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Abstract. In response to the current need for fast, secure and cheap public-key cryp-
tography, we propose an interactive zero-knowledge identification scheme and a derived
signature scheme that combine provable security based on the problem of computing
discrete logarithms in any group, short keys, very short transmission and minimal on-
line computation. This leads to both efficient and secure applications well suited to
implementation on low cost smart cards.

We introduce GPS, a Schnorr-like scheme that does not require knowledge of the
order of the group nor of the group element. As a consequence, it can be used with
most cryptographic group structures, including those of unknown order. Furthermore,
the computation of the prover’s response is done over the integers, hence can be done
with very limited computational capabilities. This paper provides complete security
proofs of the identification scheme. From a practical point of view, the possible range of
parameters is discussed and a report on the performances of an actual implementation on
a cheap smart card is included: a complete and secure authentication can be performed
in less than 20 milliseconds with low cost equipment.

Key words. Identification scheme, Digital signature, Discrete logarithm problem,
Minimal on-line computation, Low cost smart cards.

463



464 M. Girault, G. Poupard, and J. Stern

1. Introduction

The rapid world-wide development of electronic transactions stimulates a strong de-
mand for fast, secure and cheap public-key cryptography. Besides confidentiality, cryp-
tographers need to solve two important problems: authentication and providing digital
signatures or, in plain words, how to prove one’s identity and how to sign a document
digitally. Several proposals have addressed those questions, putting forward elegant so-
lutions, many of them based on the concept of zero-knowledge introduced in 1985 by
Goldwasser et al. [29].

In order to assess the performances of proposed schemes, three main properties have
to be considered. The most important concern is, of course, security. Obviously, a system
can be supported by the claim that nobody has been able to jeopardize it so far. This is
of course important but, in many applications, it is not a satisfactory enough guarantee.
A much better paradigm tries to prove security in a mathematical sense, i.e. to establish
theorems claiming that illegal actions such as impersonation are as difficult as solving a
specific problem, whose difficulty is well-established. Among these problems are integer
factorization, or the computation of discrete logarithms in a finite group. Half-way be-
tween heuristic validation and formal proofs are proofs in a model where concrete objects
are replaced by some ideal substitutes: applying this paradigm to hash functions yields the
so-called random oracle model described by Bellare and Rogaway in [3]. Although this
approach may not be considered as offering absolute proofs of security for cryptographic
schemes, it provides a strong guarantee that their general design is not flawed.

Next, the size of the data involved in the scheme is of crucial practical significance.
We usually need short public and private keys, mainly when they have to be stored in
portable devices like chip cards, which may have small storage capabilities. We also
want to reduce the amount of transmissions and the length of the signatures. The latter
is an important parameter in applications for which many signatures have to be stored
(e.g. electronic commerce) or transmitted (e.g. pay TV).

Another key property is the time complexity, since it directly controls the cost of the
devices on which a scheme may be implemented. Here, we have to distinguish between
precomputations that can be performed off-line and stored in memory, and calculations
that have to be done on-line during authentication or signature computation. The latter
is often the bottleneck of many applications, especially when smart cards are used.
Naccache et al. [33] proposed to precompute use & throw coupons in order to make
the DSA signature process much more efficient. However, this attempt for designing on
the fly signature schemes is not optimal since it still requires a modular multiplication.
Another approach is much more general in character: Even et al. [14] proposed the
concept of on-line/off-line digital signature and described a construction to transform
any signature scheme in such a way that most of the computations can be done off-line.
This was further improved by Shamir and Tauman [44].

In this paper we study an interactive zero-knowledge identification scheme, called GPS
for short, and a derived signature scheme. They combine provable security based on the
discrete logarithm problem over an arbitrary finite group, short keys, short transmissions
and signature size and minimal on-line computation.

The coupon-based signature algorithm GPS allows us to implement public-key sig-
nature or identification schemes on low cost smart cards, without a crypto-processor.
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Another promising application is the implementation of such schemes on contactless
smart cards. Such cards look like credit cards but they have an electronic microchip
and an embedded antenna. These components allow the card to communicate with an
antenna/coupler unit without any physical contact. Contactless cards are the ideal solu-
tion when transactions must be processed very quickly, as in mass-transit or toll collection
but, since the power supply comes from electromagnetic induction, heavy-consumption
crypto-processors can hardly be used.

A typical application of GPS is “on the fly” authentication at a toll. The basic idea is
to equip each authorized car with a low cost contactless smart card. When a car goes
through a toll, it does not have to stop but just performs a GPS authentication in order
to prove that it is a legitimate user. In such an application, the time allowed to transmit
data and to perform on-line calculations is very short, about 100 milliseconds.

The main feature of GPS is to use public key cryptography in this setting (very
short authentication time and low cost devices), thus achieving a high level of security.
Furthermore, in such an independent application that does not require interoperability
with other systems, the coupons can be computed and stored in the card by the authority
who also acts as a verifier.

Notice that symmetric cryptography could also be used to solve this problem ef-
ficiently. However, the advantage of using public key cryptography is that no secret
master key has to be stored by the verifier (here the toll). Consequently, the system is
much more secure against piracy.

Earlier announcements. The GPS scheme was first proposed by Girault at Euro-
crypt ’91 [21] as an example of a scheme with self-certified public keys but without
security analysis. Then the main results of this paper appeared in a preliminary version
at Eurocrypt ’98 [40]. The main technical differences are a more precise security model
and a complete proof of security. Many technicalities have been streamlined and we only
assume the intractability of computing discrete logarithms with short exponents.

The GPS scheme has been submitted to the European NESSIE project and labelled
by this project as a strong cryptographic primitive [34]. Various modes of use are de-
scribed in [25]. Finally, the GPS identification scheme has been standardized by ISO/IEC
(International Organization for Standardization/International Electrotechnical Commis-
sion) [31], while the signature scheme is expected in 2007.

Paper organization. In this paper we show that GPS achieves a combination of the
strongest properties that one can demand in authentication applications. In Section 2 we
first recall the Schnorr scheme and several of its variants. Then we describe the GPS iden-
tification scheme and we recall how it can be turned into a signature scheme. In Section 3
we develop our security model for identification, and we study the security of the GPS
identification scheme. We prove that GPS is secure against active adversaries provided
the so-called discrete logarithm with short exponent problem is hard. In Section 4 we
establish the security of the derived signature scheme using the random oracle model
in order to validate the proposed design. The last section is more practical in character:
we discuss how to choose secure parameters in order to resist the known attacks against
factorization and the discrete logarithm problem. Then we explain how to optimize size
of the data and, finally, report on the performances of a smart card application.



466 M. Girault, G. Poupard, and J. Stern

2. Description of GPS

2.1. Identification Schemes Based on the Discrete Logarithm Problem

In 1989 Schnorr [42] proposed a nice proof of knowledge of a discrete logarithm in
groups of known prime order. This proof is a more efficient version of previous pro-
posals of Chaum et al. [11], [10] and Beth [4]. Such a proof can be used as an iden-
tification scheme, and also converted into a signature scheme using the Fiat–Shamir
paradigm [17]. In these schemes the size of the data is short, and the computation load is
quite acceptable.

Towards a more precise description, we let p be a prime number. We denote by Z∗p the
set of invertible elements modulo p. Let q be a large prime divisor of p− 1 and let g be
an element of Z∗p of order q, i.e. such that gq = 1 mod p but g �= 1. The prover knows
a secret element s in Zq and he wants to prove that he knows the discrete logarithm of
I = g−s mod p in base g. We first notice that any verifier can immediately check that p
is prime, q is a prime divisor of p− 1, g is of order q and that I belongs to the subgroup
of Z∗p generated by g. This last verification just consists in checking that I q = 1 mod p.

In order to prove knowledge of s, the prover first generates r ∈ Z∗q at random and
sends the commitment x = gr mod p to the verifier who answers a challenge c randomly
chosen in the interval [0, B−1], where B is a publicly known system parameter. Next, the
prover computes y = r + sc mod q and sends y to the verifier who checks the equation
x = gy I c mod p. This elementary round can be repeated sequentially; we denote by �
the number of repetitions.

The security analysis of the scheme shows that a prover accepted with probability
substantially greater than 1/B� must know the discrete logarithm of I , i.e. the secret s;
the proof is sound. Furthermore, even a dishonest verifier cannot learn any additional
information about the secret, whatever the number of authentications may be, if B and
� are polynomial in a security parameter, i.e. asymptotically “not too large”; the proof
is perfectly zero-knowledge.

Many modifications of the Schnorr scheme, that achieve additional properties, have
been proposed. Firstly, one can use a composite modulus instead of a prime modulus
and keep the factorization of the modulus secret. As a consequence, the order of the
multiplicative group in which the computations are performed may remain secret.

Furthermore, the order of the publicly known base g can also be public or private. In
the Schnorr scheme, both the order p − 1 of the group and the order q of g are known.
We will see that in the GPS scheme, both of those parameters can remain unknown to
provers and verifiers. Other schemes, classified in Fig. 1, achieve different combinations.
We now briefly review those protocols.

The Okamoto scheme. The Schnorr scheme is known to be perfectly zero-knowledge
if the parameters B and � remain polynomial in a security parameter. The one-round
(� = 1) variant remains sound if B is super-polynomial, but, as a consequence, this
variant is perfectly zero-knowledge only with respect to an honest verifier, i.e. a verifier
who randomly chooses the challenges. However, it is unknown how to prove the zero-
knowledge property if the verifier can bias the distribution of his challenges. This means
that, for large challenges, we can only prove the security of Schnorr identification against
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Order of the multiplicative group

KNOWN UNKNOWN

Order of g

KNOWN

Chaum, Evertse, van de Graaf

and Peralta [11], [10],

Beth [4], Schnorr [42],

Okamoto [36]

Girault [20],

Biham and Shulman [6]

Order of g

UNKNOWN
Brickell and McCurley [7]

GPS [21], [40], RDSA [5]

Poupard and Stern [41]

Fig. 1. Discrete logarithm related schemes classified according to the need for the order of the group and/or
of the base g to be known by provers and verifiers.

passive adversaries who just observe regular authentications. Exactly the same remark
applies to the GPS scheme.

A solution proposed by Okamoto [36] consists in using two bases g1 and g2 and to
prove the knowledge of a “representation” (s1, s2) such that I = gs1

1 gs2
2 mod p. While

this protocol is not proven to be zero-knowledge, it nonetheless is witness indistinguish-
able [16]. As a consequence, provided the computation of the discrete logarithm of g1 in
base g2 modulo p is intractable, the scheme is provably secure against active adversaries,
even for large challenges (note that so is GPS, as explained in Section 3).

The Brickell–McCurley scheme. In the protocol proposed in [7], the computations are
still done modulo a prime number p but instead of using a base g of publicly known
prime order q , the parameters are chosen such that p−1 is divisible by the product q×w
of two secret prime numbers. The rest of the scheme is similar to the Schnorr protocol;
it uses a base g of order q but the answer y is equal to r + sc mod p − 1 in order not to
reveal information about q . The main advantage of this variant is to base the security on
the intractability of the discrete logarithm problem modulo p or on the factorization of
p − 1. This means that it is secure if at least one of those two problems is difficult.

The Girault scheme. The idea of [20] is to choose a composite modulus n = (2 f p +
1)× (2 fq + 1) where 2 f p+ 1, 2 fq + 1, p, q and f are prime. The integer f is public,
the base g has order f and the answer y is computed modulo f . A public key of a prover
of identity ID is obtained with the formula I = ID1/egs mod n where the eth root of ID is
computed by an authority who knows the factorization of n and s is a secret key chosen
by the prover. In this setting, an identification, in spirit, is a Schnorr proof of knowledge
of the discrete logarithm (e × s) of I e/ID mod n in base g.

The GPS scheme. A way of improving the Schnorr protocol efficiency is to eliminate
modular reductions during identification or signature. Exponentiation modulo p can be
performed off-line by the user’s device or precomputed by an authority in a use & throw
coupons [33] setting. Therefore, in order to reduce the on-line computation further to a
very simple operation, it is natural to eliminate the second modulus q by performing the
operations y = r + sc in Z. This was first proposed by Girault in [21] and analysed in
[40] and [38]. The security analysis of this protocol is precisely the subject of the present
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paper in a more general setting. Note that in [23], the on-line operation is reduced to a
single, but much longer, addition.

Other schemes. A variant of GPS, called RDSA, has been proposed in [5] and analyzed
in [18]. We can also note that the scheme described in [41] is based on the intractability
of the factorization problem, but it can be seen as a proof of knowledge of a discrete
logarithm where the order of the group and the order of the base are secrets owned by the
prover. More recently, another factorization-based scheme has been proposed, in which
the key pair is an RSA key pair [24].

2.2. GPS Identification Scheme

We now describe precisely the GPS identification scheme. The security analysis appears
in the next section.

Choice of the underlying mathematical structure. The GPS identification scheme is
defined on a generic group G and uses a specific element, namely the base g ∈ G. In
the theoretical security analysis of the next section, we only assume the intractability
of computing discrete logarithms in the group G, in base g, for exponents in the range
[0, S − 1] where S is a public parameter of the scheme.

More precisely, we assume the existence of a randomized algorithm PP(ωpp, k) that
generates public parameters G and g according to a security parameter k using a random
tape ωpp.

In practice, several mathematical structures can be used; the most interesting choices
for G are listed below:

– G = Z∗p with p a prime number such that p−1 has a large prime factor q; the order
of the base g should be q. We obtain a variant of the Schnorr identification scheme
in which on-line computation is twice as fast for the same security.

– The set G = Z∗n of invertible elements modulo an RSA modulus n, i.e. a composite
integer with typically two prime factors of almost the same size. Note that the
factors of n are no longer required so they can be discarded after the generation of
n. Then g can be randomly chosen. It should ne noted that there exist parameters
for which the computation of “short” exponents, typically of 160 bits, can be done
very easily using partial Pohlig–Hellman techniques [45] if the order of g is known
and if it has many small prime factors. Accordingly, we advise the use of modulus
n which is the product of two strong primes, i.e. primes p such that (p − 1)/2 is
also prime. We also advise the use of the base g = 2 for efficiency reasons.

– G can also be derived from an elliptic curve. Analogs of GPS in the elliptic curve
setting can be defined in a straightforward manner; see for example [12].

– Much more sophisticated mathematical structures can also be used; the only con-
straint is the intractability of the discrete logarithm with short exponent problem in
such groups. An example of such an approach is proposed in [5].

Other public parameters. Besides the upper bound S for the secret keys, additional
parameters of the GPS scheme are the number � of elementary rounds and two integer
bounds A and B, defined below. The relations between those parameters are analyzed in
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Parameters: �, A, B and S integers
g an element of a multiplicative group G

Secret key: s ∈ [0, S − 1]
Public key: I = gs

Prover Verifier

Repeat � times

choose r in [0, A − 1]

x = gr
x−−−−−−−−−−−−−−−−−→

check c ∈ [0, B − 1]
c←−−−−−−−−−−−−−−−−− choose c in [0, B − 1]

y = r + c × s
y

−−−−−−−−−−−−−−−−−→ check gy ?= x × I c and
y ∈ [0, A + (B − 1)× (S − 1)− 1]

Fig. 2. GPS identification scheme.

Section 3. We just summarize some facts about these parameters in order to make their
meaning more explicit:

– the probability of impersonation is 1/B�,
– the computation of discrete logarithms in base g in the group G must be intractable

for exponents in the interval [0, S − 1],
– A must be significantly larger than S × B since it defines the size of some random

data used to mask the secret.

Public/private keys. The private keys s are integers chosen in the range [0, S− 1] and
the related public keys I are computed in the group G by the relation I = gs .

Protocol (see Fig. 2). We let� = (B−1)(S−1). A round of identification consists for
the prover in randomly choosing an integer r in [0, A−1], and computing the commitment
x = gr . Next, he sends x to the verifier, who answers a challenge c randomly chosen in
[0, B − 1]. The prover checks c ∈ [0, B − 1] and computes the integer y = r + c × s.
He sends y to the verifier who checks gy = x × I c and y ∈ [0, A +�− 1].

A complete identification consists in repeating the elementary round � times. The
theoretical analysis shows that � should be super-logarithmic in the security parameter
in order to be able to prove the security of the scheme against active adversaries, as
in the Schnorr scheme. However, in many practical applications, � will often be equal
to � = 1.

As usual in this kind of scheme, many straightforward variants can be designed, such
as choosing I = g−s and/or y = r − c × s, with some trivial impact on the rest of the
protocol.

2.3. GPS Signature Scheme

We can turn the identification scheme into a signature scheme by following the technique
originally proposed by Fiat and Shamir [17], and used by Schnorr [42] and many others:
challenges c are no longer randomly chosen by a verifier but computed by means of a
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hash function h with output range [0, B − 1], with B larger than in the identification
scheme.

The signature of a message m is computed by taking a random r in [0, A − 1] and
computing x = gr , c = h(m, x) and y = r + cs. This produces the signature (x, c, y)
that may be checked by anybody using the equations c = h(m, x), y ∈ [0, A + (B −
1)× (S − 1)− 1] and gy = x I c.

Furthermore, well known optimizations, described in Section 5.2, such as reducing the
signature to the pair (c, y) can be applied. This leads to the following signature scheme:

Input:

– public parameters (G, g, A, B, S),
– hash function h(·), with output range [0, B − 1],
– signer’s private key s,
– message encoded as an integer m.

Operations: signature (c, y) shall be computed by the following sequence of steps:

1. Randomly generate an integer r from the range [0, A − 1].
2. Compute x = gr .
3. Compute c = h(m, x).
4. Compute y = r + c × s.
5. Output (c, y).

A signature is verified using the following scheme:

Input:

– public parameters (G, g, S, A, B),
– hash functions h(·),
– signer’s public key I ,
– message encoded as an integer m,
– signature to be verified (c, y), a pair of integers.

Output: “valid” if m and (c, y) are consistent given the public key; “invalid” otherwise.
Operations: output shall be computed by the following sequence of steps:

1. If c is not in [0, B−1] or y is not in [0, A+ (B−1)× (S−1)−1] output “invalid”
and stop.

2. Compute x ′ = gy/I c.
3. Compute c′ = h(m, x ′).
4. If c′ = c then output “valid” else output “invalid”.

3. Security Analysis of the GPS Identification Scheme

The aim of this section is to prove the security of the GPS identification scheme formally.
We first define the security model we use. Next, in order to prove the security of the GPS
protocol against active adversaries, we follow the approach of Feige et al. [15], proving
completeness, zero-knowledge and soundness.
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3.1. Security Model

By means of an identification scheme a prover convinces a verifier of his identity. Both
the prover and the verifier are modeled as probabilistic polynomial time Turing machines
(PPTM). They have a special tape, denoted ω, initially filled with randomly and unifor-
mally chosen bits. They also have additional tapes where they can read and/or write the
messages that they exchange. See [29] for a complete definition of interactive PPTMs.

We consider the following scenario for identification; firstly a randomized algorithm
generates public parameters on input the security parameter k. Its running time is poly-
nomial in k. Next a second probabilistic algorithm, using random tape ωK , generates
pairs of public and private keys (pk,sk) and sends the secret key to the prover while the
related public key is made available to anybody, including of course the prover and the
verifier. Finally, the identification is an interactive protocol between the prover and the
verifier which respectively use random tapes ωP and ωV . At the end, the verifier accepts
or not.

We now modify this scenario, where everybody is honest, in order to add an attacker
whose aim is to impersonate the prover, i.e. to be accepted by a verifier with the public
key of the prover. In this model we consider an attacker who does not corrupt public
parameters and key generation. Thus, there are only two ways for him to obtain infor-
mation. Firstly, the attacker can passively observe the communication during regular
authentications between the prover and the verifier. Secondly, he can take control over
the verifier. The difference between the passive and the active attacks is that the active
attacker can make the verifier deviate from the protocol in order to try to extract more
information about the prover’s secret key.

In the active scenario we can view the attacker and the verifier under control as a single
machine. Accordingly, an attacker is made of two probabilistic polynomial time Turing
machines; the first one, “attacker A1”, interacts with a prover and sequentially executes
a polynomial number of identifications while the second one, “attacker A2”, acts as
a prover and tries to impersonate the original prover. Of course, the first attacker can
transmit some information to the second one but the contrary is not allowed. Notice that
such a security model does not take into account concurrent attacks where the attacker
performs parallel authentications with the prover [13] or reset attacks where he can reset
the prover in a former state [9], [2]. Furthermore, classical man-in-the-middle attacks
cannot be performed since we separate interactions with the prover from those with the
verifier.

We can now define what is a secure identification protocol in this model: a protocol
is secure if the probability for any probabilistic polynomial time attacker (A1, A2) to be
accepted is negligible:

∀d ∈ N, ∃k0, ∀k > k0, Pr [Verifier accepts A2] <
1

kd
,

where the probability is computed over all the random tapes.

3.2. The Discrete Logarithm with Short Exponent Problem

For efficiency reasons, GPS secret keys are chosen in the range [0, S−1] and not modulo
the (possibly unknown) order of g. As a consequence, the security of GPS is not reduced
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to the discrete logarithm problem but, more precisely, to the so-called discrete logarithm
with short exponent problem. Among other studies, this problem has been used in [45] in
the context of the Diffie–Hellman key agreement scheme and also in [37] and [19] in the
context of provably secure pseudorandom generators. Of course, if S is chosen greater
than or equal to the order of g then the security assumption is reduced to the ordinary
intractability of computing discrete logarithms in G in base g.

We assume the existence of a randomized algorithmPP(ωpp, k) that generates public
parameters G, g and S from a security parameter k using a random tapeωpp. The discrete
logarithm with short exponent problem consists, given inputs of G, g, S and gx such that
x ∈ [0, S − 1], of finding x .

The intractability assumption we further use in the security proof of GPS is as
follows:

Discrete Logarithm with Short Exponent Assumption. For every polynomial Q and
every probabilistic polynomial time Turing machine M running on random tape ωM ,
for sufficiently large k,

Pr
ωpp,ωM

[M(G, g, S, gx )= x where (G, g, S)←PP(ωpp, k) and x ∈ [0, S−1]]<
1

Q(k)
.

3.3. Security Analysis of GPS

In the case of GPS, some public parameters are the group G, the element g ∈ G and the
bound S which are generated according to the security parameter k. The exact way of
generating those parameters depends on the kind of cryptographic group G that is used
but, roughly speaking, k defines the “size” of G and S in such a way that the discrete
logarithms with short exponent problem may be assumed to be intractable, i.e. that there
should not exist any polynomial algorithm in the security parameter k able to solve this
problem.

In order to prove the security of GPS, we first prove in Theorem 1 that honest provers
are correctly authenticated. Next, we need to prove than an attacker (A1, A2), as de-
scribed in Section 3.1, cannot be accepted with non-negligible probability. Firstly, A1

interacts with a prover. The zero-knowledge property, proven in Theorem 2, shows that
the communication between A1 and a prover can be simulated. This means that the prover
can be replaced by a simulator, who does not know any secret. Since simulated com-
munication is indistinguishable from real ones, the attacker cannot detect this change.
So, the attacker learns as much information from the simulator as from the real prover
and we conclude that no information about the secret is leaked during execution of the
protocol.

Then we show that if the second part of the attacker, A2, is accepted with non-negligible
probability, it can be used to solve in polynomial time a problem that is assumed to be
intractable. Such a proof modifies the key generation algorithm but the distribution of
the keys remains indistinguishable from the real one. In conclusion, we obtain that if a
PPTM attacker exists in our model, the discrete logarithm with short exponent problem
can be solved in expected polynomial time in the security parameter k. In applications
where this problem is assumed to be intractable, we conclude that the GPS scheme is
secure against the active adversaries we consider.
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Let us introduce some notation. For any integer x , |x | is the number of bits (�log2(x)�+
1) of x , and abs(x) denotes the absolute value of x . We use function δ, defined by
δ(true) = 1 and δ(false) = 0. Finally, we denote by ∧ the logical operator “and”.

Implicitly, we consider that S, A, B and � are functions of the security parameter k. In
order to simplify notations, we do not explicitly write the dependencies on k but, when
we say that a positive expression f is negligible, this means that f depends on k and
that, for any constant d and for large enough k, f (k) < 1/kd .

Theorem 1 (Completeness). Execution of the protocol between a prover who knows
the secret key corresponding to his public key and a verifier is always successful.

Proof. At the end of each round, the verifier obtains x = gr and y = r + cs, which
can be easily computed by the prover if he knows the secret key s. Consequently,

gy = gr+sc = gr × I c = x I c.

Furthermore, 0 ≤ y = r + cs ≤ (A − 1)+ (B − 1)× (S − 1) < A +�.

Theorem 2 (Zero-Knowledge). The GPS protocol is statistically zero-knowledge if �
and B are polynomial and �SB/A is negligible.

Proof. We describe an expected polynomial time simulation of the communication
between a prover P and a dishonest verifier A1 who can use an adaptive strategy to bias
the choice of the challenges in order to try to obtain information about s. In this case the
challenges are no longer randomly choosen and this must be taken into account in the
security proof. If we focus on the i th round of identification, A1 has already obtained
data, denoted by hist, from previous interactions with P . Then the prover sends the
commitment xi and A1 chooses, possibly using hist, xi and bits from its random tape
ωA, the challenge ci (xi , hist, ωA).

Here is an algorithm that uses a random tape ωM to simulate the i th round of identifi-
cation by the usual method of resettable simulation:

Step 1. Using ωM , choose random values ci ∈ [0, B − 1] and yi ∈ [�, A− 1] (recall
that � = (B − 1)(S − 1)).

Step 2. Compute xi = gyi /I ci .
Step 3. If ci (xi , hist, ωA) �= ci then return to step 1 and try again with another pair

(ci , yi ), else return (xi , ci , yi ).

The rest of the proof shows that, provided � is much smaller than A, this simulation
algorithm outputs triplets statistically indistinguishable from real ones, for any fixed ran-
dom tape ωA. The main goal is to justify the intuition according to which the distribution
of xi = gyi /I ci , as computed by the simulator, and the distribution of gr , as chosen by
the real prover, are statistically close.

Let us prove that the distribution of the generated triplets is statistically indistinguish-
able from the distribution of real triplets, i.e. formally that

�1 =
∑
α,β,γ

∣∣∣∣Pr
ωP

[(x, c, y) = (α, β, γ )]− Pr
ωM

[(x, c, y) = (α, β, γ )]
∣∣∣∣
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is negligible. This means that the two distributions cannot be distinguished by any
algorithm, even using an infinite computational power, but only accessing a polynomial
number of triplets of both distributions. We refer to [29] for more details on this definition.

Let (α, β, γ ) be a fixed triplet. Let us evaluate the respective probabilities to obtain
such a triplet during one round of proof and during simulation.

We assume that the prover is honest, i.e. follows the protocol. Consequently,

Pr
ωP

[(x, c, y) = (α, β, γ )]

= Pr
r∈[0,A−1]

[
α = gr ∧ β = c(α, hist, ωA) ∧ γ = r + β × s

]
=

∑
r∈[0,A−1]

1

A
δ(α = gγ /I β ∧ β = c(α, hist, ωA) ∧ r = γ − β × s)

= 1

A
δ(α = gγ /I β ∧ β = c(α, hist, ωA) ∧ γ − β × s ∈ [0, A − 1])

= 1

A
× δ(α = gγ /I β)

× δ(β = c(α, hist, ωA))× δ(γ − β × s ∈ [0, A − 1]). (�)

We now consider the probability PrωM [(x, c, y) = (α, β, γ )] to obtain the triplet
(α, β, γ ) during the simulation described above. This is a conditional probability given
by

Pr
y∈[�,A−1],c∈[0,B−1]

[
α = gy/I c ∧ β = c ∧ γ = y | c = c(gy/I c, hist, ωA)

]
.

Using the definition of conditional probabilities, this can be written as

Pr
y∈[�,A−1],c∈[0,B−1]

[
α = gy/I c ∧ β = c = c(α, hist, ωA) ∧ γ = y

]
Pr

y∈[�,A−1],c∈[0,B−1]

[
c = c(gy/I c, hist, ωA)

] .

Let Q =∑y∈[�,A−1],c∈[0,B−1] δ(c = c(gy/I c, hist, ωA)). We obtain that the denominator
of the previous fraction is

Pr
y∈[�,A−1],c∈[0,B−1]

[
c = c

(
gy

I c
, hist, ωA

)]
= Q

(A −�)× B
.

We now return to the evaluation of PrωM [(x, c, y) = (α, β, γ )]

=
∑

c∈[0,B−1]

1

B
Pr

y∈[�,A−1]

[
α = gy/I β ∧ γ = y ∧
β = c = c(α, hist, ωA)

]/
Q

(A −�)× B

= Pr
y∈[�,A−1]

[
α = gγ /I β ∧ γ = y ∧
β = c(α, hist, ωA)

]
× A −�

Q
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=
∑

y∈[�,A−1]

1

A −� × δ
(
α = gγ /I β ∧ γ = y ∧
β = c(α, hist, ωA)

)
× A −�

Q

= 1

Q
× δ (α = gγ /I β

)× δ (β = c(α, hist, ωA))× δ (γ ∈ [�, A − 1]) . (��)

Comparing (�) and (��), we see that, in order to proceed with the indistinguishability
proof, we have to show that Q is close to A. The question is how many pairs (c, y) ∈
[0, B − 1]× [�, A − 1] satisfy c = c(gy/I c, hist, ωA)? The answer is provided by the
following combinatorial lemma the proof of which appears in Appendix A:

Lemma 3. If f is a function from G to [0, B−1] and I ∈ {gs; s ∈ [0, S − 1]} then the
total number N of solutions (c, y) ∈ [0, B−1]×[�, A−1] of the equation c = f (gy/I c)

satisfies A − 2� ≤ N ≤ A.

We can specialize the result of Lemma 3 by setting f to the function which computes
c(gy/I c, hist, ωA) from (c, y). Consequently we obtain that Q is between A−2� and A.

We are now able to bound the distance �1 between the actual and simulated distribu-
tions:

�1 =
∑
α,β,γ

∣∣∣∣Pr
ωP

[(x, c, y) = (α, β, γ )]− Pr
ωM

[(x, c, y) = (α, β, γ )]
∣∣∣∣

=
∑

α,β,γ∈[�,A−1]

∣∣∣∣Pr
ωP

[(x, c, y) = (α, β, γ )]− Pr
ωM

[(x, c, y) = (α, β, γ )]
∣∣∣∣

+
∑

α,β,γ �∈[�,A−1]

Pr
ωP

[(x, c, y) = (α, β, γ )]

=
∑

γ∈[�,A−1],β∈[0,B−1],α=gγ /I β

∣∣∣∣1/A × δ (β = c(α, hist, ωA))

− 1/Q × δ (β = c(α, hist, ωA))

∣∣∣∣
+
(

1−
∑

α,β,γ∈[�,A−1]

Pr
ωP

[(x, c, y) = (α, β, γ )]
)

=
(∣∣∣∣ 1

A
− 1

Q

∣∣∣∣× Q

)
+ 1−

∑
γ∈[�,A−1],β∈[0,B−1],α=gγ /I β

1

A
δ (β = c(α, hist, ωA))

= |Q − A|
A

+ 1− Q

A
≤ 2
|Q − A|

A
≤ 4�

A
<

4SB

A
.

This proves that the real and simulated distributions are statistically indistinguishable
if SB/A is negligible.

We finally explain the reason why the machine M runs in expected polynomial time.
Step 3 outputs a triplet (xi , ci , yi ) if c(xi , hist, ωA) = ci . We have already proven that

Pr
y∈[�,A−1],c∈[0,B−1]

[
c = c

(
gy

I c
, hist, ωA

)]
= Q

(A −�)× B
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and that A − 2� ≤ Q ≤ A so the probability of success at step 3 is bounded between

1

B

(
1− �/A

1−�/A

)
and

1

B

(
1

1−�/A

)
.

Since SB/A is negligible, this probability is essentially 1/B and the expected number
of executions of the loop is B. Consequently, the complexity of the simulation of the �
rounds is O(�× B).

In conclusion, if �SB/A is negligible and if � and B are polynomial, the GPS protocol
is statistically zero-knowledge.

Since GPS is statistically zero-knowledge, we know that interactions with a prover
cannot help an attacker in our model. Consequently, the end of the security proof of GPS
consists in proving that if the verifier accepts, then, with overwhelming probability, the
prover must know the discrete logarithm of I in base g. Intuitively, after one commitment
x has been sent, if the prover can correctly answer with probability > 1/B, he must be
able to answer to two different challenges c and c′ with y and y′, smaller than A + �,
such that gy/I c = x = gy′/I c′ . Let σ = y− y′ and τ = c− c′; we obtain gσ = I τ . The
following lemma, where ε is implicitly assumed to depend on the security parameter k,
turns those ideas into more formal terms:

Lemma 4. Assume that some prover is accepted for a public key I with probability
ε > 1/B�. Then there exists an algorithm which outputs

σ ∈ [−(A +�− 1), A +�− 1] and τ ∈ [1, B − 1] such that gσ = I τ

with probability ≥ ε − 1/B�. The expected running time is ≤ 4 × T , where T is the
average running time of an execution of the identification protocol.

Proof. The proof of this lemma appears in Appendix B. It is quite similar to the extractor
of the Schnorr scheme [43].

We now arrive at the main difference between the Schnorr proof and GPS. If the
order of g were known and relatively prime with any integer in the range [1, B − 1],
then, exactly as in the Schnorr scheme where g is of prime order ord(g) = q, it would
be very easy to recover the secret s from the equation gσ = I τ , just by solving the
equation σ − sτ = 0 mod ord(g). When the order of g is unknown, we cannot solve this
equation. A consequence is that GPS is not a proof of knowledge of a discrete logarithm
because logarithms cannot be extracted from accepted provers. However, we can prove
its security in our model, assuming the sole intractability of computing short discrete
logarithms in base g, modulo n. Let us first recall a well known probabilistic lemma (see
for example [39]):

Lemma 5 (Splitting Lemma). Let A ⊂ X × Y , such that Prx,y[A(x, y)] ≥ ε, and
� = {a ∈ X | Pry[A(a, y)] ≥ ε/2} then Prx [x ∈ �] ≥ ε/2.
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Theorem 6 (Security of GPS). Assume that an adversary (A1, A2) is such that after
interactions between A1 and a prover, A2 is accepted with non-negligible probability by
honest verifiers. Further assume that � and B are polynomial while �SB/A and 1/B�

are negligible, relatively to the security parameter k. Then there exists an algorithm that
solves the discrete logarithm with short exponent problem in polynomial time.

Proof. The basic idea of the proof is to show that if an adversary can impersonate a
prover, he can compute discrete logarithms with short exponents in expected polynomial
time. We have already seen in Lemma 4 that if a prover is accepted with non-negligible
probability, he must know integers σ and τ such that gσ = I τ . Unfortunately, we cannot
immediately deduce the discrete logarithm of I in base g from this equation since we
do not know the order of g. However, we show in this proof that only two situations are
possible and that in those two cases we can finally compute discrete logarithms.

In the first case the exponents σ are most of the time multiples of τ so it is easy to
simplify the equation gσ = I τ and to compute logg I . In the second case we consider the
opposite situation in which τ does not usually divide σ ; we can no longer compute logg I
but, if we already know that I = gs0 , we learn that σ − s0τ is a non-zero multiple of the
multiplicative order of g. Then this information finally enables us to solve the discrete
logarithm problem for values I ′ for which we do not previously know the logarithm.
Some technical details are now provided.

In the proof we fix the group G and the base g; we consider an adversary accepted
with probability π , where the probability is considered over the random tapes ωK (for
the choice of the private key s), ωA (for the attacker random choices) and ωV (for the
verifier random choices). We let I = {I = gs, s ∈ [0, S − 1]} be the set of all public
keys. Let I0 be such a key chosen in I. We now describe an algorithm that uses the
adversary (A1, A2) to compute the discrete logarithm of I0 in base g.

Notice that in order to make the proof as simple as possible, we present a non-
uniform algorithm for computing discrete logarithms, i.e. an algorithm that depends
on the probability of success of the attacker. However, since the actual value of this
probability is not used but just allows us to estimate the complexity, it could easily be
transformed into a uniform algorithm, by just running in parallel all Turing machines
described below.

Firstly, notice that the interaction between A1 and a real prover can be simulated in
expected polynomial time as explained in Theorem 2. Consequently, the information
transmitted by A1 to A2 in our security model can be output by a probabilistic Turing
machine that does not know any secret. Furthermore, the program of this machine can
even be included in the program of A2.

Then, in our security model, the probability of success π for an attacker is

Pr
I∈I,ωA,ωV

[the adversary (A1, A2) is accepted with the public key I ] = π.

The probability is taken over those random tapes and also over the public keys so that
the probability of success can be much smaller for some specific keys. However, for
a non-negligible part of the keys, the probability of success is “not too small”. More
formally, let I0 be the subset of the public keys I such that

Pr
ωA,ωV

[the adversary is accepted with the public key I ] ≥ π/2.
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Lemma 5 proves that the probability for a public key I to be in this subset I0 is greater
than π/2. Since the probability of success of the attacker π is non-negligible while 1/B�

is assumed to be negligible, we consider large enough values of the security parameter
k for which π/2 > 1/B�. In this case we can use the result of Lemma 4 that shows the
existence of a PPTMM(I ) which outputs

σ ∈ [−(A +�− 1), A +�− 1] and τ ∈ [1, B − 1] such that gσ = I τ

with probability ε ≥ π/2− 1/B�, in expected time T ′ ≤ 4× T .
Thus, the probability that a public key gs is in I0 and thatM(I ) outputs (σ, τ ) such

that gσ = I τ is larger than π/2× ε, is

Pr
s∈[0,S−1]

[
gs ∈ I0 ∧M(gs) outputs (σ, τ )

] ≥ πε
2
.

Two situations can occur depending on the probability forM(I ) to output σ and τ such
that σ − sτ = 0:

– First case: if most of the time M(I ) outputs (σ, τ ) such that σ − sτ = 0, we
immediately obtain the discrete logarithm s = σ/τ that we are looking for.

– Second case: on the contrary, ifM(I ) outputs (σ, τ ) such that σ−sτ �= 0, we obtain
a multiple of the multiplicative order of g in G. Then this information enables us
to solve equations such as σ ′ − xτ ′ = 0 mod ord(g) and consequently to compute
discrete logarithms from the outputs ofM(I ).

First case: if the probability that a public key gs is in I0 and that the PPTMM(I ) outputs
(σ, τ ) such that σ − sτ = 0 is greater than πε/4,

Pr
s∈[0,S−1]

[
gs ∈ I0 ∧M(gs) outputs (σ, τ ) ∧ σ − sτ = 0

] ≥ πε
4

we can immediately compute the discrete logarithm of the target public key I by running
M on input I . The probability of success is πε/4 and the expected running time is
O(T ′) = O(T ).

Second case: we now consider the case whereM does not directly output secret keys:

Pr
s∈[0,S−1]

[gs ∈ I0 ∧M(gs) outputs (σ, τ ) ∧ σ − sτ �= 0] ≥ πε
4
.

The first step consists in computing a multiple of the multiplicative order of g. We use
the following algorithm:

Step 1. choose s0 ∈ [0, S − 1].
Step 2. compute I0 = gs0 .
Step 3. runM on input I0.
Step 4. ifM outputs (σ, τ ) such that gσ = I τ and L0 = abs(σ − s0τ) �= 0 output

L0.

With probability ≥ πε/4, we obtain L0 �= 0 such that gL0 = 1. Consequently, L0 is a
multiple, smaller than A +�, of the order of g in G. We can now compute the discrete
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logarithm of I in base g by runningM on input I . With probability≥ πε/4, we obtain σ
and τ such that I τ = gσ . In order to find the discrete logarithm s of I in the appropriate
range, we solve the equation σ − τ x = 0 mod L0. Let d = gcd(τ, L0); since τ/d and
L0/d are relatively prime, the equation (σ/d)− (τ/d)× x = 0 mod L0/d has exactly
one solution x0 mod L0/d ,

x0 = (σ/d)× (τ/d)−1 mod L0/d.

We now consider the equation σ − τ × x = 0 modulo L0 and not only modulo L0/d. As
a consequence, we can write x = x0+ i×L0/d mod L0 with i ∈ [0, d−1]. The solution
s can finally be found among those d solutions. Since we know that d < τ < B, we can
obtain the solution in the appropriate range by exhaustively searching i ∈ [0, B − 1].
In conclusion, in time O(T + B) we obtain s in the appropriate range such that
I = gs .

If π is non-negligible and 1/B� is negligible, for infinitely many values of k, 1/B� <
π/4. Consequently, the probability of success of the PPTM M of Lemma 4 is ε ≥
π/2 − 1/B� > π/4 and its expected running time T ′ is less than 4 × T . Finally, if
B is polynomial, we have obtained an expected polynomial time algorithm to compute
discrete logarithms in base g, in the range [0, S − 1]. To conclude, it is enough to
observe that an adversary computing discrete logarithms in expected polynomial time
can be turned into a strict polynomial time algorithm, by simply truncating execution of
the adversary after some appropriate number of steps.

4. Security Analysis of the GPS Signature Scheme

As explained in Section 2.3, the GPS identification scheme is turned into a signa-
ture scheme by following the technique originally proposed by Fiat and Shamir [17]:
challenges c are no longer randomly chosen by a verifier but computed by means of
a hash function h with output range [0, B − 1]. In order to avoid the parallel execu-
tion of a super-logarithmic number of rounds, we need to increase the bound B to be
super-polynomial.

In order to prove the security of the GPS signature scheme, described in Section 2.3,
we can show that if an attacker is able to forge valid signatures after having obtained
signatures of messages of his choice, then we can use it to compute the secret key and
consequently to solve the discrete logarithm with short exponent problem. The random
oracle model [3] is used to simulate the behavior of the hash function.

The GPS signature scheme uses a cryptographically secure hash function. Ideally,
a security proof should only be based on some intractability assumption such as the
impossibility to find collisions. However, in order to obtain security arguments, we need
to simulate the hash function as a random function, following the initial idea of Bellare
and Rogaway [3], [17]. In this model the hash function is not considered as a deterministic
public function but it is modeled by an oracle that randomly answers the queries. The
only limitation is that this oracle provides the same answer if the same query is asked
twice.

The use of the random oracle model is known to be a good engineering principle when
it is not possible to provide proofs without such an additional assumption. This approach
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validates the design of the scheme even if we must be careful with this model as shown
by Canetti et al. [8].

A generic result due to Abdalla et al. [1] shows that the use of the Fiat–Shamir
paradigm to transform an identification scheme secure against passive attacks into a
signature scheme leads to a secure signature scheme, i.e. a signature for which existen-
tial forgery under adaptive chosen message attack is impossible (see [30] and [1] for
standard definition of security of digital signature schemes). Accordingly, it is enough to
check:

1. That the GPS identification scheme remains zero-knowledge if the bound B is
increased to super-polynomial, in a setting where the verifier is honest, i.e. randomly
chooses the challenges in the range [0, B − 1].

2. That the expected time of the “extractor” described in the proof of Theorem 6
remains polynomial if the bound B is increased to super-polynomial.

Going through the proof of Theorem 2, we see that the simulation requires B to be
polynomial. This is a well known restriction for zero-knowledge and appears in the
Schnorr scheme as well. However, we can see that if the verifier is honest the simulation
complexity is only O(�). This settles item 1.

Concerning item 2, there is a difficulty: the expected complexity of the extractor
described in the proof of Theorem 6 is O(T + B), and therefore does not remain
polynomial if the bound B is increased to super-polynomial. The O(B) term comes
from an exhaustive search required for deriving the secret exponent s from an equation
σ − sτ = 0 mod L0, where L0 is a multiple of the order of g, found at an earlier stage.
In many cases of practical interest, the specifics of the key generation algorithm allow
us to eliminate exhaustive search. For example, when using the set G = Z∗n of invertible
elements modulo an RSA modulus n, which is a product of two strong primes, it is well
known that knowledge of L0 allows us to factor n in probabilistic polynomial time. The
equation to solve becomes σ −sτ = 0 mod L , where L is the actual multiplicative order
of g, known from the factorization of n, and with overwhelming probability it holds that
gcd(τ, L) ≤ 2. Thus, no exhaustive search is needed.

In general, there is a twist that reduces exhaustive search to polynomial. It is explained
in detail in [40]. This twist is based on using an alternative extractor. It is shown in [40]
that independently choosing two integers u, v from a large interval yields gcd(u, v) < K
with probability> 1− O(1/K ), for any constant K , and this result is used in the design
of the extractor. We refer the reader to [40], and only mention here that the alternative
extractor outputs two pairs (σ, τ ), (σ ′, τ ′) instead of one, with the additional property that
gcd(τ, τ ′) is bounded by K , where K is an appropriately chosen value, polynomial in the
security parameter, but independent from B. Combining the two equations corresponding
to the pairs (σ, τ ), (σ ′, τ ′), by means of the Bézout identity, allows us to limit exhaustive
search to the polynomial range [1, K ].

Based on the above observations, we can state the following:

Theorem 7. Under the discrete logarithm with short exponent assumption, if SB/A
and 1/B are negligible, the GPS signature scheme is existentially unforgeable under
adaptive chosen message attacks in the random oracle model.



On the Fly Authentication and Signature Schemes 481

5. Applications

This section is more practical in character: we discuss how to choose secure parameters in
order to resist the known attacks against factorization and the discrete logarithm problem.
Then we explain how to optimize size of the data and, finally, report on the performance
of a smart card application.

5.1. Choice of the Underlying Mathematical Structure

We first focus on the group G and the base g. We already proposed in the description of
GPS several possible options. We now clarify the practical choice of the parameters for
the first two options:

– G = Z∗p with p a prime number such that p − 1 has a large prime factor q; the
order of the base g should be q and the size of q should be larger than 160 bits.
The discrete logarithm problem modulo a prime integer seems currently intractable
if the size of the modulus is larger than 1536 bits. For more secure applications,
|p| = 2048 may be appropriate; we refer to specific overviews such as [32] for a
more precise analysis.

– G = Z∗n with n an RSA modulus, i.e. a composite integer with two prime factors with
almost the same size. The use of a 1536-bit modulus seems adequate to guarantee a
high level of security based on the intractability of factorization for the next years.
Then g can be randomly chosen. In practice, we advise the use of modulus n which
is the product of two strong primes, i.e. primes p such that (p− 1)/2 is also prime,
in order to avoid partial Pohlig–Hellman attacks [45]. We also advise the use of
base g = 2 for efficiency reasons.

The security is related to the choice ofG, g and S in such a way that computing discrete
logarithms in base g is intractable, even if those exponents are in the range [0, S − 1].
Since discrete logarithms can be computed in O(

√
S) using the Pollard rho algorithm or

Shanks’ baby-step giant-step algorithm, S should be at least equal to 2160 and preferably
to 2256 for a high level of security.

Then the choice of the size of B is related to the probability of impersonation of an
adversary. The expected security depends on the application and B = 232 with � = 1, i.e.
using just one elementary round, would probably be large enough for many identification
systems since it guarantees that an adversary cannot impersonate a user with probability
larger than 1/232. For signature applications, the use of a standard hash function such as
SHA-256 [35] (B = 2256) can be advised.

Finally, the parameter A must be such that A/SB is “large” in order to guarantee the
statistical zero-knowledge property. We advise taking A = S × B × 280.

5.2. Optimization of Coupons

In order to decrease the number of communication bits, Fiat and Shamir [17] have sug-
gested sending a hash value of the commitment issued at the first step of the identification.
This trick can be used with our scheme. Let h′ be a hash function and let |h′| be the size
of its output. The modifications are very simple: the commitment x is replaced in the
protocol by x ′ = h′(x) and the verification equation becomes x ′ = h′(gy/I c).
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Using the notion of t-collision-free hash functions, i.e. functions such that it is in-
feasible to find t distinct values with the same image, Girault and Stern [27] have pre-
cisely analyzed the consequences of such a modification on the security of identification
schemes. This result can still be improved [22] if we consider that an attacker cannot
perform more than a fixed number of on-line operations during the authentication pro-
cess. In this setting, if we want a security level of 32 bits, we can choose |h′| = 50 bits
only.

Finally, we have already observed that the commitments can be computed off-line, by
the individual device or by an authority. In fact, we just have to compute and to keep in
memory pairs of the form (r, h′(gr )). Notice that computation of the exponentiation can
use the Chinese remainder theorem, in order to be more efficient, when the factorization
of the modulus is known.

Memory space can be saved if the random values r are not stored but generated
when needed by a pseudo-random generator. This finally leads to storing the seed of
the generator and the commitments, i.e. about only 6 bytes per authentication using
commitment hashing technique [22].

5.3. Performance

An implementation of GPS on a PC shows the very high practical efficiency of this
scheme for identification and signature applications.

Figure 3 shows the performances obtained with a Pentium III 450 MHz processor and
a C program using the GMP multiprecision arithmetic library [28].

The public parameters and key generation need about 1 second but this operation
does not happen very often. Computation of the commitments or of the coupons just
consists in computing an exponentiation. The verification is a similar operation. We see
that we can perform a few thousands of such operation by minute with a simple PC.
Note that the computation of the answer is so easy that we cannot really measure it. Also
note that verification can be server-aided and made as efficient as Guillou–Quisquater
verification [26].

5.4. Smart Card Application

In order to show to what extent computations are minimal and transmissions very short,
we now present an application we have implemented on a low cost smart card based
on a 6805 chip. The size of the program is very small, about 300 bytes. We see in
Fig. 4 that the running time of the computation is very short and actually most of the

Parameters
(see Section 2.2 for notations)

G = Z∗n with |n| = 1536 (n = p × q)
|S| = 2× 80 = 160, � = 1

|B| = 35, |A| = |S| + |B| + 80 = 275

Parameters generation ≈1 s

Computation of commitment x 10.1 ms (5940 per minute)

Computation of answer y < 1 µs

Verification 11.8 ms (5084 per minute)

Fig. 3. Implementation of GPS in C using GMP library on a PC PIII 450 MHz.
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Parameters
(see Section 2.2 for notations)

G = Z∗n with |n| = 1536
|S| = 2× 80 = 160, � = 1

|B| = 35, |A| = |S| + |B| + 80 = 275

Size of a coupon (= |h′|) 50 bits
Number of coupons in 4 KBytes 655

Running time at 3.57 MHz < 2 ms
Amount of communication 45 bytes

Running time at 9600 bauds 38 ms
at 115000 bauds 3.1 ms

Total running time
at 9600 bauds ≈ 40 ms

at 115000 bauds ≈ 5 ms

Fig. 4. Implementation of GPS on low cost smart card.

time needed for an authentication is taken by the communication protocol between the
card and the computer. Notice that, for signature, we would have to take into account the
computation time of the hash function; this would probably be the bottleneck of many
very fast applications. In conclusion, this demonstrates that the scheme under study is
really suitable for very fast “on the fly” applications.
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Appendix A. Proof of Lemma 3

Lemma 3. If f is a function from G to [0, B−1] and I ∈ {gs; s ∈ [0, S − 1]} then the
total number N of solutions (c, y) ∈ [0, B−1]×[�, A−1] of the equation c = f (gy/I c)

satisfies A − 2� ≤ N ≤ A.

Let f be any function from G to [0, B − 1]. We first notice that, since I = gs , if
f (gy/I c) = c then f (gy+ks/I c+k) = c so f (gy+ks/I c+k) �= c + k for any k �= 0 such
that c + k ∈ [0, B − 1].

We define the following sets of pairs (c, y):

PX = {(c, X + cs) such that c ∈ [0, B − 1] and X + cs ∈ [�, A − 1]}.

Those subsets have many properties that are summarized below:

(1) ∀X �= X ′, PX ∩ PX ′ = ∅.
Proof: if (c, y) ∈ PX ∩ PX ′ , y = X + cs and y = X ′ + cs so X = X ′.

(2)
⋃

X∈Z PX = [0, B − 1]× [�, A − 1].
Proof: for any pair (c, y) ∈ [0, B − 1]× [�, A − 1], (c, y) ∈ Py−cs .
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(3) if X < �− s(B − 1), PX is empty.
Proof: if X < �− s(B − 1), ∀c ∈ [0, B − 1] X + cs < �.

(4) if X ≥ A, PX is empty.
Proof: if X ≥ A, ∀c ∈ [0, B − 1] X + cs ≥ A.

(5) card(PX ) = B ⇔ X ≥ � and X < A − s(B − 1).
Proof: obvious since X + cs ∈ [�, A − 1] for all c ∈ [0, B − 1].

(6) ∀X ∈ Z ∀(c, y) ∈ PX ∀(c′, y′) ∈ PX f (gy/I c) = f (gy′/I c′).
Proof: this is obvious since gy/I c = gy′/I c′ .

(7) For any X ∈ Z, there is at most one pair (c, y) ∈ PX such that f (gy/I c) = c.
Proof: this is an immediate consequence of property (6) because all the pairs (c, y)
in a set PX have different values of c.

(8) For any X such that card(PX ) = B, there is exactly one pair (c, y) ∈ PX such
that f (gy/I c) = c.
Proof: a pair (c, y) such that f (gy/I c) = c is given by ( f (gX ), X + f (gX )× s).
Uniqueness follows from property (7).

Consequently, the total number N of solutions of the equation c = f (gy/I c) is upper
bounded by the number of non-empty setsPX , this is a consequence of property (7), and
lower bounded by the number of sets PX with exactly B pairs, this is a consequence of
property (8). Using properties (3)–(5), we obtain that N lies between A − 2� and A in
the following way:

A − 2� ≤ A −�− (B − 1)s ≤ N ≤ A −�+ (B − 1)s ≤ A.

Appendix B. Proof of Lemma 4

Assume that a prover A2, running on random tape ωA, is accepted with probability
ε = 1/B�+ ε′, ε′ > 0, for a public key I . We write Succ(ωA, c1, . . . , c�) ∈ {true, false}
the result (successful of not) of the identification of A2(ωA) when successive challenges
c1, . . . , c� are used.

Pr
ωA,c1,...c�

[Succ(ωA, c1, . . . , c�)] = ε = 1/B� + ε′.

We consider the following algorithm (inspired from [43]):

Step 1. Pick a random tape ωA and a tuple c of � integers c1, . . . , c� in [0, B − 1]. If
the adversary does not succeed, i.e. if Succ(ωA, c) does not hold, abort.

Step 2. Probe random �-tuples c′ different from each other and from c until
Succ(ωA, c′). If after B� − 1 probes a successful c′ has not been found, abort.

Step 3. Let j be the first index such that cj �= cj
′; note yj and yj

′, the related correct
answers of A2. If cj > cj

′, the algorithm outputs σ = yj − yj
′ and τ = cj − cj

′,
and otherwise it outputs σ = yj

′ − yj and τ = cj
′ − cj .

Note that the algorithm reaches step 1 if and only if Succ(ωA, c) holds, i.e. with
probability ε. Also, the algorithm aborts at step 2 in the case where (ωA, c) is the
single pair with first coordinate ωA, such that Succ(ωA, c) holds. This happens with
probability at most 1/B�. Thus, with probability ≥ ε′, the prover is able to answer
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correctly two challenges cj and cj
′ given the same commitment xj , with the answers

yj and yj
′. This means that gyj /I cj = x = gyj

′
/I cj

′
so gσ = I τ . Furthermore, σ ∈

[−(A +�− 1), A +�− 1] and τ ∈ [1, B − 1].
We now analyze the complexity of the algorithm. The first step requires a single

execution of the protocol. In order to estimate the expected number of executions of the
second step for a given value ofωA, we denote byπi (ωA) the probability that a successful
execution is found at the i th probe, and by πB� (ωA), the probability that the algorithm
aborts at step 2. Also, we denote by σi (ωA) the probability that at least i probes are
needed, and we let σB� (ωA) = πB� (ωA). We have to compute the sum

B�−1∑
i=1

iπi (ωA)+ (B� − 1)πB� (ωA) ≤
B�∑

i=1

iπi (ωA)

=
B�∑

i=1

B�∑
j=i

πi (ωA) =
B�∑

i=1

σi (ωA).

Now, it is easily seen that σi can be computed from ε(ωA) = Prc[Succ(ωA, c)] as

i−1∏
j=1

1− (ε(ωA)− ( j − 1)/B�)

1− j/B�
≤
(

1−
(
ε(ωA)− 1

B�

))i

.

When ε(ωA) �= 1/B�, i.e. when the algorithm does not abort at step 2, it allows us to
obtain the bound

B�∑
i=1

σi (ωA) ≤ 1

ε(ωA)− 1/B�
.

This leads to averaging 1+ 1/(B�ε(ωA)− 1), and, using the fact that we are currently
considering the case ε(ωA) ≥ 2/B�, yields an expected bound 2. When the algorithm
aborts at step 2, the bound on the number of executions is B�. Since the latter only occurs
with probability at most 1/B�, averaging yields an additional contribution 1. Altogether,
this yields an expected number of executions at step 2 bounded by 3.

In conclusion, the algorithm finds (σ, τ )with probability≥ ε′ and, taking into account
steps 1 and 2, the total expected time for the executions of the protocol between the prover
and a verifier is at most 4× T .
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