
DOI: 10.1007/s00145-004-0324-7

J. Cryptology (2005) 18: 375–389

© 2005 International Association for
Cryptologic Research

Partial Key Recovery Attack Against RMAC∗

Lars R. Knudsen
Department of Mathematics, Technical University of Denmark,

DK-2800 Lyngby, Denmark
lars@ramkilde.com

Chris J. Mitchell
Royal Holloway, University of London,
Egham, Surrey TW20 OEX, England

c.mitchell@rhul.ac.uk

Communicated by Ronald Cramer

Received 14 April 2003 and revised 1 September 2003
Online publication 24 February 2005

Abstract. In this paper new “partial” key recovery attacks against the RMAC block
cipher based Message Authentication Code scheme are described. That is we describe
attacks that, in some cases, recover one of the two RMAC keys much more efficiently
than previously described attacks. Although all attacks, but one, are of no major threat
in practice, in some cases there is reason for concern. In particular, the recovery of the
second RMAC key (of k bits) may only require around 2k/2 block cipher operations
(encryptions or decryptions). The RMAC implementation using triple DES proposed
by NIST is shown to be very weak.

Key words. Message Authentication Codes, RMAC, AES, Triple DES.

1. Introduction

MACs, i.e., Message Authentication Codes, are a widely used method for protecting the
integrity and guaranteeing the origin of transmitted messages and stored files. To use a
MAC it is necessary for the sender and recipient of a message (or the creator and verifier
of a stored file) to share a secret key K , chosen from some (large) keyspace. The data
string to be protected, D say, is input to a MAC function, along with the secret key K ,
and the output is the MAC. The MAC is then sent or stored with the message.

Most common message authentication algorithms today are iterated MAC algorithms.
The MAC input D is padded to a multiple of the block size, and is then divided into q
blocks denoted D1–Dq . The m-bit MAC involves an initial value I V = H0, a compres-

∗ The first author was supported by the Danish National Science Research Council Grant No. 21-02-0093.

375

376 L. R. Knudsen and C. J. Mitchell

sion function h, an output transformation g, and an n-bit (n ≥ m) chaining variable Hi

between stage i − 1 and stage i :

Hi = h(Di , Hi−1), 1 ≤ i ≤ q,

MACK (D) = g(Hq) .

The secret key may be employed in h, and/or in g.
ISO/IEC 9797-1 [5] lists three possible padding rules for iterated MACs. If the message

string is D = D1, D2, . . . , Dq , then these rules are:

1. append additional zero bits, such that |Dq | = n;
2. if |Dq | = n append an extra block Dq+1 consisting of one one-bit followed by zero

bits, such that |Dq+1| = n, otherwise append a one-bit then zero bits, such that
|Dq | = n;

3. apply rule 1 then prefix the data with one n-bit block D0 containing q.

One very widely used class of iterated MAC schemes are called CBC-MACs, where
(typically) h(x, y) = eK (x⊕ y), and where eK (z) denotes the block cipher encryption of
z using the key K . To avoid some simple forgery attacks [13, Section 9.5], g is most often
a function which outputs a certain subset of bits of the input, or consists of one or more
encryption operations, or is a combination of the two. In this paper we are concerned
with a particular example of a CBC-MAC scheme known as RMAC [6], [17].

There are two main classes of attack on a MAC scheme, namely key recovery attacks,
in which an attacker is able to discover the secret key used to compute the MACs, and
forgery attacks in which an attacker is able to determine the correct MAC for a message
(without the legitimate key holder having generated it).

Forgery attack: This attack consists of predicting the value of MACK (D) for a
message D without initial knowledge of K . If the adversary can do this for a
single message, he is said to be capable of existential forgery. If the adversary is
able to determine the MAC for a message of his choice, he is said to be capable
of selective forgery. A very simple “attack” is to choose an arbitrary fraudulent
message, and to append a randomly chosen MAC value. Ideally, the probability
that this MAC value is correct is equal to 1/2m , where m is the number of bits of
the MAC value. Practical attacks often require that a forgery is verifiable, i.e., that
the forged MAC is known to be correct beforehand with probability near 1.

Key recovery attack: This attack consists of finding the key K itself from a number of
message/MAC pairs. Such an attack is more powerful than a forgery, since it allows
for arbitrary selective forgeries. Ideally, any attack allowing key recovery requires
about 2k operations (here k denotes the bit-length of K). If m is the size of the
MAC and if one assumes that MACK (D) is a random function from the key to the
MAC, then verification of such an attack requires about 	k/m
 text/MAC pairs.
To see this, note that the expected number of keys which will take the message
D to a certain given MAC value is 2k−m . Extending this argument, the expected
number of keys which will take 	k/m
 messages to certain given MAC values is
2k−(m	k/m
) ≤ 1.

Partial key recovery attacks are those in which only some k ′ < k bits of the
secret key are retrieved.

Partial Key Recovery Attack Against RMAC 377

Preneel and van Oorschot [20] present a general forgery attack that applies to all iterated
MACs. Its feasibility depends on the bit sizes n of the chaining variable and m of the
MAC result and on the nature of the output transformation g. The basic attack requires
several known texts, but only a single chosen text. However, in some cases restrictions are
imposed on the known texts; for example, if the padding method used is the third above,
all messages must have equal length. For an input pair (x, x ′) with MACK (x) = g(Hq)

and MACK (x ′) = g(H ′q), a collision is said to occur if MACK (x) = MACK (x ′). This
collision is called an internal collision if Hq = H ′q , and an external collision if Hq �= H ′q
but g(Hq) = g(H ′q). The attack is based on the following simple observation:

Lemma 1 [20]. An internal collision for an iterated MAC algorithm allows a verifiable
MAC forgery, through a chosen-text attack requiring a single chosen text.

This follows since, for an internal collision (x, x ′), MACK (x ‖ y) = MACK (x ′ ‖ y) for
any single block y; thus a requested MAC on the chosen text x ‖ y provides a forged
MAC (i.e., the same MAC) for x ′ ‖ y (here ‖ denotes concatenation). Note this assumes
that the MAC algorithm is deterministic. Also, the forged message is of a special form,
which may limit the practical impact of the attack.

The next propositions show the complexities of finding an internal collision for a given
MAC algorithm.

Proposition 1 [20]. Let MAC() be an iterated MAC function with an n-bit chaining
variable and m-bit result, and an output transformation g that is a permutation. An
internal collision for M AC can be found using an expected number of u =

√
2 · 2n/2

known text/MAC pairs of at least t = 2 blocks each.

Proposition 2 [20]. Let MAC() be an iterated MAC function with an n-bit chaining
variable and m-bit result, and output transformation g which is a random function. An
internal collision for h can be found using u known text/MAC pairs of at least t = 2
blocks each and v chosen texts of at least three blocks. The expected values for u and v
are as follows: u = √2 · 2n/2 and v is approximately 2n−m .

A widely used type of CBC-MAC (when using DES) is where the output transfor-
mation g is a two-key triple encryption (with keys K1 = K and K2); this is commonly
known as the ANSI retail MAC, since it first appeared in [1]:

g(Hq) = eK1(dK2(Hq)) = eK1(dK2(eK1(Dq ⊕ Hq−1))).

The scheme is designed for use with DES as the underlying block cipher to compensate
for its short key length. However, it has been shown that the above generic forgery attack,
requiring about 2n/2 known text/MAC pairs, can be extended to an attack which recovers
the entire key in time 3 ·2k encryptions, compared with 22k encryptions for an exhaustive
search [19], [20]. Other key recovery attacks, also requiring a small multiple of 2k

encryption operations, need only a few known texts, but require many MAC verifications
[10], [11], [14].

378 L. R. Knudsen and C. J. Mitchell

A variant of the ANSI retail MAC with the same computational complexity was
proposed in [11], where a double block cipher encryption is used in the first and last
iteration:

H1 = eK ′2(eK1(D1)) and g(Hq) = eK2(Hq).

Here K ′2 is derived from K2. However, it has been shown that there are again key recovery
attacks of time complexity approximately only that of an exhaustive search over one of
the keys involved [3], [4]. Also, it has recently been shown [7] that for all schemes but
one in ISO/IEC 9797-1 [5], key recovery attacks exist requiring about 2n/2 chosen texts
and 2k block cipher operations.

Bellare et al. [2] provide a proof of security for the “basic” CBC-MAC where g(Hq) =
Hq , i.e., a lower bound on the complexity of breaking the system given certain assump-
tions about the underlying block cipher. The proof assumes that the messages authenti-
cated are all of the same length. DMAC is a CBC-MAC scheme with g(Hq) = eK ′(Hq),
where K ′ is a key different from K [5], [18], [21]. There is a also proof of security for
DMAC, similar to the aforementioned one for the “basic” CBC-MAC, but which holds
for messages of varying length [18].

Following the approach used in [5], we use a four-tuple [a, b, c, d] to quantify the
resources needed for an attack, where a denotes the number of off-line block cipher
encipherments (or decipherments), b denotes the number of known data string/MAC
pairs, c denotes the number of chosen data string/MAC pairs, and d denotes the number
of on-line MAC verifications. Note c and d are distinguished because, in some envi-
ronments, it may be easier for an attacker to obtain MAC verifications (i.e., to submit a
data string/MAC pair and learn whether the MAC is valid) than to obtain the MAC for
a chosen message. Moreover, as is the case for RMAC, it is possible to learn different
information from a MAC verification than from a chosen MAC, since we assume that
the attacker has no control over the random salt used for a chosen MAC.

This paper is organized as follows. Section 2 presents the RMAC scheme. In Section
3 several key-recovery attacks on RMAC are presented, all of which recover one of the
two RMAC keys much more efficiently than previously described attacks. Section 4
presents an efficient attack on RMAC used with triple-DES as proposed by NIST [17],
and Section 5 gives some concluding remarks.1

2. The RMAC scheme

The RMAC message authentication code was proposed by Jaulmes et al. [6] in 2002.
The scheme operates as follows. First suppose the underlying block cipher has n-bit
blocks and uses a key of k bits. The MAC scheme uses a pair of keys K1, K2. The MAC
computation is as follows.

A message D is first padded and split into a sequence of q n-bit blocks: D1, D2, . . . , Dq .
The entity computing the MAC generates a k-bit random salt R, and then makes the

1 The attacks of Sections 3.5 and 4 also appear in [9], together with key recovery attacks in multi-user
settings.

Partial Key Recovery Attack Against RMAC 379

following computations:

H1 = eK1(D1),

Hi = eK1(Di ⊕ Hi−1), (2 ≤ i ≤ q), and

MAC = eK2⊕R(Hq).

The salt R must be stored or sent with the message and MAC.
For the purposes of this paper we assume that the padding method does not involve

prefixing the data with a length block. (NIST [17] specifies that padding rule 2 should
be used with RMAC.) Note that the MAC used will be truncated to the leftmost m bits
of the MAC value given in the above equation, where m ≤ n.

RMAC was designed as an alternative to the DMAC scheme with better resistance
against the generic forgery attacks mentioned in the Introduction [6]. However, this
element of increased security comes at a price. The attacks presented in this paper
recover one of the two k-bit keys of RMAC faster than by brute force. Once this key has
been found the scheme is vulnerable to some simple forgery attacks, see, e.g., Section
9.5 of [13]. We remark that none of the attacks presented in this paper would apply to
DMAC [5], [18], [21], for which the best known attacks recovering either of the two
keys require 2k operations, where k is the size of the involved keys.

3. Partial Key Recovery Attacks on RMAC

In this section we outline several partial key recovery attacks on RMAC. The attacks are
applied to general block ciphers of length n using a k-bit key and do not exploit intrinsic
properties of the underlying block cipher.

3.1. The Basis for a Partial Key Recovery Attack

Suppose an attacker knows, by some means, the value Hq computed during the RMAC
computation for the padded message D1, D2, . . . , Dq . Suppose the attacker also knows
a MAC for this message (M say) and the corresponding random salt R.

The attacker first chooses an integer s (0 ≤ s ≤ k) and then, by some means, obtains
the MACs M1,M2, . . . ,M2s for this same padded message D1, D2, . . . , Dq for a total of
2s different (random) salts R1, R2, . . . , R2s . The set of MACs {M1,M2, . . . ,M2s } (and
corresponding salt values) is sorted to simplify comparisons.

The attacker next computes Cj = eL j (Hq) for a series of 2k−s arbitrary distinct keys
L j , j = 1, 2, . . . , 2k−s . After each computation the value of Cj is compared with the set
of MACs {M1,M2, . . . ,M2s }. Then with a probability of 1 − (1 − 2−k)2

k � 0.63 (for
k ≥ 5), for at least one pair of values of i , j (1 ≤ i ≤ 2s , 1 ≤ j ≤ 2k−s) the equation

K2 ⊕ Ri = L j

will hold, where K2 is one of the two secret keys used to compute the RMACs. If this
equation holds then Cj = Mi . Of course, this latter equation may hold by chance (with
probability 2−m). Thus, during the course of computing the 2k−s values Cj , there will be
a total of around 2k−m “false” matches. Eliminating a false match is simple—it requires
one decryption of a different MAC value Mi∗ (using the appropriate offset of the key L j).

380 L. R. Knudsen and C. J. Mitchell

After elimination of all false matches the key K2 will have been recovered. Hence the
total complexity for finding the key K2 is as follows:

• 2s chosen MACs, and
• 2k−s + 2k−m encryption or decryption operations.

Of course, this all depends on the attacker having a means to find the value Hq . Later
in this paper we describe two ways in which this might occur. However, first we consider
a simple variation on the above procedure.

3.2. A Variant Partial Key Recovery Attack

Observe that the m-bit MAC for an arbitrary message with an arbitrary salt R can be
found using an expected 2m−1+(2m−1−1)/2m � 2m−1 MAC verifications. Thus, instead
of requiring 2s chosen MACs, the first part of the attack described in Section 3.1 can be
performed using 2s+m−1 MAC verifications. Thus, in this case, the total complexity for
finding the key K2 is:

• 2s+m−1 MAC verifications, and
• 2k−s + 2k−m encryption or decryption operations.

Rather interestingly, this variant of the attack can be made deterministic instead of
probabilistic without increasing the complexity. This is because the attacker is able to
choose the 2s salt values R1, R2, . . . , R2s as well as the 2k−s values L1, L2, . . . , L2k−s .
Since the attack depends on finding an Ri and L j such that Ri ⊕ K2 = L j , it becomes
possible to choose the values of R1, R2, . . . , R2s and L1, L2, . . . , L2k−s to try to ensure
that such an equation will hold (for some i and j) whatever the value of K2.

Suppose the attacker chooses the sets R = {R1, R2, . . . , R2s } and L = {L1, L2, . . . ,

L2k−s } such thatR and L are mutually orthogonal subspaces, of dimensions s and k− s,
respectively, of the k-dimensional vector space over GF(2) with elements the binary
k-tuples. This can, for example, readily be achieved by lettingR be the set of all k-tuples
whose final k − s digits are zeros, and letting L be the set of all k-tuples whose first s
digits are zeros. Then, for any k-tuple K2, there exists a unique pair (Ri , L j) ∈ R× L
such that K2 = Ri ⊕ L j . This holds since the union of a basis for R with a basis for L
will be a basis for the entire k-dimensional space. Hence, for any k-tuple K2, there exists
a unique pair (Ri , L j) ∈ R× L such that Ri ⊕ K2 = L j .

Thus, in this case, if R and L are chosen appropriately, the desired “match” will be
found with probability 1.

3.3. A Simple Method for Finding Hq

The first of the two methods we describe for finding Hq applies only in the case
where m = n, i.e., where there is no MAC truncation. Suppose the attacker knows
the MAC M (and corresponding random salt R) for a (q + 1)-block padded message
D1, D2, . . . , Dq , Dq+1. Then, for a sequence of distinct values E (where E is an n-bit
block), the attacker conducts a MAC verification for the triple (E , M , R), where E is the
one-block padded message, M is the MAC, and R is the salt. (Observe that any MAC
verification operation will always involve such a triple of inputs.) This procedure con-

Partial Key Recovery Attack Against RMAC 381

tinues until the MAC verification gives a positive result. The simplest way to implement
this would be to use an n-bit counter to generate successive values of E .

Now suppose that E∗ is the value for which MAC verification succeeds—thus we
know that

eK2⊕R(eK1(E
∗)) = M.

However, given that M is also the MAC for the (q + 1)-block padded message
D1, D2, . . . , Dq , Dq+1, again using the salt R, we also know that

eK2⊕R(eK1(Dq+1 ⊕ Hq)) = M.

Thus, since the block cipher encryption function must be one-to-one (for any fixed
key), we know that

eK1(E
∗) = eK1(Dq+1 ⊕ Hq),

hence

E∗ = Dq+1 ⊕ Hq ,

and thus

Hq = Dq+1 ⊕ E∗.

It remains for the attacker to learn a MAC for the q-block padded message D1, D2, . . . ,

Dq , which requires one chosen MAC (the value of the random salt is not significant),
and the attacker will now know a padded message D1, D2, . . . , Dq , the value Hq , and a
MAC (with its corresponding salt).

We conclude by considering the complexity of the above procedure. It requires

• one known MAC,
• 2n−1 MAC verifications (this is the expected number before the MAC verification

succeeds), and
• one chosen MAC.

Thus, in this case (where m = n), the total complexity of the attack to find K2 is either

• [2k−s + 2k−n , 1, 2s , 2n−1], when the approach described in Section 3.1 is followed,
or
• [2k−s + 2k−n , 1, 0, 2s+n−1 + 2n−1], when the method in Section 3.2 is employed.

In the case where two-key triple DES [13], [15] is being employed (with k = 112 and
n = 64) this gives a complexity of either [2112−s + 248, 1, 2s , 263] or [2112−s + 248, 1, 0,
263 + 263+s]. Hence, for example, if s = 56 the attack complexities are [256, 1, 256, 263]
and [256, 1, 0, 2119], and if s = 20 the complexities are [292, 1, 220, 263] and [292, 1, 0,
283].

More generally, where a block cipher with a 128-bit key and a 64-bit block size is
used, e.g., IDEA [13] or MISTY1 [12], the attack complexity is either [2128−s + 264, 1,
2s , 263] or [2128−s + 264, 1, 0, 263 + 263+s]. Putting s = 64 in the first formulation and

382 L. R. Knudsen and C. J. Mitchell

s = 32 in the second, we get attack complexities of [265, 1, 264, 263] or [296, 1, 0, 295]
which are lower than might be expected.

Finally note that if AES [16] (with a 128-bit key) is used, then the attack complexity is
either [2128−s , 1, 2s , 2127] or [2128−s , 1, 0, 2127 + 2127+s]. Hence, in this case, the attacks
are unlikely to be of much practical significance.

3.4. Another Method for Finding Hq

The second method we describe for finding Hq applies regardless of the value of m,
although it is less efficient than the previously described method when m = n.

The attacker first chooses a sequence of 	n/m
 salts R1, R2, . . . , R	n/m
. The attacker
next uses a series of MAC verifications to find a set S1 of 2(n−m)/2 messages (each at
least two n-bit blocks long), for which the m-bit MAC is equal to all zeros when the salt
R1 is used.

The attacker next uses a series of MAC verifications to learn the MACs of all the
messages in S1 for each of the other salts R2, R3, . . . , R	n/m
. For each message and for
each salt the attacker submits each possible m-bit MAC in turn for a MAC verification
until the correct MAC is found. As a result the attacker will know a sequence of 	n/m

MACs for each of the 2(n−m)/2 messages in S1, and moreover the first MAC in each case
will be all zeros.

The attacker now follows exactly the same procedure to generate a second set of
messages S2 of size 2(n−m)/2 (using exactly the same sequence of salt values R1, R2,

. . . , R	n/m
). Each message in this set shall be precisely one block long. As a result
the attacker will know a sequence of 	n/m
 MACs for each of the 2(n−m)/2 one-block
messages, again with the property that the first MAC in every case will equal all zeros.

By the usual birthday paradox arguments [13], with probability� 0.63, for one padded
message D1, D2, . . . , Dq+1 in set S1, the “partial MAC value” Hq+1 will equal the value
of eK1(E) for a one-block message E in the set S2. This will be evident because the
corresponding tuples of MAC values will be equal. (There may be a small number of
“false alarms”, i.e., pairs of tuples of MAC values which agree, even though the partial
MAC values disagree. These can be eliminated using a number of additional MAC
verifications.)

Given such a pair of messages, the remainder of the procedure is exactly the same as
in the previous section.

The complexity of the above process is simple to compute. A total of

2(n−m)/2 × 2

messages need to be found which have a MAC of all zeros. Finding one such message will
require 2m MAC verifications on average, and hence finding the messages will require a
total of

2(n+m+2)/2

MAC verifications. A further

	n/m − 1
 × 2× 2(n−m)/2

Partial Key Recovery Attack Against RMAC 383

MACs need to be computed. Computing such a MAC requires on average 2m−1 MAC
verifications, and hence computing these MACs requires a total of

	n/m − 1
 × 2(n+m)/2

MAC verifications. This gives a total of

	n/m + 1
 × 2(n+m)/2

MAC verifications.
Thus, in this case, the total complexity of the attack to find K2 is equal to either

• [2k−s + 2k−m , 0, 2s , 	n/m + 1
 × 2(n+m)/2], when the approach described in
Section 3.1 is followed, or
• [2k−s+2k−m , 0, 0, 	n/m+1
×2(n+m)/2+2s+m−1], when the method in Section 3.2

is employed.

We note three cases where this attack appears significant:

• Suppose two-key triple DES [15] is used with m = 16; the second attack variant
with s = 20 gives an attack complexity of [296, 0, 0, 242].
• If two-key triple DES is employed with m = 32 then the complexity of the second

attack variant (with s = 18) is [294, 0, 0, 250].
• Finally, if AES [16] (with a 128-bit key) is used with m = 32, then the second

attack variant (with s = 40) has a complexity of [296, 0, 0, 282].

3.5. A Partial Key-Recovery Attack for the Case m = n

In this section an attack is presented which, in some cases where m = n, is more efficient
than the attacks of the previous sections. In the following, let dK (x) denote the decryption
of x using the key K for the underlying block cipher.

The attack is based on multiple collisions.

Definition 1. A t-collision for a MAC is a set of t messages all producing the same
MAC value.

We make use of the following lemma which is easily proved.

Lemma 2. Let A, B, and C be boolean variables. Then

A⇒ B ⇔ not (B)⇒ not (A), and

A⇒ (B AND C) ⇔ not (B) OR not (C)⇒ not (A).

Let D be some message (with an arbitrary number of blocks). The attack goes as
follows. Request the MACs of D for s different values of the salt R. Assume that
the attacker finds a t-collision, where the salts are R0, R1, . . . , Rt−1 and denote the
common MAC value by M ′. For simplicity denote K2 + R0 by K , and K2 + Ri by
K + ai−1 for i = 1, 2, . . . , t − 1. The attacker guesses a key value L and computes
the decryptions of the MAC value M ′ using the keys L , L + a0, . . . , L + at−1. Then it

384 L. R. Knudsen and C. J. Mitchell

holds for i = 0, 1, . . . , t − 1, that if L = K or L = K + ai then dL(M ′) = dL+ai (M
′).

Using Lemma 2 it follows that if dL(M ′) �= dL+ai (M
′) then L �= K and L �= K + ai for

0 ≤ i < t . Similarly, if dL+ai (M
′) �= dL+aj (M

′) then L �= K+ai+aj for 0 ≤ i �= j < t .
In this way an exhaustive search for K2 can be made faster than brute force.

In some rare cases one gets equal values in the inequality tests. As an example, if
dL(M ′) = dL+ai (M

′) for some i , then one needs to check if dL(M ′) = dL+a0(M
′) =

dL+a1(M
′) = · · · after which all false alarms are expected to be detected. The expected

number of false alarms is t +
(

t − 1
2

)
.

We show the case of a 3-collision in more detail. Assume that the random salts used are
R0, R1, and R2 (which are known to the attacker). Since the messages are the same for all
MACs and since the MACs are equal, say M ′, one knows that the keys K2+R0, K2+R1,

and K2 + R2 all decrypt M ′ to the same (unknown) message z, thus

dK (M
′) = dK+a0(M

′) = dK+a1(M
′),

where K = K2 + R0, a0 = R0 + R1, and a1 = R0 + R2.
The following implications are immediate:

L=K ⇒ dL(M ′)=dL+a0(M
′) AND dL+a0(M

′)=dL+a1(M
′),

L=K + a0 ⇒ dL+a0(M
′)=dL(M ′) AND dL(M ′)=dL+a0+a1(M

′),
L=K + a1 ⇒ dL+a1(M

′)=dL+a0+a1(M
′) AND dL+a1(M

′)=dL(M ′),
L=K + a0 + a1 ⇒ dL+a0+a1(M

′)=dL+a1(M
′) AND dL+a1(M

′)=dL+a0(M
′).

Lemma 2 enables us to rewrite the above implications as follows:

dL(M ′) �= dL+a0(M
′) ⇒ L �= K ,

dL+a0(M
′) �= dL(M ′) ⇒ L �= K + a0,

dL+a1(M
′) �= dL(M ′) ⇒ L �= K + a1,

dL+a1(M
′) �= dL+a0(M

′) ⇒ L �= K + a0 + a1.

Take (guess) a key value, L , and compute dL(M ′), dL+a0(M
′), and dL+a1(M

′). If
dL(M ′) �= dL+a0(M

′), then L �= K and L �= K + a0, if dL+a0(M
′) �= dL+a1(M

′), then
L �= K + a0 + a1, and if dL(M ′) �= dL+a1(M

′), then L �= K + a1.
Summing up, with a 3-collision (provided a0, a1 are different) one can check the values

of four keys from three decryption operations.
Let us next assume that there is a 4-collision. Let the four keys in the 4-collision be

K , K+a0, K+a1, K+a2. Then from the results of dL(M ′), dL+a0(M
′), dL+a1(M

′), and
dL+a2(M

′), one can check the validity of four keys. Moreover, by arguments similar to
the case of a 3-collision, from the four decryptions, one can check the values of all keys
of the form K + ai + aj , where 0 ≤ i �= j ≤ 2. Thus from four decryption operations
one can check

4+
(

3
2

)
= 7

keys.

Partial Key Recovery Attack Against RMAC 385

Table 1

t u = t +
(

t − 1
2

)
u/t

3 4 1.3
4 7 1.8
5 11 2.2
6 16 2.7
7 22 3.1
8 29 3.6
9 37 4.1

10 46 4.6
17 136 8.0

This generalizes to the following result. With a t-collision one can check the values
of

u = t +
(

t − 1
2

)

keys from t decryption operations. Table 1 lists values of t, u, and u/t . It should be
clear that t-collisions can be used to reduce a search for the key K2; the question is by
how much? That is, how many values of L need to be tested before the sets of keys
{L , L+a0, . . . , L+at−1, L+a0+a1, . . . , L+at−2+at−1} cover the entire key space?

Consider the case t = 3. One can assume a0 �= a1 (otherwise there is no collision),
and that with a high probability there are two bit positions where a0 �= a1. Without loss
of generality assume that these are the two most significant bits and that these bits are
“01” for a0 and “10” for a1. Then a strategy is the following: Let L run through all keys
where the most significant two bits are “00”. Then clearly the sets

{L , L + a0, L + a1, L + a0 + a1}

cover the entire key space and an exhaustive search for K2 is reduced by a factor of 4
3 ,

since in the attack one can check the value of four keys at the cost of three decryptions.
Consider the case t = 4. With a high probability the k-bit vectors a0, a1, and a2 are

pairwise different. Also, with a high probability there are three bit positions where a0, a1,
and a2 are linearly independent (viewed as three-bit vectors). Without loss of generality
assume that the bits are the three most significant bits and that these are “001” for a0,
“010” for a1 and “100” for a2. Then a strategy is the following: Let L run through all
keys where the most significant three bits are “000”. Then clearly the sets

{L , L + a0, L + a1, L + a2, L + a0 + a1, L + a0 + a2, L + a1 + a2}

cover seven-eights of the key space. Next fix the most significant three bits of L to “111”,
find other bit positions where a0, a1, and a2 are different and repeat the strategy. Thus,
in the first phase of the attack one chooses 2k−3 values of L , does 4 × 2k−3 = 2k−1

encryptions, and checks 7× 2k−3 keys. In the next phase of the attack one chooses 2k−6

values of L , does 4× 2k−6 = 2k−4 encryptions, and checks 7× 2k−6 keys. At this point,

386 L. R. Knudsen and C. J. Mitchell

a total of 7× 2k−3 + 7× 2k−6 = 2k − 2k−3 − 2k−6 keys have been checked at the cost
of about 2k−1 + 2k−4 encryptions. In total, an exhaustive search for K2 is reduced by a
factor of almost two.

For higher values of t the attacker’s strategy becomes more complex. We claim that
with a high probability (“good” values of ai) the factor saved in an exhaustive search for
the key is close to the value of u/t (see Table 1).

The following result shows the complexity of finding t-collisions [22].

Lemma 3. Consider a set of s randomly chosen b-bit values. With s = c2(t−1)b/t one
expects to get one t-collision, where c ≈ (t!)1/t .

If it is assumed for a fixed message D and a (randomly chosen) salt R that the resulting
MAC is a random m-bit value, one can apply the lemma to estimate the number of texts
needed to find a t-collision.

Consider a few examples. With s = 2(n+1)/2 one expects to get one pair of colliding
MACs, that is, one (2-)collision. With s = (1.8)22n/3 one expects to get a 3-collision,
that is, three MACs with equal values (61/3 ≈ 1.8). With s = (2.2)23n/4 one expects to
get one 4-collision (241/4 ≈ 2.2).

From Stirling’s formula n! = √2πn(n/e)n(1+	(1/n)), one gets that (t!)1/t ≈ t/e
for large t , where e is the base of the natural logarithm. Thus, with s ≈ (t/e)2(t−1)n/t

one expects to get a t-collision.
The total complexity of the attack to find K2 is equal to

• [2k−1/(u/t), 0, (t/e)2(t−1)nt , 0], where

u = t +
(

t − 1
2

)
.

The attack is therefore more efficient that those of the previous sections in the cases
where n = m = k. As an example, using AES [16], n = m = k = 128, with t = 17,
the complexity of the attack is [2124, 0, 0, 2123].

As a final remark, note that the message D in the attack need not be chosen nor known
by the attacker. Therefore one can argue that this attack is stronger than a traditional
“chosen-text” attack.

4. The NIST RMAC draft proposal

In this section we comment on the implementation of RMAC as proposed by NIST [17]
on November 5, 2002.

In Appendix A of [17] it is noted that for RMAC with two independent keys K1

and K2 an exhaustive search for the keys is expected to require the generation of 22k−1

MACs, where k is the size of one key. However, for the cases with m = n this can be
done much faster under a chosen message attack with just one known message and one
chosen message. Independently of how the two keys are generated, an exhaustive search
for the key K2 requires only an expected number of 2k decryptions of the block cipher.
Given a message D and the MAC using the salt R, request the MAC of D again. With
a high probability this MAC is computed with a salt R′, such that R′ �= R. For these

Partial Key Recovery Attack Against RMAC 387

two MACs, the values just before the final encryption will be equal and K2 can be found
after about 2k decryption operations. Subsequently, K1 can be found in roughly the same
time.

4.1. Partial Key-Recovery Attack for RMAC Used with 3DES

One of the block cipher algorithms approved to be used in RMAC is triple-DES with 168-
bit keys. Consider RMAC using triple-DES with n = m = 64 using a 64-bit salt R (which
is one option in [17]). The key for the final encryption is then K3 = K2 + (R | 0104).
However, it is not specified in [17] how the three DES keys are derived from K3.

Assume that the first DES key is taken as the rightmost 56 bits of K2 + (R | 0104),
the second DES key as the middle 56 bits, and the third DES key as the leftmost 56 bits.
Assume an attacker is given two MACs of the same message D but using two different
values, R and R′, of the salt. Assume that the rightmost eight bits of both R and R′

are equal. Then the encryption of the last same block for the two MACs is done using
triple-DES where for one MAC the key used is (a, b, c), and where for the other MAC
the key used is (a, b, c⊕d). Since the attacker knows d, he can decrypt through a single
DES operation, find c in the expected time of 256 operations, and derive one of the three
DES keys [8].

This attack has a probability of success of 2−8. If the attack fails, it is repeated for
other values of D, R, and/or R′. With 28 iterations one finds the single DES key with
high probability. After the third DES key has been found, it is possible to find the second
DES key with similar complexity. Note that eight bits of the salt affect the second DES
key. Request the MAC of a message D2 using two different values of the salt. Decrypt
through the final DES component with the third DES key. With a probability of 1− 2−8

the two second DES keys in the final encryption will be different as a result of different
salt values. Since the salts are known by the attacker, one finds the second DES in the
expected time of 256 operations. Thus, the attack which finds two of three DES keys has
complexity [264, 28, 28, 0].

Subsequently, the final DES key can be found using 256 MAC verifications as follows.
Assume one is given the MACs, M1 and M2, of two different messages D1 and D2,
each consisting of an arbitrary number of 64-bit blocks. Request the MAC, M3, of the
message D1 | E , where E is a one-block message. Let x1, x2, and x3 be the values
just before the final triple DES encryptions in the computations of M1,M2, and M3.
Given the value of the final single-DES key of K2 one can compute also the MAC of
the message D2 | (E ⊕ x1 ⊕ x2). Note that the value just before the final triple DES
encryptions in this case is x3. Also note that the attacker has full control over the key bits
which are modified using the (random) salts. Therefore this last part of the attack works
regardless of how the salts are chosen, as long as the attacker knows them.

In total the complexity of the attack which finds all of K2 (i.e., all three DES keys) is
[264, 28, 28, 256], which is much less than expected.

5. Conclusion

In this paper several partial key recovery attacks on RMAC are presented. Apart from
the attack on RMAC used with triple DES as proposed by NIST, none of the attacks is

388 L. R. Knudsen and C. J. Mitchell

likely to be a major concern in practice; however, it is important to have an accurate idea
of the precise level of security offered by any scheme, and the attacks described help
provide more accurate upper bounds on the security level of RMAC. Moreover, since
security proofs tend to focus on the security of the entire key, the existence of partial
key recovery attacks such as those described here may not be revealed by theoretical
results.

Since this type of attack does not reveal the entire key, it cannot be claimed that these
attacks threaten the security of the scheme. However, apart from the fact that determining
part of the key rather more easily than the rest is a rather disconcerting property for any
cryptographic scheme to have, two further possible ramifications are as follows:

• First, note that in cases where both the RMAC keys are derived from a single key,
this attack suggests that it is extremely important to ensure that knowledge of one of
the two keys does not threaten the secrecy of the other key. Fortunately, the scheme
proposed in the NIST draft standard [17] derives the two keys by using the single
key to encrypt different fixed strings. In such a case, knowledge of one of the keys
does not pose a major threat to the secrecy of the other key.
• Second, once the second of the two RMAC keys has been compromised, a huge

variety of forgery attacks becomes possible. Essentially, the scheme becomes equiv-
alent to the simplest of CBC-MACs, where only a single block cipher key is used
and where no special processing is applied to the final message block.

Acknowledgments

The authors thank Tadayoshi Kohno and an anonymous referee for helpful discussions.

References

[1] ANSI X9.19. Financial Institution Retail Message Authentication. American Bankers Association, Au-
gust 13, 1986.

[2] M. Bellare, J. Kilian, and P. Rogaway. The security of cipher block chaining. In Y.G. Desmedt, editor,
Advances in Cryptology - CRYPTO ’94, pages 341–358. LNCS 839. Springer-Verlag, Berlin, 1994.

[3] D. Coppersmith, L.R. Knudsen, and C.J. Mitchell. Key recovery and forgery attacks on the MacDES
MAC algorithm. In M. Bellare editor, Advances in Cryptology - CRYPTO 2000, pages 184–196. LNCS
1880. Springer-Verlag, Berlin, 2000.

[4] D. Coppersmith and C.J. Mitchell, Attacks on MacDES MAC algorithm. Electronics Letters, vol. 35,
no. 19 (1999), pp. 1626–1627.

[5] International Organization for Standardization. ISO/IEC 9797–1, Information Technology—Security
Techniques—Message Authentication Codes (MACs)—Part 1: Mechanisms Using a Block Cipher. 105
Genève, Switzerland 1999.

[6] E. Jaulmes, A. Joux, and F. Valette. On the security of randomized CBC-MAC beyond the birthday
paradox limit: a new construction. In J. Daemen and V. Rijmen, editors, Fast Software Encryption 2002,
pages 237–251. LNCS 2365. Springer-Verlag, Berlin, 2002.

[7] A. Joux, G. Poupard and J. Stern. New attacks against standardized MACs. In T. Johansson, editor, Fast
Software Encryption, 10th International Workshop, FSE 2003, Lund, Sweden, February 2003, Revised
Papers, pages 170–181. LNCS 2887. Springer-Verlag, Berlin, 2003.

[8] J. Kelsey, B. Schneier, and D. Wagner. Key-schedule cryptanalysis of IDEA, G-DES, GOST, SAFER,
and triple-DES. In Neal Koblitz, editor, Advances in Cryptology: CRYPTO ’96, pages 237–251. LNCS
1109. Springer-Verlag, Berlin, 1996.

Partial Key Recovery Attack Against RMAC 389

[9] L.R. Knudsen and T. Kohno. An analysis of RMAC. In T. Johansson, editor, Fast Software Encryption,
10th International Workshop, FSE 2003, Lund, Sweden, February 2003, Revised Papers, pages 182–191.
LNCS 2887. Springer-Verlag, Berlin, 2003.

[10] L.R. Knudsen, and C.J. Mitchell. Analysis of 3gpp-MAC and two-key 3gpp-MAC. Discrete App. Math.,
vol. 128, no. 1 (2003), pp. 181–191.

[11] L.R. Knudsen and B. Preneel. MacDES: a new MAC algorithm based on DES. Electron. Lett., vol. 34,
no. 9 (April 1998), pp. 871–873.

[12] M. Matsui. New block encryption algorithm MISTY. In E. Biham, editor, Fast Software Encryption,
4th International Workshop, FSE ’97, Haifa, Israel, January 20–22, 1997, Proceedings, pages 54–68.
LNCS 1267. Springer-Verlag, Berlin, 1997.

[13] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of Applied Cryptography. CRC Press,
Boca Raton, FL, 1997.

[14] C.J. Mitchell, Key recovery attack on ANSI retail MAC. Electron. Lett., vol. 39, no. 14 (2003), pp. 361–
362.

[15] National Institute of Standards and Technology. Federal Information Processing Standards Publication
46-3 (FIPS PUB 46-3): Data Encryption Standard (DES). NIST, Gaithersburg, MD, October 1999.

[16] National Institute of Standards and Technology. Federal Information Processing Standards Publication
197 (FIPS PUB 197): Specification for the Advanced Encryption Standard (AES). NIST, Gaithersburg,
MD, November 2001.

[17] National Institute of Standards and Technology. NIST Special Publication 800-38B, Draft Recommen-
dation for Block Cipher Modes of Operation: the RMAC Authentication Mode. NIST, Gaithersburg, MD,
November 2002.

[18] E. Petrank and C. Rackoff. CBC MAC for real-time data sources. J. Cryptology, vol. 13, no. 3 (2000),
pp. 315–338.

[19] B. Preneel and P.C. van Oorschot, A key recovery attack on the ANSI X9.19 retail MAC, Electron. Lett.,
vol. 32, no. 17 (1996), pp. 1568–1569.

[20] B. Preneel and P.C. van Oorschot. On the security of iterated message authentication codes. IEEE Trans.
Inform. Theory, vol. 45, no. 1 (1999), 188–199.

[21] RIPE. A. Bosselaers and B. Preneel, editors, Integrity Primitives for Secure Information Systems. Final
Report of RACE Integrity Primitives Evaluation (RIPE-RACE 1040). LNCS 1007. Springer-Verlag,
Berlin, 1995.

[22] R. Rivest and A. Shamir. Payword and Micromint: two simple micropayment schemes. Cryptobytes,
vol. 2, no. 1 (1996), pp. 7–11.

