances in
Cryptology—Crypto 2003, LNCS vol. 2729, Dan Boneh, ed., Springer-Verlag, Berlin, 2003, pp. 110–125.

[33] Y. Kim, A. Perrig, and G. Tsudik. Simple and Fault-Tolerant Key Agreement for Dynamic Collaborative
Groups. Proc. 7th Annual ACM Conference on Computer and Communication Security, ACM, New
York, 2000, pp. 235–244.

[34] Y. Kim, A. Perrig, and G. Tsudik. Communication-Efficient Group Key Agreement. Proc. IFIP TC11 16th
Annual Working Conference on Information Security (IFIP/SEC), Kluwer, Dordrecht, 2001, pp. 229–244.

[35] H. Krawczyk. SKEME: A Versatile Secure Key-Exchange Mechanism for the Internet. Proc. Internet
Society Symposium on Network and Distributed System Security, Feb. 1996, pp. 114–127.

[36] A. Mayer and M. Yung. Secure Protocol Transformation via “Expansion”: From Two-Party to Groups.
Proc. 6th ACM Conference on Computer and Communication Security, ACM, New York, 1999, pp. 83–
92.

[37] O. Pereira and J.-J. Quisquater. Some Attacks Upon Authenticated Group Key Agreement Protocols.
Journal of Computer Security, vol. 11, no. 4 (2003), pp. 555–580.

[38] V. Shoup. On Formal Models for Secure Key Exchange. Manuscript, 1999. Available at
http://eprint.iacr.org/1999/012.

[39] D. Steer, L. Strawczynski, W. Diffie, and M. Wiener. A Secure Audio Teleconference System. Advances
in Cryptology—Crypto ’98, LNCS vol. 403, Springer-Verlag, Berlin, 1990, pp. 520–528.

[40] M. Steiner, G. Tsudik, and M. Waidner. Key Agreement in Dynamic Peer Groups. IEEE Transactions on
Parallel and Distributed Systems, vol. 11, no. 8 (2000), pp. 769–780.

[41] W.-G. Tzeng. A Practical and Secure Fault-Tolerant Conference Key Agreement Protocol. Public-Key
Cryptography, LNCS vol. 1751, H. Imai and Y. Zheng, eds., Springer-Verlag, Berlin, 2000, pp. 1–13.

[42] W.-G. Tzeng and Z.-J. Tzeng. Round Efficient Conference Key Agreement Protocols with Provable
Security. Advances in Cryptology—Asiacrypt 2000, LNCS vol. 1976, T. Okamoto, ed., Springer-Verlag,
Berlin, 2000, pp. 614–628.


