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Abstract. In this paper we present a cryptanalytic technique, based on impossible
differentials. We use it to show that recovering keys of Skipjack reduced from 32 to 31
rounds can be performed faster than exhaustive search. We also describe the Yoyo
game (a tool that can be used against reduced-round Skipjack), and other properties of
Skipjack.
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1. Introduction

Skipjack [22] is a block cipher with 80-bit keys and 64-bit blocks. It was developed by the
NSA for the Clipper chip initiative (including the Capstone chip [21] and the Fortezza PC

∗ This paper is an extended version of a paper which appeared under the same title at EUROCRYPT ’99. The
first author is supported by the Israeli Ministry of Science and Technology. During this work Alex Biryukov
was with the Applied Mathematics Department, Technion – Israel Institute of Technology, Haifa 32000, Israel.
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card), as a member of a family of “Type I” encryption algorithms suitable for protecting
all levels of classified data. It was implemented in tamper-resistant hardware, and its
structure was kept secret since its introduction in 1993.

To increase confidence in the strength of Skipjack and the Clipper chip initiative, five
well-known cryptographers were assigned in 1993 to analyze Skipjack and report their
findings [8]. They investigated the strength of Skipjack using differential cryptanalysis [6]
and other methods, and concentrated on reviewing NSA’s design and evaluation process.

On 24th June 1998 Skipjack was declassified, and its description was made public
in the web site of NIST [22]. Immediately after the declassification, two groups of
researchers were studying its security simultaneously, and both shared their ideas during
the analysis. Our group developed differential and linear cryptanalysis of Skipjack [3].
We analyzed variants of Skipjack with up to 16 rounds with 222 complexity and 222

chosen plaintexts. We also analyzed a slightly modified variant of the full 32-round
Skipjack, from which only three XOR operations (out of the 320 XOR operations) are
removed. We called this variant Skipjack-3XOR (Skipjack minus three XORs). We could
attack this variant in less than a million steps using 500 chosen plaintexts. This attack
can therefore be carried out on any personal computer in just a few seconds. We also
developed the Yoyo game, described in Appendix A of this paper.

In parallel, the other group of researchers, including Knudsen, Robshaw, and Wagner,
took a different direction. They used (word-wise) truncated differentials and got the
following results [15]: Skipjack reduced to (the first) 16 rounds can be attacked with
217 chosen plaintexts and 234 time of analysis. This attack works even if the subkeys are
independent, in which case the same amount of chosen plaintexts is required, but the
time of analysis grows to 249. An attack on Skipjack with the middle 16 rounds requires
only three chosen plaintexts and 230 time of analysis. They can even attack Skipjack
reduced to (the last) 28 rounds with 277 steps and 241 chosen plaintexts. In addition
they used boomerang attacks (a kind of an adaptive chosen plaintext/chosen ciphertext
attack) against variants of Skipjack, with which they could distinguish whether a black
box cipher performs a 24-round reduced variant of Skipjack, and could find the key of
a 25-round reduced variant using 234.5 adaptive texts and 261.5 time of analysis. Note
that in 2001 Granboulan found a problem in some of these attacks, except for 16-round
attacks, which still work as described [10], [11].

In addition, it is worth noting that Skipjack can be attacked by the generic time–
memory tradeoff approach [12] which requires 280 steps of precomputation and 254

80-bit words (i.e., 260 bits) of memory, and in which each search for a key requires only
254 steps of computation.

In this paper we devise a new variant of differential cryptanalysis and use it to analyze
Skipjack. Differential cryptanalysis [6] traditionally considers characteristics or differen-
tials with relatively high probabilities and uses them to distinguish the correct unknown
keys from the wrong keys. When a correct key is used to decrypt the last few rounds of
many pairs of ciphertexts, it is expected that the difference predicted by the differential
appears frequently, while when a wrong key is used the difference occurs less frequently.1

1 Such a basic approach to differential cryptanalysis considers probabilities of differentials averaged over
all the keys. However, in some ciphers, considering key-dependent differentials is beneficial to the attacker
(see for example [1]). Moreover, one could exploit both high and low probability key-dependent differentials
if the wrong pairs would not suggest the correct value of the key, as is demonstrated experimentally in [7].
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In contrast, in the new variant of differential cryptanalysis a differential predicts that
particular differences should not occur (i.e., that their probability is exactly zero), and
thus the correct key can never decrypt a pair of ciphertexts to that difference. Therefore,
if a pair is decrypted to this difference under some trial key, then certainly this trial key
is not the correct key. This is a sieving attack which finds the correct keys by eliminating
all the other keys which lead to contradictions.

We call the differentials with probability zero impossible differentials, and this method
of cryptanalysis cryptanalysis with impossible differentials.

We should emphasize that the idea of using impossible events in cryptanalysis is
not new. It is well known [9] that the British cryptanalysis of the German Enigma
in World War II used several such ideas (for example, a plaintext letter could not be
encrypted to itself, and thus an incorrectly guessed plaintext could be easily discarded).
The first application of impossible events in differential cryptanalysis was mentioned
in [6], where zero entries in the difference distribution tables were used to discard
wrong pairs before the counting phase. A more recent cryptanalytic attack based on
impossible events was described by Biham in 1995 in the cryptanalysis of Ladder-
DES, a four-round Feistel cipher using DES as the F function. This cryptanalysis was
published in [2], and was based on the fact that collisions cannot be generated by a
permutation. A zero probability differential was later used by Knudsen in his description
of DEAL [14], a six-round Feistel cipher with DES as the F function. Although the idea
of using impossible events of this type was natural in the context of Feistel ciphers with
only a few rounds and with permutations as the round function, there was no general
methodology for combining impossible events with differential cryptanalytic techniques,
and for generating impossible differentials with a large number of rounds.

Cryptanalysis with impossible differentials is very powerful against many ciphers with
various structures. In this paper we describe an impossible differential of Skipjack [22],
[21] which ensures that for all keys there are no pairs of inputs with particular differences
with the property that after 24 rounds of encryption the outputs have some other particular
differences. This differential can be used to

1. attack Skipjack reduced to 31 rounds (i.e., Skipjack from which only the first or
the last round is removed), slightly faster than exhaustive search (using 234 chosen
plaintexts and 264 bits of memory),

2. attack shorter variants efficiently (in the case of the 25-round and 26-round variants
the complexity is only 238 chosen plaintexts, and 227 and 249 steps, respectively),
and

3. distinguish whether a black box applies to a 24-round variant of Skipjack.

In a related paper [4] we describe the application of this type of cryptanalysis to
IDEA [16] and to Khufu [18]. These attacks improved the best known attacks on these
schemes.

We also present a new cryptographic tool, which we call the Yoyo game, applied to
Skipjack reduced to 16 rounds. This tool can be used to identify pairs satisfying a certain
property, and be used as a tool for attacking Skipjack reduced to 16 rounds using only
214 adaptive chosen plaintexts and ciphertexts and 214 steps of analysis. This tool can
also be used as a distinguisher to decide whether a given black box contains this variant
of Skipjack.

Table 1 summarizes the attacks against Skipjack.
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Table 1. Summary of attacks against reduced-round Skipjack.

Ref. Rounds #Texts Steps Memory

[12] Any 2 254 254 Provided 280 steps of
precomutation are performed

[15] 16 (1–16) 217 234

16 (9–24) 3 230

28 (5–32)∗ 241 277

24 (5–28)∗ 225 225 Boomerang; distinguishing
25 (4–28)∗ 234.5 261.5 Boomerang

[13] 22(1–22) 249 244 249 texts Multiset/saturation attack
27(1–27) 250 276.6 250 texts

[3] 16 (1–16) 222 222 –
16 (1–16) 214 216 – Yoyo game; distinguishing
Skipjack-3XOR 29 220 – 32 rounds

This 25 (5–29) 238 227 –
paper 26 (4–29) 238 249 –

28 (1–28) 234 277 264 bits
29 (1–29) 234 277 264 bits
30 (1–30) 234 277 264 bits
31 (1–31) 241 278 264 bits
31 (2–32) 234 278 264 bits

∗Does not work according to [10].

The paper is organized as follows: A description of Skipjack is given in Section 2. A
24-round impossible differential of Skipjack is described in Section 3. In Section 4 we use
this impossible differential for a distinguishing attack on 24-round Skipjack. In Section 5
we use it to attack Skipjack reduced to 25 and to 26 rounds, and in Section 6 we describe
our main attack against Skipjack reduced to 31 rounds. Finally, in Section 7 we discuss
why the attack is not directly applicable to the full 32-round Skipjack, and summarize
the paper. In the appendices we describe the Yoyo game, an automated approach for
finding impossible differentials, complementation properties of the G permutation, and
analysis of modified variants of Skipjack.

2. Description of Skipjack

Skipjack is an iterated block cipher with 32 rounds of two types, called Rule A and
Rule B. Each round is described in the form of a linear feedback shift register with an
additional non-linear keyed G permutation. Rule B is basically the inverse of Rule A
with minor positioning differences. Skipjack applies eight rounds of Rule A, followed by
eight rounds of Rule B, followed by another eight rounds of Rule A, followed by another
eight rounds of Rule B. The original definitions of Rules A and B are given in Fig. 1,
where the round number (k+ 1, also called the round counter in the original description
of Skipjack) is in the range 1–32, k is the round number minus one (in the range 0–31),
G is a four-round Feistel permutation whose F function is based on an (8×8)-bit S box,
called F Table, and each round of G is keyed by eight bits of the key. See Fig. 2 for an
outline of the G permutation, in which the cv’s are the four bytes of subkey.
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Rule A Rule B
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3 = wk

1 ⊕ wk
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3 wk+1
4 = wk

3

Fig. 1. Rules A and B.

The description becomes simpler (and the software implementation becomes more
efficient) if we unroll the rounds, and keep the four elements in the shift register sta-
tionary. In this form the code is simply a sequence of alternate G operations and XOR
operations of cyclically adjacent elements. In this representation the main difference
between Rules A and B is the direction in which the adjacent elements are XORed (left
to right or right to left).

The XOR operations of Rules A and B after round 8 and after round 24 (on the borders
between Rules A and B) are consecutive without application of the G permutation in
between. In the unrolled description these XORs (in rounds 8–9) are of the form

w8
2 = G(w7

2, subkey7) (Rule A),

w8
1 = w7

1 ⊕ w8
2 ⊕ 8,

w9
2 = w8

1 ⊕ w8
2 ⊕ 9 (Rule B),

w9
1 = G(w8

1, subkey8),

which is equivalent to exchanging the words w1 and w2, and leaving w2 as the original
w1 ⊕ 1:

w2 = G(w2, subkey7),

exchange w1 and w2,

w1 = w1 ⊕ w2 ⊕ 8,

w2 = w2 ⊕ 1,

w1 = G(w1, subkey8),

F
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Fig. 2. Outline of the G permutation.
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or even

w8
1 = G(w7

2, subkey7)⊕ w7
1 ⊕ 8,

w9
1 = G(w8

1, subkey8),

w9
2 = w7

1 ⊕ 1

(the same situation occurs after round 24 with the round numbers 8 and 9 replaced by
24 and 25). Figure 3 describes this representation of Skipjack (only the first 16 rounds
out of the 32 are listed; the next 16 rounds are identical except for the counter values).
The unusual structure after round 8 (and after round 24) is the result of simplifying the
two consecutive XOR operations at the boundary between Rules A and B rounds.

Also, on the border between Rules B and A (after round 16), there are two parallel
applications of the G permutation on two different words, with no other linear mixing
in between.

Note that Rule A mixes the output of the G permutation into the input of the next G
permutation, while Rule B mixes the input of a G permutation into the output of the
previous G permutation (similarly in decryption of Rule A), and thus during encryption
Rule B rounds add little to the avalanche effect, and during decryption Rule A rounds
add little to the avalanche effect.

2.1. The Key Schedule

Skipjack keys contain ten bytes. In each round four consecutive bytes of the key are
used as the subkey. In the first round the first four bytes are used, and in each successive
round, the next four bytes (cyclically) are used.

As a result, the key schedule has the following properties: The subkeys are cyclic in
the sense that the same set of four bytes of the subkeys (entering a single G permutation)
are repeated every five rounds, and there are only five such sets. In addition, the key
bytes are divided into two sets: the even bytes and the odd bytes. The even bytes always
enter the even rounds of the G permutation, while the odd bytes always enter the odd
rounds of the G permutation.

2.2. Decryption

Decryption is performed by applying the inverse of all operations from the last round
to the first. We observe that decryption can be performed using the same procedure as
encryption with minor modifications. These modifications are

1. reordering the key bytes to

K ∗ = (cv7, cv6, cv5, cv4, cv3, cv2, cv1, cv0, cv9, cv8),

2. reversing the order of the round counters (k + 1) mixed into the data, and then
3. encrypting the reordered ciphertext

C∗ = (cb3, cb2, cb1, cb0, cb7, cb6, cb5, cb4)

gives the reordered plaintext

P∗ = (pb3, pb2, pb1, pb0, pb7, pb6, pb5, pb4).
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3. A 24-Round Impossible Differential

We concentrate on the 24 rounds of Skipjack starting from round 5 and ending at round 28
(i.e., without the first four rounds and the last four rounds). For the sake of clarity, we
use the original round numbers of the full Skipjack, i.e., from 5 to 28, rather than from 1
to 24. Given any pair with difference only in the second word of the input of round 5,
i.e., with a difference of the form (0, a, 0, 0), the difference after round 28 cannot be of
the form (b, 0, 0, 0), for any non-zero a and b.

The reason that this differential has probability 0 can be explained by a miss in the
middle approach, where two 12-round differentials with probability 1 evolve from both
ends of the 24 rounds towards the middle, but they miss to agree on a common difference
in the middle:

1. As Wagner observed in [25], the second input word of round 5 does not affect the
fourth word after round 16, and given an input difference (0, a, 0, 0) the difference
after 12 rounds is of the form (c, d, e, 0) for some non-zero c, d, and e. This
differential is outlined in Fig. 4.

2. On the other hand, we can predict the data after round 16 from the output difference
of round 28, i.e., to consider the differentials in the backward direction. Similarly
to the 12-round differential with probability 1, there is a backward 12-round dif-
ferential with probability 1. It has the difference (b, 0, 0, 0) after round 28, and
it predicts that the data after round 16 must be of the form ( f, g, 0, h) for some
non-zero f , g, and h.

As outlined in Fig. 5, these two differentials cannot be combined. Any pair with difference
(0, a, 0, 0) after round 4 and difference (b, 0, 0, 0) after round 28 must have a difference
of the form (c, d, e, 0) = ( f, g, 0, h) after round 16 for some non-zero c, d, e, f , g, and
h. As e and h are non-zero, we get a contradiction, and thus there cannot be pairs with
such differences after rounds 4 and 28.

4. Distinguishing Attacks

One application of this differential may be to test whether an encryption black box is
a 24-round Skipjack (from round 5 to round 28). It only requires to feed the black box
with 248α pairs (for some α) with differences of the form (0, a, 0, 0), and to test whether
the output differences are of the form (b, 0, 0, 0). If for some pair the output difference
is of the form (b, 0, 0, 0), the black box certainly does not apply this variant of Skipjack.
On the other hand, if the black box implements another permutation, there is only a
probability of e−α that none of the 248α pairs has a difference (b, 0, 0, 0). For example,
given 252 pairs the probability of the black box to be incorrectly identified as this variant
of Skipjack is only e−16 ≈ 10−7. These pairs can be packed efficiently using structures
of 216 plaintexts which form 231 pairs. In these structures all the plaintexts are equal
except for the second word which ranges over all the possible 216 values. Using these
structures, the same distinguishing results can be reached using only 233α encryptions.
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Fig. 4. The 12-round differential of rounds 5–12 with probability 1, the differences are marked on the figure,
where a, c, d, e, and ? denote non-zero differences.

5. Attack on Skipjack Reduced to 25–26 Rounds

In this section we describe the simplest (key-recovery) cryptanalysis of Skipjack variants,
with only one or two additional rounds on top of the 24-round impossible differential
itself. An attack on a 25-round variant of Skipjack from round 5 to round 29 is as follows.
Choose structures of 216 plaintexts which differ only at their second word, having all
the possible values in it. Such structures contain about 231 pairs of plaintexts. Given 222

such structures (238 plaintexts), collect all those pairs which differ only at the first two
words of the ciphertexts; by the structure of Skipjack, only these pairs may result from
pairs with a difference (b, 0, 0, 0) after round 28. On average only half of the structures
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contain such pairs, and thus only about 221 pairs remain. Denote the ciphertexts of such
a pair by (C1,C2,C3,C4) and (C∗1 ,C∗2 ,C3,C4). The pair may have a difference of the
form (b, 0, 0, 0) before the last round only if the decrypted values of C1 and C∗1 by
the G permutation in the last round have difference C ′2 = C2 ⊕ C∗2 . As we know that
such a difference is impossible, every key that suggests such a difference is a wrong
key. For each pair we try all the 232 possible values of the subkey of the last round, and
verify whether the decrypted values by the last G permutation have the difference C ′2
(this process can be done efficiently in about 216 steps). It is expected that about 216

values suggest this difference, and thus we are guaranteed that these 216 values are not
the correct subkey of the last round. After analyzing the 221 pairs, there remain only
about 232 · (1 − 2−16)2

21 = 232 · e−32 ≈ 2−14 wrong values of the subkey of the last
round. It is thus expected that only one value remains, and this value must be the correct
subkey. The time complexity of recovering this last 32-bit subkey is about 217 ·221 = 238

G permutation computations. Since each encryption consists of about 25 applications
of G, this time complexity is equivalent to about 233 encryptions. A straightforward
implementation of the attack requires an array of 232 bits to keep the information of
the already identified wrong keys. A more efficient implementation requires only about
232 G computations on average, which is about 227 encryptions, and using 216 bits of
memory.

Essentially the same attack works against a 26-round variant from round 4 to round 29.
In this variant the same subkey is used in the first and last rounds. The attack is as follows:
Choose 26 structures of 232 plaintexts which differ only in the first two words and get all
the 232 values of these two words. Find the pairs which differ only in the first two words
of the ciphertexts. It is expected that about 26 ·263/232 = 237 pairs remain. Each of these
pairs suggests one wrong subkey value on average, and thus with a high probability after
analysis of all the pairs only the correct first/last subkey remains. The time complexity of
this attack when done efficiently is 248, using an array of 216 bits. The rest of the key bits
can be found by exhaustive search of 248 keys, or by more efficient auxiliary techniques.

Note that in this and in the following key recovery attacks we assume that discarded
keys are distributed uniformly at random. This assumption is reasonable since G is
a four-round Feistel construction with four independent key bytes and we may assume
that input/output constraints on G are uniformly distributed for different pairs. Note also
that the standard S/N reasoning in differential cryptanalysis implies a similar assump-
tion. Another important assumption is that ciphertexts do follow the difference of type
(x, y, 0, 0), x �= 0, y �= 0 with probability 2−32. This assumption could be invalidated
by the presence of impossible or low probability differentials. In the attacks presented
here and in the following sections this is however not the case. Moreover, the attacker
would be eager to exploit such properties of a cipher since they would extend the number
of rounds of the distinguisher and thus would allow to break even more rounds.

6. Attack on Skipjack Reduced to 31 Rounds

For the cryptanalysis of Skipjack reduced to 31 rounds, we use again the 24-round
impossible differential. We first analyze the variant consisting of the first 31 rounds of
Skipjack, and then the variant consisting of the last 31 rounds of Skipjack.
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6.1. Preliminaries

Before we describe the full details of the attack, we wish to emphasize several delicate
points. We observe that the full 80-bit key is used in the first four rounds (before the
differential), and is also used in the last three rounds (after the differential). Therefore,
the key-elimination process should discard 80-bit candidate keys. Assuming that the
verification of each of the 280 keys costs at least one G computation, and as one G
computation is about 31 times faster than one encryption, we end up with an attack
whose time complexity is at least 280/31 ≈ 275 encryptions. This lower bound is only
marginally smaller than exhaustive search, and therefore the attack cannot spend more
than a few G operations verifying each key, and cannot try each key more than a few times.

We next observe that if the impossible differential holds in some pair, then the third
word of the plaintexts and the third and fourth words of the ciphertexts have zero differ-
ences, and the other words have non-zero differences. Given a pair with such differences,
and assuming that the differential holds, we get three 16-bit restrictions in rounds 1, 4,
and 29. Therefore, we expect that a fraction of 2−48 of the keys, i.e., about 232 keys,
encrypt the plaintext pair to the input difference of the differential after round 4, and de-
crypt the ciphertext pair to the output difference of the differential before round 29. Once
verified, these keys are discarded. These 232 keys must be discarded with complexity no
higher than 232 as we mentioned earlier. Thus, we cannot try all the 280 keys for each
pair, but, rather, we devise an efficient algorithm to compute the 232 keys.

6.2. General Structure of the Attack

The general structure of the attack is thus expected to be as follows: we generate a large
structure of chosen plaintexts and select the pairs satisfying the required differences.
We analyze these pairs, and each of them discards about 232 keys. After the analysis of
248 pairs, about 280 (not necessarily distinct) keys are discarded. We expect that due to
collisions, about 1/e of the keys remain undiscarded. The analysis of additional pairs
decreases the number of undiscarded keys, until after about 248 ln 280 ≈ 248 · 26 pairs
only the correct key remains. However, the complexity of such an attack is higher than
the complexity of exhaustive search.

Therefore, we analyze only 249 pairs, leaving about 280/e2 ≈ 277 keys undiscarded,
and then try the remaining keys exhaustively. We emphasize that the analysis discards
keys which cause partial encryption and decryption of a valid pair to match the form of
the impossible differential. We thus assume in the attack that the differences suggested
by the impossible differential do hold, and discard all keys which confirm this false
assumption.

6.3. The Attack

We are now ready to describe the attack. We choose 241 plaintexts whose third words are
equal. Given the ciphertexts, we sort (or hash) them by their third and fourth words, and
select pairs which collide at these words. It is expected that about ((241)2/2)/232 = 249

pairs are selected.
Each selected pair is subjected to the following analysis, consisting of four phases. In

the first phase we analyze the first round. We know the two inputs of the G permutation,
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and its output difference. This G permutation is keyed by 32 bits, and there are about 216

of the possible subkeys that cause the expected difference. The subkeys used in this round
can be recovered within 216 steps, by guessing the first two bytes of the subkeys, and
computing the other two bytes by differential cryptanalytic techniques. As the subkeys
of the first and last rounds are the same, we can peel off the last round for each of the
possible subkeys.

We then analyze round 4. We know the input and output differences of the G per-
mutation in round 4. Due to the complementation properties of the G permutation (see
Appendix C and [3]), we can assume that the inputs are fixed to some arbitrary pair of val-
ues, and find about 216 candidate subkeys corresponding to these values. The complexity
of this analysis is 216. We can then complete all the possible combinations of inputs and
subkeys using the complementation properties. The analysis of round 29 is similar. We
now observe that the same subkey is used in round 4 and in round 29. The possible sub-
keys of rounds 4 and 29 are kept efficiently by using the complementation property, and
thus we cannot directly search for two equal subkey values. Instead, we observe that the
XOR value of the first two subkey bytes with the other two subkey bytes is independent
of complementation, and we use this XOR value as the common value which is used
to join the two lists of subkeys of both rounds. By a proper complementation we get a
list of about 216 tuples of the subkey, the input of round 4 and the output of round 29.
The complexity of this analysis is about 216 steps. This list can still be subjected to the
complementation property to get all the (about 232) possible combinations.

The third phase joins the two lists, into a list of about 232 entries of the form (cv0, . . . ,

cv5, X3, X30) where cv0, . . . , cv5 are the six key bytes used in rounds 1, 4, and 29, X3

is the (16-bit) feedback of the XOR operation in round 3 (i.e., the output of the third
G permutation), X30 is the (16-bit) feedback in round 30 (i.e., the input of the 30th G
permutation, which is the same in both members of the pair if cv0, . . . , cv5 are correct).
For each of these values we can now encrypt the first half of round 2 (using cv4 and
cv5) and decrypt the second half of round 3 (using X3, cv0, and cv1). We can view the
second half of round 2 and the first half of round 3 as one permutation, which we call
G ′, which has an additional feedback (the third plaintext word) in its middle. We are left
now with only two equalities involving cv6, . . . , cv9 which should hold, as we know the
input and output of round 30, and we know the two outputs of G ′. There is only one
solution of cv6, . . . , cv9 on average, and given the solution we find a key which encrypts
the plaintexts to the input difference of the impossible differential after round 4, and
decrypts the ciphertexts to the impossible difference before round 29. Therefore, we find
a key which is certainly wrong, and thus should be discarded.

In total we find about 232 such keys during the analysis of each pair. By analyzing
249 pairs selected from the 241 chosen plaintexts, we find a total of 249 · 232 = 281

keys, but some of them are found more than once. It is expected that a fraction of
(1 − 2−80)2

81 = 1/e2 ≈ 1
8 of the keys are not discarded. These keys are then tested by

trial encryptions in the fourth phase.

6.4. Implementation Details

To complete the description of the attack we should describe two delicate implementation
details: The first detail describes how to find the subkey cv6, . . . , cv9 using one table
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lookup. The inputs and outputs of G and G ′ consist of 80 bits, and for each choice of the
80-bit query there is on average only one solution for the subkey. Therefore, we could
keep a table of 280 entries, each storing the solution(s) for a specific query. However, the
size of this table and the time of its precomputation are larger than the complexities we
can afford. Instead, we observe that the complementation property of the G permutation
(see Appendix C and [3]) enables us to fix one of the input words (say to zero) by XORing
the other input, the two outputs, and the suggested subkeys (excluding the intermediate
feedback of G ′) by the original value of this input. We can, therefore, reduce the size
of the table to 264, and the precomputation time to 264 as well. Each entry of the table
contains on average one 32-bit subkey. The size of the table can be halved by keeping
only the first 16 bits of the subkey, observing that the second half can then be easily
computed given the first half.

The second delicate implementation detail is related to the way we keep the list of
discarded keys. The simplest way is to keep the list in a table of 280 binary entries whose
values are initialized to 0, and are set to 1 when the corresponding keys are discarded.
However, again, this table is too large (although its initialization and update times are still
considerably faster than the rest of the attack). Instead, we observe that we can perform
the attack iteratively (while caching the results of phase 2), where in each iteration we
analyze only the keys whose first two bytes cv0 and cv1 are fixed to the index of the
iteration. This modification can be performed easily as the attack guesses these two bytes
in its first phase, and each guess leads to independent computations. We thus perform
exactly the same attack with a different order of instructions. As the first 16 bits of the
keys are now fixed in each iteration, the number of required entries in the table is reduced
to 264 bits.

6.5. Complexity

The complexities of phases 1 and 2 are about 216 for each pair, and 249 · 216 = 265 in
total for all the pairs. The complexity of phase 3 is as follows: For each pair, and for
each value in the joined list, we compute two halves of a G permutation and solve for
cv6, . . . , cv9 given the inputs and outputs of the third G and of G ′. Assuming that this
solution costs about one computation of a G permutation, the total complexity of phase 3
is 249 · 232(2 · 1

2 + 1) = 282 computations of a G permutation, which is equivalent to
282/31 ≈ 277 encryptions. The complexity of phase 4 is about 280/8 = 277 encryption.
Therefore, the total complexity of the attack is about 278 encryptions, which is four times
faster than exhaustive search. The average time complexity of the attack is about 277,
which is also four times faster than the average case of exhaustive search.

6.6. Cryptanalysis of the Last 31 Rounds of Skipjack

An attack on the reduced variant consisting of rounds 2 to 32 requires fewer chosen
plaintexts, and the same complexity. Given four structures of 232 chosen plaintexts with
words 3 and 4 fixed, we can select the (4 · (232)2/2)/216 = 249 required pairs, and apply
the same attack to these pairs (exchanging rounds 1 and 32, rounds 2 and 31, etc.). This
attack can also be applied as a chosen ciphertext attack against the variant consisting of
rounds 1–31 using 234 chosen ciphertext blocks.
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7. Discussion and Conclusions

This attack cannot be directly used against the full 32 rounds of Skipjack because each
pair may discard only about 216 keys. However, the analysis of phases 1 and 2 (which
in the case of the full Skipjack also includes the analysis of the last round) cannot be
reduced below 232 G computations. Therefore, the complexity of the attack is lower
bounded by 216/32 = 211 times the number of discarded keys (instead of being a few
times smaller than the number of discarded keys), and thus the time required to eliminate
all but the correct key is longer than exhaustive search.

Note that the above attacks against Skipjack are independent of the choice of the F
table, and that the attacks on the 25-round and 26-round variants are also independent
of the choice of the G permutation.

Also note that the order of Rules A and B is important: If in addition to the five-round
cycle of the key schedule, Skipjack had five-round groups of rules (instead of eight-round
groups of rules), i.e., had consecutive groups of five rounds of Rule A followed by five
rounds of Rule B, followed by five Rule A and five Rule B rounds, etc, then it would
have a 27-round impossible differential.

We are aware of several impossible differentials of various block ciphers, such as a
nine-round impossible differential of Feal [24], [19], a seven-round impossible differ-
ential of DES [20], an 18-round impossible differential of Khufu [18], and a 2.5-round
impossible differential of IDEA [16]. In a related paper [4] we use these impossible
differentials to cryptanalyze IDEA with up to 4.5 rounds, and to cryptanalyze Khufu
with up to 20 rounds. Both attacks analyze more rounds than any previously published
attack against these ciphers.

There are many modifications and extensions of the ideas presented in this paper. For
example, cryptanalysis with impossible differentials can be used with low-probability
(rather than zero-probability) differentials, can be used with conditional characteris-
tics [1] (or differentials), and can be combined with linear [17] (rather than differential)
cryptanalysis.

Designers of new block ciphers try to show that their schemes are resistant to differen-
tial cryptanalysis by providing an upper bound on the probability of characteristics and
differentials in their schemes. One of the interesting consequences of the new attack is
that even a rigorously proven upper bound of this type is insufficient, and that designers
also have to consider lower bounds in order to prove resistance against attacks based on
impossible or low-probability differential properties.
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Appendix A. A New Cryptographic Tool: The Yoyo Game

Consider the first 16 rounds of Skipjack, and consider pairs of plaintexts P = (w1, w2,

w3, w4) and P∗ = (w∗1, w∗2, w∗3, w∗4) whose partial encryptions differ only in the second
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word in the input of round 5 (we refer to it as the property from now on). As this word
does not affect any other word until it becomes word 1 in round 12, the other three words
have difference zero between rounds 5 and 12.

We next observe that given a pair with such a property, we can exchange the second
words of the plaintexts (which cannot be equal if the property holds), and the new pair of
plaintexts (w1, w

∗
2, w3, w4) and (w∗1, w2, w

∗
3, w

∗
4) still satisfies the property, i.e., differs

only in the second word in the input of round 5. Given the ciphertexts we can carry out
a similar operation of exchanging words 1.

The Yoyo game starts by choosing an arbitrary pair of distinct plaintexts P0 and P∗0 .
The plaintexts are encrypted to C0 and C∗0 . We exchange the first words of the two
ciphertexts as described above, receiving C1 and C∗1 , and decrypt them to get P1, P∗1 .
Now we exchange the second words of the plaintexts, receiving P2 and P∗2 , and encrypt
them to get C2 and C∗2 . The Yoyo game repeats this forever.

In this game, whenever we start with a pair of plaintexts which satisfies the property,
all the resultant pairs of encryptions must also satisfy the property, and if we start with a
pair of plaintexts which does not satisfy the property, all the resultant encryptions cannot
satisfy it.

It is easy to identify whether the pairs in a Yoyo game satisfy the above property, by
verifying whether some of the pairs achieved in the game have a non-zero difference in
the third word of the plaintexts or in the fourth word of the ciphertexts. If one of these
differences is non-zero, the pair cannot satisfy the property. On the other hand, if the
pair does not satisfy the property, there is only a probability of 2−16 that the next pair in
the game has difference zero, and thus it is possible to stop games in which the property
is not satisfied after only a few steps. If the game is not stopped within a few steps, we
conclude with overwhelming probability that the property is satisfied.

This game can be used for several purposes. The first is to identify whether a given
pair satisfies the above property, and to generate many additional pairs satisfying the
property.

This can be used to attack Skipjack reduced to 16 rounds in just 214 steps. For the
sake of simplicity, we describe a suboptimal implementation with complexity 217. In
this version we choose 217 plaintexts whose third word is fixed. This set of plaintexts
defines about 233 possible pairs, of which about 217 candidate pairs have difference zero
in the fourth word of the ciphertexts, and of which about one or two pairs are expected
to satisfy the property. Up to this point, this attack is similar to Wagner’s attack on 16-
round Skipjack [25]. We then use the Yoyo game to reduce the complexity of analysis
considerably. We play the game for each of the 217 candidate pairs, and within a few
steps of the game discard all the pairs which do not satisfy the property. We are left with
one pair which satisfies the property, and with several additional pairs generated during
the Yoyo game which also satisfy the property. Using two or three of these pairs, we can
analyze the last round of the cipher and find the unique subkey of the last round that
satisfies all the requirements with complexity about 216. The rest of the key bytes can be
found by similar techniques.

This game can also be used as a distinguisher which can test whether an unknown
encryption algorithm (given as an oracle) performs Skipjack reduced to 16 rounds.

The above Yoyo game keeps three words with difference zero in each pair. We note
that there is another (less useful) Yoyo game for Skipjack reduced to 14 rounds (specif-
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ically, rounds 2–15), which keeps only one word with difference zero. Consider pairs
of encryptions P = (w1, w2, w3, w4) and P∗ = (w∗1, w∗2, w∗3, w∗4) which have the same
data at the leftmost word in the input of round 5. As this word is not affected by any
other word until it becomes word 2 in round 12, we can conclude that both encryptions
have the same data in word 2 after round 12. Given a pair with such an equality in the
data, we can exchange the first word of the plaintexts, and the new pair of plaintexts
(w∗1, w2, w3, w4) and (w1, w

∗
2, w

∗
3, w

∗
4) still has the same property of equality at the

input of round 5. Moreover, if the first words of the plaintexts are equal (i.e., w1 = w∗1
and thus exchanging them does nothing) we can exchange the second words (w2 with
w∗2) and get the same property. If they are also equal, we can exchange w3 with w∗3
and get the same property. If they are also equal, we exchange w4 with w∗4 . However,
if the property holds, this last case is impossible, as at least two words of the two
plaintexts must be different. Given the ciphertexts we can carry out a similar operation
of exchanging words 2. If words 2 are equal, exchange words 1, then words 4, and
then words 3. Also in this case a difference of only one word ensures that the prop-
erty is not satisfied. This Yoyo game is similar to the previous game, except for its
modified exchange process, and it behaves similarly with respect to the new difference
property.

Appendix B. Shrinking: An Automated Technique
for Finding Global Impossible Differentials

In Section 3 we used the miss in the middle approach to find the 24-round impossible
differential of Skipjack. In this appendix we describe an automated approach for finding
all the impossible differentials which are based on the global structure of the cipher.
The simplest way to automate the search is to encrypt many pairs of plaintexts under
various keys, and to conclude that every differential suggested by the encrypted plaintexts
(i.e., any differential formed by a plaintext difference and the corresponding ciphertext
difference) is not an impossible differential. Therefore, by elimination, only differentials
that never occur in our trials may be impossible.

The main problem is that the space of differentials is too large. The problem can be
greatly simplified when considering word-wise truncated differentials whose differences
distinguish only between zero and arbitrary non-zero differences in the various words
(e.g., Skipjack divides the blocks into four words, and thus there are only 16 possible
truncated plaintext differences, and 16 possible truncated ciphertext differences, yield-
ing 256 truncated differentials). By selecting various plaintext pairs and computing the
ciphertext differences, we can easily discard most differentials which are not impossible.
However, when long blocks are divided into many small words, we may never encounter
an input pair whose outputs are almost identical, except for a single word.

To overcome this problem we analyze scaled down variants of the cipher, which
preserve its global structure but change its local details (including the size of words and
the definition of the various functions and permutations). In many cases, including the
impossible differential used against Skipjack in this paper, the particular implementation
of the G permutation, the F table, and the key schedule do not affect the impossible
differentials. In such cases we can replace the local operations in the cipher by other
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operations, maintaining the global structure. Moreover, we can also reduce the word size
to a smaller word size, together with reducing the size of the local operations without
affecting the impossible differentials. We therefore replace the word size by a few bits
(typically three, since any invertible function with fewer bits is affine), and replace the
large functions by appropriate smaller functions.2 Impossible differentials resulting from
the global structure of the cipher remain impossible even in the scaled down variant. As
the block size of the new variant is small (e.g., 12 bits in the case of Skipjack), we
can easily encrypt all the 212 plaintexts and calculate all their differences (by exhaustive
computation of all the 223 pairs of plaintexts and ciphertexts). By repeating this process for
several random independent choices of the local functions, and taking the intersection of
the resulting impossible differentials, we can get with high probability all the impossible
differentials which are a consequence of the global structure of the cipher.3 We call this
technique shrinking.

Using this approach we searched for the word-wise truncated impossible differentials
of Skipjack with various numbers of rounds. We found a large number of impossible
differentials with fewer than 24 rounds (some of them with more than one non-zero word
difference in the plaintext or the ciphertext), and confirmed that the longest impossible
differential based on the global structure of Skipjack has 24 rounds. The most notable
shorter impossible differentials of Skipjack are (1) the two 23-round impossible differ-
entials (rounds 5–27) which are (0, a, 0, 0) �→ (b, 0, 0, 0) and (0, a, 0, 0) �→ (0, b, 0, 0)
(where a and b are non-zero), and (2) the two 22-round impossible differentials (rounds 5–
26) which are (0, a, 0, 0) �→ (0, b, 0, 0), and the more useful (0, a, 0, 0) �→ (x, 0, y, 0),
where x and y can have any value.4

Appendix C. Complementation Properties of the G Permutation

The G permutation has 216−1 complementation properties: let G K 0,K 1,K 2,K 3(x1, x2) =
(y1, y2), where K 0, K 1, K 2, K 3, x1, x2, y1, y2 are all byte values, and let d1, d2 be
two byte values. Then

G K 0⊕d1,K 1⊕d2,K 2⊕d1,K 3⊕d2(x1⊕ d2, x2⊕ d1) = (y1⊕ d2, y2⊕ d1).

G has exactly one fixpoint for every subkey (this was identified by Gifford, and
described in sci.crypt). Moreover, we observed that for every key and every value v of
the form (0, b) or (b, 0) where 0 is a zero byte and b is an arbitrary byte value, G has
exactly one value x for which G(x) = x ⊕ v. It is unknown whether this property can
aid in the analysis of Skipjack.

2 The new functions should preserve the main character of the original functions. For example, large per-
mutations should be replaced by smaller permutations, linear functions by smaller linear functions, etc.

3 This technique can also find word-wise truncated differentials with probability 1 which are based on the
global structure of the cipher.

4 In [23] it is claimed that these differentials (as given also in [5]) are incorrect. Unfortunately this is their
mistake in interpreting the paper: we use the cipher as referred to in Fig. 3, i.e., without the rotation of words,
while [23] finds the same differentials but lists them in the original order of words (with rotations). Notice that
only a shift by one word is between our and their differentials in round 27, and two words in round 26.
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Appendix D. Two Attacks on a Variant without the Round Counters

The mixings with the round numbers are often used to protect against related key attacks.
The following property demonstrates that this mixing is essential in Skipjack. If these
mixings are removed, then given a plaintext

P = (pb0, pb1, . . . , pb7),

a key

K = (cv0, . . . , cv9),

and a ciphertext

C = (cb0, . . . , cb7),

such that

C = SkipjackK (P),

then decryption can be performed using encryption by

P∗ = SkipjackK ∗(C
∗),

where

K ∗ = (cv7, cv6, . . . , cv0, cv9, cv8),

P∗ = (pb3, pb2, pb1, pb0, pb7, pb6, pb5, pb4),

and

C∗ = (cb3, cb2, cb1, cb0, cb7, cb6, cb5, cb4).

This property could be used to reduce the complexity of exhaustive search of this
Skipjack variant by a factor of almost 2 (26% of the key space rather than 50% on
average) in a similar way to the complementation property of DES: Given the encrypted
ciphertext C1 of some plaintext P , and the decrypted plaintext C2 of the related P∗

under the same unknown key, perform trial encryptions with 60% of the keys K (three
keys of each cycle of five keys of the rotation by two key bytes operations; efficient
implementations first try two keys of each cycle, and only if all of them fail, they try the
third keys of the cycles). For each of these keys compare the ciphertext with C1, and
with C2∗ (i.e., C2 in which the bytes are reordered as above). If the comparison fails, the
unknown key is neither K nor K ∗. If it succeeds, we make two or three trial encryptions,
and in case they succeed we found the key.

Moreover, the same property causes a class of 240 weak keys for the version of Skipjack
without the round counters. These are the keys for which the following relations,

cv0 = cv7, cv1 = cv6, cv2 = cv5, cv3 = cv4, cv8 = cv9,

hold simultaneously. For this class of keys, encryption and decryption are the same up to
a reordering of the plaintext and ciphertext bytes. Thus, a membership test for this class
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of weak keys requires two chosen plaintext queries of two plaintext blocks P and P∗

(whose byte reordering relation is as mentioned above). If the obtained ciphertexts are
related by byte-reordering, then it is highly probable that the key belongs to the weak key
class. The key itself can then be discovered in 240 steps just by searching exhaustively
through all the keys in the described class. The same attack can also be performed with
a single “self-related” text (!) for which P = P∗ (e.g., P = P∗ = 0). For the weak key
the resultant ciphertext should also follow C = C∗, which is a 40-bit condition to filter
the wrong keys. Working with two such texts would impose an 80-bit condition, thus
leaving almost no false alarms. Note that given about 233 known plaintexts we can find
two self-related texts with high probability.
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