
DOI: 10.1007/s00145-004-0231-y

J. Cryptology (2006) 19: 1–25

© 2005 International Association for
Cryptologic Research

An Extension of Kedlaya’s Algorithm to Hyperelliptic
Curves in Characteristic 2∗

Jan Denef
Department of Mathematics, University of Leuven,

Celestijnenlaan 200B, B-3001 Leuven-Heverlee, Belgium
jan.denef@wis.kuleuven.ac.be

Frederik Vercauteren
Department of Electrical Engineering, University of Leuven,
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

frederik.vercauteren@esat.kuleuven.ac.be
and

Computer Science Department, University of Bristol,
Woodland Road, Bristol BS8 1UB, England

frederik@cs.bris.ac.uk

Communicated by Johannes Buchmann

Received 19 November 2002 and revised 6 May 2004
Online publication 23 February 2005

Abstract. We present an algorithm to compute the zeta function of an arbitrary hyper-
elliptic curve over a finite field Fq of characteristic 2, thereby extending the algorithm of
Kedlaya for odd characteristic. Given a genus g hyperelliptic curve defined overF2n , the
average-case time complexity is O(g4+εn3+ε) and the average-case space complexity
is O(g3n3), whereas the worst-case time and space complexities are O(g5+εn3+ε) and
O(g4n3), respectively.

Key words. Hyperelliptic curves, Cryptography, Kedlaya’s algorithm, Monsky–
Washnitzer cohomology.

1. Introduction

Since elliptic curve cryptosystems were introduced by Koblitz [20] and Miller [29],
various other systems based on the discrete logarithm problem in the Jacobian of curves
have been proposed, such as hyperelliptic curves [21], superelliptic curves [14] and Cab

curves [2]. One of the main initialisation steps of these cryptosystems is to generate a
suitable curve defined over a given finite field. To ensure the security of the system, the

∗ The second author was supported in part by the Fund for Scientific Research - Flanders (Belgium), Grant
G.0186.02.

1

2 J. Denef and F. Vercauteren

curve must be chosen such that the group order of the Jacobian is divisible by a large
prime.

Currently, there exist several approaches for computing the number of points on the
Jacobian of random curves. The first method is l-adic in nature: the number of points
is computed modulo sufficient small primes l by working in l-torsion subgroups of the
Jacobian and the final result is determined using the Chinese remainder theorem. This
approach was first described by Schoof [38] for elliptic curves and leads to a polynomial
time algorithm in all characteristics. A detailed description of Schoof’s algorithm and
the improvements by Atkin [3] and Elkies [9] can be found in [4] and [25]. Pila [35]
and later Adleman and Huang [1] extended Schoof’s algorithm to higher genus curves.
Currently, only the genus 2 version of this algorithm is practical [16], [17].

The second approach is p-adic in nature and is especially efficient for algebraic va-
rieties over finite fields of small characteristic. These p-adic algorithms come in two
flavours. The first strategy computes a p-adic approximation of the Serre–Tate canonical
lift and the action of Frobenius on this lift. This approach was first described by Satoh [36]
for elliptic curves. An overview of the many variants and further optimisations of Satoh’s
algorithm can be found in [41]. Mestre [27] presented a “dual” algorithm using the
Arithmetic–Geometric mean and sketched how it could be extended to ordinary hyperel-
liptic curves [28]. Results by Lercier and Lubicz [26] show that this algorithm is very effi-
cient as long as the genus is small; this is due to the exponential dependence on the genus.

The second strategy computes the action of Frobenius on p-adic cohomology groups.
Kedlaya [19] described such an algorithm for hyperelliptic curves over finite fields
of small odd characteristic, using the theory of Monsky–Washnitzer cohomology. The
running time of the algorithm is O(g4+εn3+ε) for a hyperelliptic curve of genus g over
Fpn . The algorithm readily generalises to superelliptic curves as shown by Gaudry and
Gürel [15]. A related approach by Lauder and Wan [22] is based on Dwork’s proof of the
rationality of the zeta function and results in a polynomial time algorithm to compute the
zeta function of an arbitrary algebraic variety over a finite field. Despite its polynomial
time complexity, a first implementation indicates that cryptographical sizes are out of
reach. Note that Wan [42] already suggested the use of p-adic methods, including the
methods of Dwork and Monsky, several years ago. Using Dwork cohomology, Lauder
and Wan [23] specialised their original algorithm to curves which are Artin–Schreier
covers of the affine line minus one point, leading to an O(g5+εn3+ε) time algorithm.
In [7] we described an extension of Kedlaya’s algorithm to the same class of curves in
characteristic 2 with the same time complexity. More recently, Lauder and Wan [24]
extended their work to a larger class of Artin–Schreier covers (that does not however
include all hyperelliptic curves in characteristic 2).

In this paper we extend Kedlaya’s algorithm to arbitrary hyperelliptic curves defined
over a finite field of characteristic 2. Given a genus g hyperelliptic curve defined overF2n ,
the average-case time complexity is O(g4+εn3+ε) and the average-case space complexity
is O(g3n3), whereas the worst-case time and space complexities are O(g5+εn3+ε) and
O(g4n3), respectively. Note that for the curves treated in [24], Lauder and Wan obtained
a worst-case time complexity of O(g6+εn3+ε). An implementation in the C programming
language shows that cryptographical sizes are now feasible for any genus g. This paper
is the theoretical version of [40]: it provides a detailed description of the underlying
mathematics, presents all missing proofs and corrects the complexity analysis.

An Extension of Kedlaya’s Algorithm to Hyperelliptic Curves in Characteristic 2 3

The remainder of the paper is organised as follows: Section 2 reviews the basics of
Monsky–Washnitzer cohomology and Section 3 shows how to extend Kedlaya’s algo-
rithm to characteristic 2. Section 4 contains a ready to implement description of the
resulting algorithm and a detailed complexity analysis. Finally, Section 5 presents run-
ning times and memory usages of an implementation in the C programming language.

2. Monsky–Washnitzer Cohomology

In this section we briefly recall the definition of Monsky–Washnitzer cohomology as
introduced by Monsky and Washnitzer [34], [31], [32]; more details can be found in the
lectures by Monsky [33] and the survey by van der Put [39].

Let X be a smooth affine variety over a finite field k := Fq with q = pn elements.
Denote the coordinate ring of X by A. Let R be the ring of Witt vectors of Fq , i.e. the
degree n unramified extension of the p-adic integers Zp with residue field Fq and let K
be the fraction field of R. Elkik [10] showed that there always exists a smooth finitely
generated R-algebra A such that A ⊗R Fq

∼= A. In general A does not allow a lift of
the Frobenius endomorphism F on A; Monsky and Washnitzer solve this problem by
constructing a subalgebra A† of the p-adic completion of A, whose elements satisfy
growth conditions. The dagger ring or weak completion A† is defined as follows: write
A := R[x1, . . . , xn]/(f1, . . . , fm), then

A† := R〈x1, . . . , xn〉†/(f1, . . . , fm),

where R〈x1, . . . , xn〉† consists of power series{∑
aαxα ∈ R[[x1, . . . , xn]] | ∃C, ρ ∈ R,C > 0, 0 < ρ < 1,∀α : |aα| ≤ Cρ|α|

}
,

with α := (α1, . . . , αn), xα := xα1
1 · · · xαn

n and |α| :=∑n
i=0 αi .

Let B/k and B/R be smooth and finitely generated with B ⊗R Fq
∼= B and let B† be

the dagger ring of B. Given a morphism of k-algebra’s G : A → B, there always exists
an R-morphism G : A† → B† lifting G. This last property implies that we can lift the
q-power Frobenius from A to A†.

For A† we can define the universal module D1(A†) of differentials

D1(A†) := (A† dx1 + · · · + A† dxn)/

(
m∑

i=1

A†

(
∂ fi

∂x1
dx1 + · · · + ∂ fi

∂xn
dxn

))
.

Let Di (A†) := ∧i D1(A†) be the i th exterior product of D1(A†) and denote with
di : Di (A†)→ Di+1(A†) the exterior differentiation. Since di+1 ◦ di = 0 we get the de
Rham complex D(A†)

0 −→ D0(A†)
d0−→ D1(A†)

d1−→ D2(A†)
d2−→ D3(A†) · · · .

The i th cohomology group of D(A†) is defined as Hi (A/R) := Ker di/Im di−1 and
Hi (A/K) := Hi (A/R) ⊗R K finally defines the i th Monsky–Washnitzer
cohomology group. One can prove that for smooth, finitely generated k-algebra’s A

4 J. Denef and F. Vercauteren

the map A �→ H •(A/K) is well defined and functorial, which justifies the notation. Re-
placing A† with A in the above construction of the i th Monsky–Washnitzer cohomology
group Hi (A/K) gives rise to the i th algebraic de Rham cohomology group Hi

DR(A/K).
Unlike the Monsky–Washnitzer cohomology, the algebraic de Rham cohomology es-
sentially depends on the algebra A and in general Hi (A/K) will not be isomorphic to
Hi

DR(A/K).
Let F be a lift of the q-power Frobenius endomorphism of A to A†, then F induces an

endomorphism F∗ on the cohomology groups Hi (A/K). The main theorem of Monsky–
Washnitzer cohomology is that these groups satisfy a Lefschetz fixed point formula.

Theorem 1 (Lefschetz Fixed Point Formula). Let X/Fq be a smooth affine variety of
dimension d , then the number of Fq -rational points on X equals

d∑
i=0

(−1)i Tr(qd F−1
∗ |Hi (A/K)).

3. Cohomology of Hyperelliptic Curves

3.1. Overview of Kedlaya’s Construction

Let Fq be a finite field with q = pn elements and fix an algebraic closure Fq . Throughout
this section we assume that p is a small odd prime. Let Q(x) be a monic polynomial of
degree 2g+ 1 over Fq without repeated roots and let C be the affine hyperelliptic curve
defined by the equation y2 = Q(x). Kedlaya does not work with the curve C itself, but
with the affine curve C

′
which is obtained from C by removing the locus of y = 0, i.e.

the points (ξ i , 0) ∈ Fq × Fq where ξ i is a zero of Q(x). The coordinate ring A of C
′
is

clearly given by Fq [x, y, y−1]/(y2 − Q(x)).
Let K be a degree n unramified extension of Qp, with valuation ring R, such that

R/pR = Fq . Take any monic lift Q(x) ∈ R[x] of Q(x) and let C be the smooth affine
hyperelliptic curve defined by y2 = Q(x). Let C ′ be the curve obtained from C by
removing the locus of y = 0. Then the coordinate ring of C ′ is A = R[x, y, y−1]/(y2−
Q(x)). Let A† denote the weak completion of A. Since F = σ n , with σ the p-power
Frobenius, it is sufficient to lift σ to an endomorphism σ of A†. It is natural to define σ
as the Frobenius substitution on R and to extend it to A† by mapping x to xσ := x p and
y to yσ with

yσ := y p

(
1+ Q(x)σ − Q(x)p

Q(x)p

)1/2

= y p
∞∑

i=0

(1
2

i

)
(Q(x)σ − Q(x)p)i

y2pi
.

An easy calculation shows that ordp
(1/2

i

) ≥ 0 which implies that yσ is an element of A†

since p divides Q(x)σ − Q(x)p. Note that it is essential that y−1 is an element of A†,
which explains why we compute with C ′ instead of C .

Since C ′ has dimension one, the only non-trivial Monsky–Washnitzer cohomology
groups are H 0(A/K) and H 1(A/K). Finding a basis for H 0(A/K) is easy since by
definition H 0(A/K) := Ker d0, with d0 the derivation from A† into D1 A†, which implies
that H 0(A/K) is a one-dimensional K -vector space. The case H 1(A/K) is more difficult

An Extension of Kedlaya’s Algorithm to Hyperelliptic Curves in Characteristic 2 5

and proceeds in two steps. Kedlaya first constructs a basis for the algebraic de Rham
cohomology of A and devises reduction formulae to express any differential form on
this basis. Then he proves that these formulae lead to a convergent process when applied
to the de Rham cohomology of A†, i.e. H 1(A/K) and concludes that the basis for the
algebraic de Rham cohomology also is a basis for H 1(A/K).

The de Rham cohomology of A splits into eigenspaces under the hyperelliptic invo-
lution: a positive eigenspace generated by xi/y2 dx for i = 0, . . . , 2g and a negative
eigenspace generated by xi/y dx for i = 0, . . . , 2g−1. Using the equation of the curve,
any differential form can be written as

∑BL
k=−BU

∑2g
i=0 ai,k xi/yk dx with ai,k ∈ K and

BU , BL ∈ N. A differential of the form P(x)/ys dx with P(x) ∈ K [x] and s ∈ N
can be reduced as follows. Since Q(x) has no repeated roots, we can always write the
polynomial P(x) = U (x)Q(x)+V (x)Q′(x). Using the fact that d(V (x)/ys−2) is exact,
one obtains

P(x)

ys
dx ≡

(
U (x)+ 2V ′(x)

(s − 2)

)
dx

ys−2
,

where ≡ means equality modulo exact differentials. This congruence can be used to
reduce a differential form involving negative powers of y to the case s = 1 and s = 2. A
differential P(x)/y dx with deg P = m ≥ 2g can be reduced by repeatedly subtracting
suitable multiples of the exact differential d(xi−2g y) for i = m, . . . , 2g. Finally, it is
clear that the differential P(x)/y2 dx is congruent to (P(x) mod Q(x))/y2 dx modulo
exact differentials. A differential of the form P(x)ys dx with P(x) ∈ K [x] and s ∈ N
is exact if s is even and equal to P(x)Q(x)�s/2�/y dx if s is odd and thus can be reduced
using the above reduction formula.

Kedlaya then proves two lemmata which bound the denominators introduced during
the above reduction process. The result is as follows: let A(x) ∈ R[x] be a polynomial
of degree ≤ 2g, then for k ∈ N the reduction of A(x)y2k+1 dx becomes integral upon
multiplication by p�logp((2g+1)(k+1)−2)� and the reduction of A(x)/y2k+1 dx becomes
integral upon multiplication by p�logp(2k+1)�. This implies that the reduction process
converges for elements of D1(A†).

The final step in the algorithm consists of computing the action induced by σ on a basis
of H 1(A/K). Using the Lefschetz fixed point theorem, Kedlaya shows that it is sufficient
to compute the matrix M through which σ acts on the anti-invariant part H 1(A/K)−

of H 1(A/K). Therefore we only need to compute (xi/y dx)σ = px p(i+1)−1/yσ dx for
i = 0, . . . , 2g − 1. Using the aforementioned reduction process we express (xi/y dx)σ

on the basis of H 1(A/K)− and compute the matrix M . The characteristic polynomial of
Frobenius can then be recovered from the coefficients of the characteristic polynomial
of the matrix M Mσ · · ·Mσ n−1

through which the Frobenius F = σ n acts on H 1(A/K)−.

3.2. Cohomology of Hyperelliptic Curves over F2n

Let Fq be a finite field with q = 2n elements and fix an algebraic closure Fq . Consider
the smooth affine hyperelliptic curve C of genus g defined by the equation

C : y2 + h(x)y = f (x),

with h(x), f (x) ∈ Fq [x], f (x) monic of degree 2g + 1 and deg h ≤ g. Write h(x) as
c ·∏s

i=0(x − θ i)
mi with θ i ∈ Fq , c ∈ Fq\{0} the leading coefficient of h(x) and define

6 J. Denef and F. Vercauteren

H(x) =∏s
i=0(x − θ i) ∈ Fq [x]. If h(x) is a constant, we set H(x) = 1. Without loss of

generality we can assume that H(x) | f (x). Indeed, the isomorphism defined by x �→ x
and y �→ y +∑s

i=0 bi xi transforms the curve in

y2 + h(x)y = f (x)−
s∑

i=0

b
2
i x2i − h(x)

s∑
i=0

bi x
i .

The polynomial H(x) will divide the right-hand side of the above equation if and only

if f (θ j) =
∑s

i=0 b
2
i · θ

2i
j for j = 0, . . . , s. This is a system of linear equations in the

indeterminates b
2
i and its determinant is a Vandermonde determinant. Since the θ j are

the zeros of a polynomial defined over Fq , the system of equations is invariant under the

q-power Frobenius automorphism F and it follows that the b
2
i and therefore the bi are

elements of Fq . We conclude that we can always assume that H(x) | f (x).
Let π : C(Fq)→ A1(Fq) be the projection on the x-axis. It is clear that π ramifies at

the points (θ i , 0) ∈ Fq × Fq for i = 0, . . . , s where H(θ i) = 0. Note that the ordinate
of these points is zero, since we assumed that H(x) | f (x). Let C

′
be the curve obtained

from C by removing the ramification points (θ i , 0) for i = 0, . . . , s. Then the coordinate
ring A of C

′
is

Fq [x, y, H(x)−1]/(y2 + h(x)y − f (x)).

Let K be a degree n unramified extension of Q2 with valuation ring R and residue
field R/2R = Fq . Write h(x) = c · ∏r

i=0 Pi (x)ti , where the Pi (x) are monic and
irreducible over Fq . Let D = maxi ti , then h(x) divides H(x)D , since we have the
identity H(x) = ∏r

i=0 Pi (x). Lift Pi (x) for i = 0, . . . , r to any monic polynomial
Pi (x) ∈ R[x]. Define H(x) =∏r

i=0 Pi (x) and h(x) = c ·∏r
i=0 Pi (x)ti , with c any lift of

c to R. Since H(x) divides f (x)we can define Q f (x) = f (x)/H(x). Let Q f (x) ∈ R[x]

be any monic lift of Q f (x) and finally set f (x) = H(x)Q f (x). The result is that we

have now constructed a lift C of the curve C to R defined by the equation

C : y2 + h(x)y = f (x).

Note thatdue to thecarefulconstructionofC wehave the followingproperties: H(x)|h(x),
H(x)| f (x) and h(x)|H(x)D . Let K ur be the maximal unramified extension of K with
valuation ring Rur. For k = 0, . . . , s, let θk be the zeros of H(x) and note that these are
units in Rur. Furthermore, let π : C(K)→ A1(K) be the projection on the x-axis, then
the (θk, 0) are ramification points of π .

Consider the curve C ′ obtained from C by deleting the ramification points (θk, 0) for
k = 0, . . . , s, then the coordinate ring A of C ′ is

R[x, y, H(x)−1]/(y2 + h(x)y − f (x))

and there exists an involution ı on A which sends x to x and y to −y − h(x). Let A†

denote the weak completion of A. Using the equation of the curve, we can represent any
element of A† as a series

∑+∞
i=−∞(Ui (x)+ Vi (x)y)S(x)i , with the degree of Ui (x) and

An Extension of Kedlaya’s Algorithm to Hyperelliptic Curves in Characteristic 2 7

Vi (x) smaller than the degree of S(x), where S(x) = H(x) if deg H > 0 and S(x) = x if
H(x) = 1. The growth condition on the dagger ring implies that there exist real numbers
δ and ε > 0 such that ord2(Ui (x)) ≥ ε · |i | + δ and ord2(Vi (x)) ≥ ε · |i + 1| + δ, where
ord2(P(x)) is defined as minj ord2(pj) for P(x) =∑ pj x j ∈ K [x].

Lift the 2-power Frobenius σ on Fq to the Frobenius substitution σ on R. We extend
σ to an endomorphism of A† by mapping x to x2 and y to yσ , with

(yσ)2 + h(x)σ yσ − f (x)σ = 0 and yσ ≡ y2 mod 2.

Using Newton iteration we can compute the solution to the above equations as an element
of the 2-adic completion A∞ as

Wk+1 ≡ Wk − W 2
k + h(x)σ Wk − f (x)σ

2Wk + h(x)σ
mod 2k+1. (1)

The only remaining difficulty in the above Newton iteration is that we have to invert
2Wk + h(x)σ in the ring A∞. Since h(x) | H(x)D , it makes sense to define Q H (x) :=
H(x)D/h(x) and we clearly have 1/h(x) = Q H (x)/H(x)D . We can now compute the
inverse of 2Wk + h(x)σ as

Q H (x)2

H(x)2D · (1+ (Q H (x)2(2Wk + h(x)σ − h(x)2))/H(x)2D
) . (2)

Note that h(x)σ ≡ h(x)2 mod 2, which implies that the denominator in the above formula
is invertible in A∞. Contrary to the odd characteristic case it is not immediately clear
that the solution W := limk→+∞ Wk is an element of A†. A theorem by Bosch [5]
guarantees the existence of such a solution, but does not provide bounds on the rate of
convergence. Since these bounds are needed in the complexity analysis, we prove the
following lemma.

Lemma 1. For k ≥ 1, let Wk =
∑Ak

i=−Lk
Ui (x)S(x)i+

∑Bk
i=−Lk

Vi (x)S(x)i y ∈ A, with
S(x) = H(x) if deg H > 0, S(x) = x if H(x) = 1 and deg Ui < deg S, deg Vi < deg S
satisfy

W 2
k + h(x)σ Wk − f (x)σ ≡ 0 mod 2k and Wk ≡ y2 mod 2

with UAk �= 0, VBk �= 0, U−Lk �= 0 or V−Lk �= 0 and such that Ui = 0 or ord2(Ui (x)) < k
for −Lk ≤ i ≤ Ak and Vi = 0 or ord2(Vi (x)) < k for −Lk ≤ i ≤ Bk . Then Ak , Bk and
Lk can be bounded for k ≥ 2 as

Ak ≤ 2(k − 1)(d f
S − 2dh

S)+ 2dh
S ,

Bk ≤ 2(k − 2)(d f
S − 2dh

S)+ (d f
S − dh

S),

Lk ≤ 4(k − 1)D − 2D, (3)

with d f
S := deg f/deg S and dh

S := deg h/deg S.

Proof. An easy calculation shows that W1 ≡ f (x) − h(x)y mod 2, thus A1 ≤ d f
S ,

B1 ≤ dh
S , L1 ≤ 0 and that

W2 ≡ f (x)σ − f (x)2 − h(x)σ f (x)

h(x)2
+ y

h(x)σ + 2 f (x)

h(x)
mod 4,

8 J. Denef and F. Vercauteren

which implies that W2 satisfies the lemma. The Newton iteration (1) can be rewritten as

h(x)2 Wk+1 ≡ −W 2
k + (h(x)2 − h(x)σ)Wk + f (x)σ mod 2k+1.

Let αk(x) := ∑Ak
i=−Lk

Ui (x)S(x)i and βk(x) := ∑Bk
l=−Lk

Vi (x)S(x)i such that Wk =
αk(x)+ βk(x)y. Note that Wk ≡ Wk−1 mod 2k−1, so we can define

�α,k(x) := αk(x)− αk−1(x)

2k−1
and �β,k(x) := βk(x)− βk−1(x)

2k−1
,

for k ≥ 1 and �α,0(x) := �β,0(x) := 0. It is clear that Wk can be written as

Wk = �α,1 + 2�α,2 + · · · + 2k−1�α,k + y
(
�β,1 + 2�β,2 + · · · + 2k−1�β,k

)
.

Plugging this into the Newton iteration gives the following equation

h(x)2 Wk+1

≡ −
∑
1≤i< j

i+ j−1<k+1

2i+ j−1
(
�α,i�α, j + (f (x)− h(x)y)�β,i�β, j

)
− y

∑
i+ j−1<k+1

2i+ j−1�α,i�β, j

−
∑

2(i−1)<k+1

22(i−1)
(
�2
α,i + (f (x)− h(x)y)�2

β,i

)
+ (h(x)2 − h(x)σ)

∑
i<k+1

2i−1(�α,i +�β,i y)+ f (x)σ mod 2k+1.

By definition Q H (x)h(x) = H(x)D , which implies 1/h(x)2 = Q H (x)2/H(x)2D and
deg Q H = D deg H − deg h. Since deg�α,i ≤ Ai and deg�β,i ≤ Bi , we conclude that
Ak+1 is less than or equal to

max

(
max

i+ j<k+2
(Ai + Aj , Bi + Bj + d f

S), max
2i<k+3

(2Ai , 2Bi + d f
S),

max
i<k+1

Ai + 2dh
S , 2d f

S

)
− 2dh

S .

Using the bounds given in (3) for Ai and Bi and the bounds A1 ≤ d f
S , B1 ≤ dh

S and
L1 ≤ 0, we see that Ak+1 also satisfies the bounds (3). Similar reasoning can be used to
prove that Bk+1 and Lk+1 also satisfy the given bounds.

Lemma 1 implies that the q-power Frobenius F can be lifted to an endomorphism
F on the dagger ring A†, since we can simply take F := σ n . If we are to compute the
action of F on the first Monsky–Washnitzer cohomology group H 1(A/K), we need to
determine a basis for H 1(A/K). Following Kedlaya, we proceed in two steps: we first
determine a basis for the algebraic de Rham cohomology group H 1

DR(A/K) and then
show that this is also a basis for H 1(A/K).

An Extension of Kedlaya’s Algorithm to Hyperelliptic Curves in Characteristic 2 9

Analogous to the odd characteristic case, the algebraic de Rham cohomology
H 1

DR(A/K) of A splits into eigenspaces under the hyperelliptic involution. The pos-
itive eigenspace H 1

DR(A/K)+ is generated by xi/H(x) dx for i = 0, . . . , s and the
negative eigenspace H 1

DR(A/K)− is generated by xi y dx for i = 0, . . . , 2g − 1. Note
that the positive eigenspace corresponds to the deleted ramification points (θk, 0) for
k = 0, . . . , s. Every element of H 1

DR(A/K) can be written as a linear combination of
differentials of the form xk H(x)m yl dx , xk H(x)m yl dy with k, l ∈ N and m ∈ Z. Using
the equation of the curve, we can reduce to the case l = 0 or 1. Since d(xk H(x)m y) and
d(xk H(x)m y2) are exact, we conclude that H 1

DR(A/K) is generated by differentials of
the form xk H(x)m dx and xk H(x)m y dx with k ∈ N and m ∈ Z.

It is clear that xk H(x)m dx is exact for k ∈ N and m ≥ 0. If deg H > 0 and m < 0
we can assume that 0 ≤ k < deg H and since H(x) is square-free we can write xk as
A(x)H(x)+ B(x)H ′(x), which leads to

xk H(x)m dx = A(x)H(x)m+1 dx + B(x)H ′(x)H(x)m dx .

Since d(B(x)H(x)m+1) is exact we can reduce the above differential further for m < −1
by using the relation

B(x)H ′(x)H(x)m dx ≡ − B ′(x)H(x)m+1

m + 1
dx,

where ≡ means equality modulo exact differentials. As a result we can now reduce
any form xk H(x)m dx to a linear combination of the differentials xi/H(x) dx for i =
0, . . . , s.

For m > 0 we can reduce the differential form xk H(x)m y dx for k ∈ N if we
know how to reduce the form xi y dx for i ∈ N. Rewriting the equation of the curve as
(2y+h(x))2 = 4 f (x)+h(x)2 and differentiating both sides leads to (2y+h(x)) d(2y+
h(x)) = (2 f ′(x) + h(x)h′(x)) dx . Furthermore, for all j ≥ 1, we have the following
relations:

x j (2 f ′(x)+ h(x)h′(x))(2y + h(x)) dx = x j (2y + h(x))2 d(2y + h(x))

≡ − 1
3 (2y + h(x))3 dx j

= − j

3
x j−1(4 f (x)+ h(x)2)(2y + h(x)) dx .

Since P(x)h(x) dx is exact for any polynomial P(x) ∈ K [x], we finally obtain that[
x j (2 f ′(x)+ h(x)h′(x))+ j

3
x j−1(4 f (x)+ h(x)2)

]
y dx ≡ 0.

The polynomial between brackets has degree 2g+ j and its leading coefficient is 2(2g+
1) + 4 j/3 �= 0. Note that the formula is also valid for j = 0. This means that we can
reduce xi y dx for any i ≥ 2g by subtracting a suitable multiple of the above differential
for j = i − 2g.

For m < 0 we need an extra trick to reduce the form xk H(x)m y dx with k ∈ N.
Recall that Q f (x) = f (x)/H(x) and since the curve is non-singular, we conclude

10 J. Denef and F. Vercauteren

that gcd(Q f (x), H(x)) = 1. Furthermore, H(x) has no repeated roots which im-
plies gcd(H(x), Q f (x)H ′(x)) = 1. Let i = −m > 0, then we can partially reduce
xk y/H(x)i dx by writing xk as A(x)H(x)+ B(x)Q f (x)H ′(x), which leads to

xk

H(x)i
y dx = A(x)

H(x)i−1
y dx + B(x)Q f (x)H ′(x)

H(x)i
y dx .

The latter differential form can be reduced using the following congruence:

B(x)

H(x)i
(2 f ′(x)+ h(x)h′(x))(2y + h(x)) dx

= B(x)

H(x)i
(2y + h(x))2 d(2y + h(x))

≡ − 1
3 (2y + h(x))3d

(
B(x)

H(x)i

)
.

Substituting the expressions h(x) = Qh(x)H(x), f (x) = Q f (x)H(x) and
(2y + h(x))2 = 4 f (x)+ h(x)2, we get

B(x)Q f (x)H ′(x)
H(x)i

y dx

≡ B(i H ′Q2
h − 6Q′f − 3Qhh′)− B ′(4Q f + Qhh)

(6− 4i)Hi−1
y dx + I

H
dx,

where I (x)/H(x) dx is a suitable invariant differential. As a result we can write any
form xk H(x)m y dx for k ∈ N and m ∈ Z as a linear combination of the differentials
xi y dx for i = 0, . . . , 2g − 1 and xi/H(x) dx for i = 0, . . . , s.

To show that the Monsky–Washnitzer cohomology H 1(A/K) is generated by the
same differential forms as the algebraic de Rham cohomology, we need to bound the
denominators introduced during the reduction process.

Lemma 2. Let A := R[x, y]/(y2 + h(x)y − f (x)) and suppose that

xr y dx =
2g−1∑
i=0

ai x
i y dx + d S, (4)

with r ∈ N, ai ∈ K and S ∈ A ⊗ K . Then 2mai ∈ R, 2m ′ S − β ∈ A, where m =
3 + ⌊

log2(r + g + 1)
⌋

, m ′ = 1 + m + ⌊
log2(2g + deg h)

⌋
and β is some suitable

element in K .

Proof. The proof has two distinct parts. The first part is similar to Kedlaya’s argument
in Lemma 3 of [19], and is based on a local analysis around the point at infinity of the
curve C . Put t = xg/y, then one easily verifies that

x = t−2

(
1+

∞∑
j=1

αj t
j

)
and y = t−2g−1

(
1+

∞∑
j=1

βj t
j

)
, (5)

An Extension of Kedlaya’s Algorithm to Hyperelliptic Curves in Characteristic 2 11

with αj , βj ∈ R. To see this, put z = 1/x , rewrite the equation of the curve C as
z + t zg+1h(1/z)− t2z2g+1 f (1/z) = 0 and write z as a power series in t using Newton
iteration. The relation (4) can be rewritten as

2m−1xr (2y + h(x)) dx =
2g−1∑
i=0

2m−1ai x
i (2y + h(x)) dx + dT,

with T ∈ A⊗ K . Considering the involution ı of A which sends x to x and 2y+ h(x) to
−(2y+h(x)), we see that we can write T =∑N

i=0 Ai xi (2y+h(x)), with N big enough
and Ai ∈ K . This yields

2m−1xr (2y + h(x)) dx −
2g−1∑
i=0

2m−1ai x
i (2y + h(x)) dx

= d

(
N∑

i=0

Ai x
i (2y + h(x))

)
. (6)

In the above equation we express x and y in terms of t using equalities (5). Since
xi y = t−2i−2g−1+· · ·, we get xi (2y+h(x)) dx = (−4t−2i−2g−4+· · ·) dt , which yields

2m−1
∑

j=−max(2r+2g+4,6g+2)

γj t
j dt

= d

(
N∑

i=0

2Ai (t
−2i−2g−1 + · · ·)+ Ai (c t−2i−2 deg h + · · ·)

)
,

with γj ∈ K for all j and γj ∈ R when j < −2(2g − 1) − 2g − 4 = −6g − 2 and c
is the leading coefficient of h(x). Note that c is a unit in R. Integrating with respect to t
and dividing by 2 gives

∑
j≥−max(2r+2g+3,6g+1)

γ ′j t j =
N∑

i=0

Ai (t
−2i−2g−1 + · · ·)+

N∑
i=0

Ai

2
(c t−2i−2 deg h + · · ·), (7)

with γ ′j ∈ K for all j and γ ′j ∈ R when j < −6g−1. Indeed, the integration process in-
troduces denominators which become integral after multiplication with 2�log(2r+2g+2)� =
2m−2 if r ≥ 2g−1. A first consequence of (7) is that Ai = 0 for all i > max(r+1, 2g). We
claim that (7) implies that Ai ∈ R for all i > 2g. Suppose the claim is false. Then let i0 be
the largest integer with i0 > 2g and Ai0 �∈ R. Note that−2i0− 2g− 1 < −6g− 1, since
i0 > 2g. Hence the monomials in the left-hand side of (7) with degree ≤ −2i0− 2g− 1
have coefficients in R. Moreover, the monomials of degree < −2i0 − 2g − 1, in the
first sum in the right-hand side of (7) also have coefficients in R, but this is false for
the monomial of degree −2i0 − 2g − 1. Hence the second sum in the right-hand side
of (7) contains a monomial of degree −2i0 − 2g− 1 whose coefficient is not in R. That
means that there is a maximal i1 with Ai1/2 �∈ R and −2i1 − 2 deg h ≤ −2i0 − 2g − 1.
Because of parity we have that −2i1 − 2 deg h < −2i0 − 2g − 1. Since c is a unit, the
right-hand side of (7) contains a monomial of degree −2i1 − 2 deg h < −2i0 − 2g − 1

12 J. Denef and F. Vercauteren

whose coefficient is not in R. However, this contradicts what we said about the left-hand
side. This finishes the claim that Ai ∈ R for all i > 2g.

We now turn to the second part of the proof. Note that (2y + h(x))2 = v(x) with
v(x) := 4 f (x) + h(x)2. Moreover, d(2y + h(x)) = (w(x)/(2y + h(x))) dx , where
w(x) := 2 f ′(x) + h(x)h′(x). We use these formulae to deduce from (6) a relation
which does not involve y. For this purpose we multiply (6) with (2y + h(x))/dx =
w(x)/d(2y + h(x)) obtaining

2m−1xrv(x)−
2g−1∑
i=0

2m−1ai x
iv(x) =

N∑
i=0

Ai i xi−1v(x)+
N∑

i=0

Ai x
iw(x).

We rewrite this in the form(
2g−1∑
i=0

2m−1ai x
i

)
v(x)+

(
2g∑

i=0

Ai i xi−1

)
v(x)+

(
2g∑

i=0

Ai x
i

)
w(x) = F(x), (8)

where

F(x) := 2m−1xrv(x)−
N∑

i=2g+1

Ai i xi−1v(x)−
N∑

i=2g+1

Ai x
iw(x) (9)

is a polynomial over R, since Ai ∈ R for all i > 2g. From (8) and (9) it follows
that

∑2g
i=0 Aiθ

i
k has valuation ≥ 0 for each root θk of H(x), because v(θk) = 0 and

w(θk) �= 0. To eliminate the disturbing factor 2 in the definition of w(x), we consider
q(x) := h′(x)H(x)/h(x) ∈ R[x] and u(x) := 1

2 (w(x) − q(x)v(x)/H(x)) = f ′(x) −
2q(x) f (x)/H(x). Note that u(x) ∈ R[x], deg q = max(0, deg H − 1), deg u = 2g and
that the leading coefficient of u(x) is a unit in R. Rewrite (8) in such a way that w(x)
gets replaced by u(x):(

2g−1∑
i=0

2m−1ai x
i +

2g∑
i=0

Ai i xi−1 + q(x)

H(x)

2g∑
i=0

Ai x
i

)
v(x)

+
(

2g∑
i=0

2Ai x
i

)
u(x) = F(x).

Write q(x)
∑2g

i=0 Ai xi = H(x)
∑2g−1

i=0 Bi xi + Rem(x), with Rem(x) ∈ K [x] of degree
< deg H . Since

∑2g
i=0 Aiθ

i
k has valuation ≥ 0 for each root θk of H(x), the same holds

for Rem(θk). Thus Rem(x) ∈ R[x] since the discriminant of H(x) is a unit in R. Hence(
2g−1∑
i=0

(
2m−1ai + (i + 1)Ai+1 + Bi

)
xi

)
v(x)+

(
2g∑

i=0

2Ai x
i

)
u(x)

= F(x)− Rem(x)v(x)

H(x)
. (10)

We consider (10) as a system of 4g+ 1 linear equations in the unknowns 2m−1ai + (i +
1)Ai+1 + Bi for i = 0, . . . , 2g − 1 and 2Ai for i = 0, . . . , 2g. The determinant of this

An Extension of Kedlaya’s Algorithm to Hyperelliptic Curves in Characteristic 2 13

system is the resultant Res(v(x), u(x)) of v(x) and u(x) because deg v = 2g + 1 and
deg u = 2g. This resultant is a unit in R because the valuation of v(ξ) is zero for each root
ξ of u(x), since the resultant of f ′(x) and h(x) is a unit. We conclude that the solutions
of the linear system are elements of R, thus 2Ai ∈ R and 2m−1ai+(i+1)Ai+1+Bi ∈ R.
From the definition of the Bi it follows that 2Bi ∈ R since 2Ai ∈ R and Rem(x) ∈ R[x].
Hence 2mai ∈ R, which concludes the proof of Lemma 2.

Remark. Lemma 2 remains valid when we replace
∑2g−1

i=0 by
∑2g−1+κ

i=κ whenever
r ≥ κ ∈ N. The proof is the same, except that we also have to show that Ai = 0 for all
i < κ . This follows from (6) using a local analysis at a point on the curve with x = θk .
Such a local analysis is given in the proof of Lemma 3 below.

Lemma 3. Let A := R[x, y, H(x)−1]/(y2 + h(x)y − f (x)) with deg h > 0 and
suppose that

B(x)

H(x)r
y dx =

2g−1∑
i=0

ai x
i y dx +

s∑
i=0

bi xi

H(x)
dx + d S, (11)

where r ∈ N, B(x) ∈ R[x] of degree < deg H , ai , bi ∈ K and S ∈ A ⊗ K . Then
2mai ∈ R, 2m ′bi ∈ R, 2m ′ S − β ∈ A, with m = 3 + ⌊log2(r + 1)

⌋
, m ′ = 1 + m +⌊

log2(2g + deg h)
⌋

and β is some suitable element in K .

Proof. The proof again consists of two distinct parts. The first part is similar to Ked-
laya’s argument in Lemma 2 of [19] and is based on a local analysis around the ramifi-
cation points (θk, 0) for k = 0, . . . , s. In the completion of the local ring of the curve at
(θk, 0) we can write

x − θk = γk,2 y2 +
∑
j≥3

γk, j y j ,

with γk, j ∈ Rur and γk,2 a unit in Rur. Indeed, to see this write h(x) and f (x) as a Taylor
expansion around θk and use the equation of the curve and the condition f ′(θk) �≡ 0 mod 2,
to express x − θk as a power series in y using Newton iteration.

Applying the involution ı to (11), we see that this relation implies

2m−1 B(x)H(x)−r (2y + h(x)) dx −
2g−1∑
i=0

2m−1ai x
i (2y + h(x)) dx

= d

(
M∑

i=−N

Bi (x)H(x)
i (2y + h(x))

)
, (12)

with N and M large enough integers. Expressing x−θk in terms of y, we get Bi (x)H(x)i

= uk,i Bi (θk)y2i + · · · with uk,i a unit in Rur. Substituting this in (12) and dividing by 2
we obtain

2m−2
∑

j≥−2r+2

γ ′k, j y j dy

= d

(
M∑

i=−N

uk,i Bi (θk)y
2i+1 + uk,i Bi (θk)

2

γ
mk
k,2 h(mk)(θk)

mk!
y2i+2mk + · · ·

)

14 J. Denef and F. Vercauteren

with γ ′k, j ∈ K ur for all j and γ ′k, j ∈ Rur when j ≤ 1. Integrating the left-hand side of this
equation with respect to y yields a series whose terms of degree≤ 2 have coefficients in
Rur. The leading term of the right-hand side is uk,−N B−N (θk)y−2N+1, which implies that
B−N (θk) is integral for k = 0, . . . , s. Since the discriminant of H(x) is a unit in R we
conclude that B−N (x) has integral coefficients. Bringing the integral terms to the left-
hand side and repeating the same argument, shows that Bi (x) ∈ R[x] for i = −N , . . . , 0.
This terminates the first part of the proof.

The second part of the proof proceeds along the same lines as in Lemma 2. Rewrite the
sum

∑M
i=1 Bi (x)H(x)i (2y+ h(x)) as

∑M ′
i=0 Ai xi (2y+ h(x)) with M ′ ∈ N and Ai ∈ K .

Using the same formulae as in Lemma 2 we deduce from (12) a relation which does not
involve y by multiplying both sides with (2y+ h(x))/dx = w(x)/d(2y+ h(x)), which
leads to

2m−1 B(x)

H(x)r
v(x)−

2g−1∑
i=0

2m−1ai x
iv(x)

=
0∑

i=−N

Bi (x)H(x)
iw(x)+

M ′∑
i=0

Ai x
iw(x)

+
0∑

i=−N

(
Bi (x)i H(x)i−1 H ′(x)+ B ′i (x)H(x)

i
)
v(x)+

M ′∑
i=0

Ai i xi−1v(x).

Comparing the valuation at infinity of both sides shows that Ai = 0 for i > 2g. We can
therefore rewrite the above equation in the form(

2g−1∑
i=0

2m−1ai x
i

)
v(x)+

(
2g∑

i=0

Ai i xi−1

)
v(x)+

(
2g∑

i=0

Ai x
i

)
w(x) = F(x), (13)

where

F(x) := 2m−1 B(x)

H(x)r
v(x)−

0∑
i=−N

Bi (x)H(x)
iw(x)

−
0∑

i=−N

(Bi (x)i H(x)i−1 H ′(x)+ B ′i (x)H(x)
i)v(x)

is a polynomial over R since the Bi (x) ∈ R[x] for i = −N , . . . , 0 and the left-hand
side of (13) is a polynomial. From the definition of the Ai it follows that H(x) divides∑2g

i=0 Ai xi . It is now easy to see that the rest of the proof is exactly the same as in the
proof of Lemma 2 with Rem(x) = 0, hence 2mai ∈ R and this concludes the proof of
Lemma 3.

Remark. Lemma 3 remains valid when we replace the term
∑2g−1

i=0 ai xi y dx in (11)
by
∑�−κ

i=−κ Ci (x)H(x)i y dx , with � = �(2g − 1)/deg H� and Ci (x) ∈ K [x] of degree
< deg H whenever r ≥ κ ∈ N. The proof is exactly the same.

An Extension of Kedlaya’s Algorithm to Hyperelliptic Curves in Characteristic 2 15

Remark. If r = 0, then in the above proof the Bi (x) are zero for all i ≤ 0, and for
0 ≤ i ≤ 2g − 1 the ai are completely determined by (13) as we saw by considering
resultants. This shows that the xi y dx for i = 0, . . . , 2g − 1 and the (xi/H(x)) dx for
i = 0, . . . , s are linearly independent in H 1

DR(A/K).

An immediate consequence of Lemmata 2 and 3 is that the basis for H 1
DR(A/K) also

generates H 1(A/K): reducing a differential
∑

k,l ak,l xk S(x)l y dx ∈ D1(A†)with k, l ∈
Z and 0 ≤ k < deg S introduces denominators whose valuation grows logarithmically
in |l|, whereas the valuation of ak,l grows linearly in |l|. Combining this with the above
remark, we conclude that the basis for H 1

DR(A/K) is also a basis for H 1(A/K).
Under the action of the hyperelliptic involution, the Monsky–Washnitzer cohomology

H 1(A/K) decomposes as the direct sum of the ı-invariant part H 1(A/K)+ and the ı-
anti-invariant part H 1(A/K)−. Let rk be the number of ramification points (θ, 0) defined
over Fqk , then the Lefschetz fixed point formula applied to C ′ gives

#C(Fqk)− rk = #C ′(Fqk)

= Tr(qk F−k
∗ |H 0(A/K))− Tr(qk F−k

∗ |H 1(A/K))

= qk − Tr(qk F−k
∗ |H 1(A/K)+)− Tr(qk F−k

∗ |H 1(A/K)−)
= qk − rk − Tr(qk F−k

∗ |H 1(A/K)−).

Let C̃ be the unique smooth projective curve birational to C , then

#C̃(Fqk) = qk + 1− Tr
(
qk F−k

∗ |H 1(A/K)−
) = qk + 1−

2g∑
i=1

αk
i ,

with αi the eigenvalues of q F−1
∗ on H 1(A/K)−. The Weil conjectures imply that there

exist 2g algebraic integers β1, . . . , β2g with βiβg+i = q for i = 1, . . . , g and |βi | = √q

for i = 1, . . . , 2g, such that for all k > 0 we have #C̃(Fqk) = qk + 1 −∑2g
i=1 β

k
i .

Comparing both expressions, we see that we can relabel the αi such that αi = βi

for i = 1, . . . , 2g. Since then αiαg+i = q, the αi are also the eigenvalues of F∗ on
H 1(A/K)−. Let χ(t) be the characteristic polynomial of F∗ on H 1(A/K)−, then we
can finally recover the zeta function Z(C̃/Fq; t) as

Z(C̃/Fq; t) = t2gχ(1/t)

(1− t)(1− qt)
.

4. Algorithm and Complexity

Using the formulae of the previous section, we describe an algorithm to compute the
characteristic polynomial of Frobenius χ(t) and the zeta function of a smooth projective
hyperelliptic curve C̃ of genus g over Fq with q = 2n .

4.1. Precision of Computation

We have shown thatχ(t) = t2g+a1t2g−1+· · ·+a2g can be computed as the characteristic
polynomial of F∗ on H 1(A/K)−. The Weil conjectures imply that qg−i ai = a2g−i , so it

16 J. Denef and F. Vercauteren

suffices to compute a1, . . . , ag . Furthermore, for i = 1, . . . , g the ai can be bounded by

|ai | ≤
(

2g

i

)
qi/2 ≤

(
2g

g

)
qg/2 ≤ 22gqg/2.

Therefore it suffices to compute the action of F∗ on a basis of H 1(A/K)− modulo 2B

with

B ≥
⌈

log2

(
2

(
2g

g

)
qg/2

)⌉
.

However, it is not sufficient to compute yσ modulo 2B since we need to take into account
the loss of precision introduced during the reduction process of the differential forms.
Let yσ ≡ αN + βN y mod 2N and write βN =

∑BN
i=−L N

Vi (x)S(x)i , then Lemma 1

implies that L N ≤ 4(N − 1)D − 2D and BN ≤ 2(N − 2)(d f
S − 2dh

S) + (d f
S − dh

S),
with d f

S := deg f/ deg S and dh
S := deg h/ deg S. Since we have to reduce the forms

x2i+1 yσ dx for i = 0, . . . , 2g−1, the loss of precision will be determined by the reduction
of x4g−1VBN (x)S(x)

BN y dx and xV−L N S(x)−L N y dx . The highest power of x appearing
in the former differential form is less than 2N (deg f − 2 deg h)+ 6g and by Lemma 2
the loss of precision is bounded by cN ,1 := 3+⌊log2(2N (deg f − 2 deg h)+ 7g + 1)

⌋
.

Similarly, Lemma 3 implies that the loss of precision introduced during the reduction
of the latter differential form is bounded by cN ,2 := 3+ ⌊log2(4N D − 6D + 1)

⌋
. As a

result, we conclude that it is sufficient to compute modulo 2N with

N > B +max(cN ,1, cN ,2). (14)

4.2. Detailed Algorithm

The function Hyperelliptic Zeta Function given in Algorithm 1 computes the
zeta function of a smooth projective hyperelliptic curve C̃ defined over Fq with q = 2n .
Step 1 determines the minimal precision N satisfying inequality (14).

In step 2 we call the subroutine Lift Curve, which first constructs an isomorphic
curve such that H(x) | h(x) and H(x) | f (x) and lifts the curve using the construction
described in Section 3.2. The result of this function is a hyperelliptic curve C : y2 +
h(x)y = f (x) over R, a polynomial H(x) and an integer D such that H(x) | h(x),
H(x) | f (x) and h(x) | H(x)D . Since this function is rather straightforward, we have
omitted the pseudo-code.

In step 3 we compute yσ mod 2N using the function Lift Frobenius y given in
Algorithm 2. The parameters αN , βN are Laurent polynomials in S with coefficients
polynomials over R mod 2N of degree < deg S. This function implements the Newton
iteration (1), but has quadratic, instead of linear, convergence. Note that Algorithm 2
is in fact a double Newton iteration: α + βy converges to yσ , whereas γ + δy is an
approximation of the inverse of the denominator (2) in the Newton iteration.

Once we have determined an approximation of yσ , we compute the action of σ∗ on
the basis of H 1(A/K)− as 2x2i+1 yσ dx for i = 0, . . . , 2g − 1. In step 4 we reduce
these forms using the function Reduce MW Cohomology given in Algorithm 3, which
is based on the reduction formulae devised in Section 3.2. Given a differential Gy dx
with G a Laurent polynomial in S, this function computes a polynomial� ∈ K [x], with

An Extension of Kedlaya’s Algorithm to Hyperelliptic Curves in Characteristic 2 17

Algorithm 1 (Hyperelliptic Zeta Function).

IN: Hyperelliptic curve C over Fq given by equation y2 + h(x)y = f (x).
OUT: The zeta function Z(C̃/Fq; t).
1. B =

⌈
log2

(
2
(2g

g

)
qg/2

)⌉
; N > B +max(cN ,1, cN ,2);

2. (h(x), f (x), H(x), D) = Lift Curve(h(x), f (x));
3. αN , βN = Lift Frobenius y(h, f, H, D, N);
4. For i = 0 To 2g − 1 Do

4.1. Ri (x) = Reduce MW Cohomology(2x2i+1βN , h, f, H, B);
4.2. For j = 0 To 2g − 1 Do M[j][i] = Coeff(Ri , j);

5. MF = M Mσ · · ·Mσ n−1
mod 2B ;

6. χ(T) = Characteristic Pol(MF) mod 2B ;
7. For i = 0 To g Do

7.1. If Coeff(χ, 2g − i) >
(2g

i

)
qi/2 Then Coeff(χ, 2g − i) − = 2B ;

7.2. Coeff(χ, i) = qg−i Coeff(χ, 2g − i);

8. Return Z(C̃/Fq; t) = t2gχ(1/t)

(1− t)(1− qt)
.

deg� < 2g such that for a given precision B we have the following equivalence modulo
exact and invariant forms �y dx ∼ Gy dx mod 2B , where mod 2B means modulo
2B(Ry dx + · · · + Rx2g−1 y dx). In step 2.3 we use the function XGCD which takes as
input two polynomials A(x), B(x) ∈ K [x] and returns polynomials C(x), L A(x), L B(x)
such that C(x) = gcd(A(x), B(x)) and C(x) = L A(x)A(x)+ L B(x)B(x). Note that the

Algorithm 2 (Lift Frobenius y).

IN: Curve C : y2 + h(x)y = f (x) over R, polynomial H(x) ∈ R[x] with
H |h and H | f , D ∈ N such that h|H D and precision N .

OUT: Laurent polynomials αN , βN in S with S = H if deg H > 0, S = x
if H = 1 satisfying yσ ≡ αN + βN y mod 2N .

1. B = ⌈log2 N
⌉+ 1; T = N ; QS := SD div h;

2. For i = B Down To 1 Do P[i] = T ; T = �T/2�;
3. α ≡ f mod 2; β ≡ −h mod 2; γ = 1; δ = 0;
4. For i = 2 To B Do

4.1. TA ≡
(
(α + hσ) · α + β2 · f − f σ

) · Q2
S · S−2D mod 2P[i];

4.2. TB ≡ (2α − h · β + hσ) · β · Q2
S · S−2D mod 2P[i];

4.3. DA ≡ 1+ (hσ − h2 + 2α) · Q2
S · S−2D mod 2P[i−1];

4.4. DB ≡ 2β · Q2
S · S−2D mod 2P[i−1];

4.5. VA ≡ DA · γ + DB · δ · f − 1 mod 2P[i−1];
4.6. VB ≡ DA · δ + DB · (γ − δ · h) mod 2P[i−1];
4.7. γ ≡ γ − (VA · γ + VB · δ · f) mod 2P[i−1];
4.8. δ ≡ δ − (VA · δ + VB · (γ − δ · h)) mod 2P[i−1];
4.9. α ≡ α − (TA · γ + TB · δ · f) mod 2P[i];
4.10. β ≡ β − (TA · δ + TB · (γ − δ · h)) mod 2P[i];

5. Return αN = α, βN = β.

18 J. Denef and F. Vercauteren

Algorithm 3 (Reduce MW Cohomology).

IN: Polynomials h(x), f (x), H(x) ∈ R[x] with H |h and H | f , H monic,
Laurent polynomial G =∑ Ti (x)S(x)i with S = H if deg H > 0 and
S = x if H = 1, Ti (x) ∈ R[x] with deg Ti < deg S, precisions B, N .

OUT:� ∈ K [x], with deg� < 2g such that �y dx ∼ Gy dx mod 2B .
1. Q f = f div S; Qh = h div S; P = 0; V = 0; vG = Valuation(G);
2. For i = vG To −1

2.1. V ≡ P+ Coeff(G,i) mod 2N ;
2.2. P ≡ V div S mod 2N ; V ≡ V − P · S mod 2N ;
2.3. (1, L A, L B) =XGCD(S, Q f · S′);
2.4. L A = V · L A mod 2N ; L B = V · L B mod 2N ;

2.5 P ≡ P+L A+
L B · (−i Q2

h · S′−3(2Q′f +Qh · h′))−L ′B · (4Q f +Qhh)

6+4i
mod 2N;

3. dG = Degree(G); dT = (dG + 1)·Degree(S); T = 0;
4. For i = dG Down To 0 Do T = T · S+ Coeff(G, i) mod 2N ; T = T + P;
5. For i = dT Down To 2g

5.1. P ≡ xi−2g(2 f ′ + h · h′)+ i − 2g

3
xi−2g−1(4 f + h2) mod 2N ;

5.2 T ≡ T − (Coeff(T, i)·P)/ Coeff(P, i) mod 2N ;
6. Return � ≡ T mod 2B .

remarks after Lemmata 2 and 3 imply that the result of Algorithm 3 is correct modulo
2B since we computed modulo 2N and N satisfies N − max(cN ,1, cN ,2) > B. The
result of step 4 of Algorithm 1 is an approximation modulo 2B of the matrix M through
which σ∗ acts on H 1(A/K)−. In step 5 we compute its norm MF as M Mσ · · ·Mσ n−1

.
Note that since M is not necessarily defined over R, we could lose up to cn bits of
precision, where 2c is the largest denominator appearing in M . By Lemmata 1 and 2, c is
bounded by O(log g) independently of n. In theory we would therefore have to replace
the bound B in Algorithm 1 by B + cn, which does not change the complexity of the
algorithm.

In practise however it turns out that the largest denominator appearing in MF is
almost always the same as the largest denominator appearing in M and therefore it is
not necessary to increase B. This phenomenon can be heuristically explained as follows:
since the eigenvalues of F∗ = σ n

∗ on H 1(A/K)− have non-negative 2-adic valuation
there is an R-submodule of H 1(A/K)− which is stable under the action of σ∗. For this
R-submodule we can take for instance the canonical image of the crystalline cohomology
of C over R. Note that the R-submodule generated by xi y dx for i = 0, . . . , 2g − 1 is
not canonical and in general not stable under σ∗. Let A0 be the matrix that expresses
xi y dx for i = 0, . . . , 2g − 1 in terms of a basis of such a stable R-submodule and let
A be A0 times a power of 2 such that A is a matrix over R which is not zero modulo
2. Then M = A−1U Aσ where U is the matrix of σ∗ with respect to the new basis.
Note that U is a matrix over R and that the norm of M equals A−1UU σ · · ·U σ n−1

A.
Thus the loss of precision is no more than 2d bits where d is the 2-adic valuation of
det(A). If U and A are generic enough then |c−d| is small. Furthermore, the bound (14)
turns out to be slightly larger than what is needed and compensates for the loss of
2d bits.

An Extension of Kedlaya’s Algorithm to Hyperelliptic Curves in Characteristic 2 19

In steps 6 and 7 we recover the characteristic polynomial of Frobenius from the first g
coefficients of the characteristic polynomial of MF . Finally, we return the zeta function
of the smooth projective hyperelliptic curve C̃ birational to C in step 8.

4.3. Complexity

In this section we analyse the space and time requirements of Algorithm 1 for a genus g
hyperelliptic curve over F2n assuming fast arithmetic, i.e. using the Schönhage–Strassen
algorithm [37] that computes the product of two m-bit integers in time O(m1+ε) for
any constant ε ∈ R>0. Before proceeding through the individual steps of the algorithm,
we analyse the complexity of the basic operations in Algorithm 1 and the asymptotic
behaviour of the bounds given in Lemma 1.

For a fixed precision N , let RN denote the degree n unramified extension of Z2/2NZ2.
Elements of RN are represented as polynomials overZ/2NZmodulo a sparse irreducible
polynomial P(t) of degree n. Since each element of this ring requires O(nN) space, we
can perform the basic operations, i.e. multiplication and division, in time O(n1+εN 1+ε).

Computing the Frobenius substitution σ on RN can be accomplished in time O(n2+ε

N 1+ε) as follows. Since t is a root of P(t), tσ will also be a root of P(t) and tσ ≡ t2 mod 2.
Therefore, tσ can be computed using the Newton iteration Tk+1 = Tk − P(Tk)/P ′(Tk)

initialised with t2. Since the Newton iteration converges quadratically and we compute
with the minimal precision in each step, the total complexity will be determined by the
last step which takes O(n) multiplications in RN . Precomputing tσ mod 2N can thus
be accomplished in time O(n2+εN 1+ε). After this precomputation, we can compute the
Frobenius substitution of any element E(t) as E(tσ), which needs O(n)multiplications
in RN and thus takes O(n2+εN 1+ε) time.

Lemma 1 bounds the maximum bit-size of the Laurent series we compute with and
therefore determines the complexity of Algorithm 1. Since these bounds depend on the
degree and splitting type of h(x), we make a distinction between average-case and worst-
case complexity. To this end we introduce three parameters which allow us to analyse
both cases simultaneously.

– Let the asymptotic behaviour of deg f −2 deg h be O(gλ). Since the degree of f (x)
is 2g + 1 and h(x) is a random polynomial of degree ≤ g, we conclude that λ = 0
on average and λ = 1 in the worst case.

– Let the asymptotic behaviour of deg H be O(gµ). With very high probability a
random polynomial of degree ≤ g has O(g) different roots, which implies that
µ = 1 on average and µ = 0 in the extreme case.

– Let the asymptotic behaviour of D be O(gν), then ν = 0 on average and ν = 1
in the worst case, since with very high probability a random polynomial only has
roots with multiplicity O(1).

In step 1 of Algorithm 1 we determine the minimal precision N satisfying inequal-
ity (14), which implies that N is O(gn). The function Lift Frobenius y in step 3
is a Newton lifting. Since the precision doubles in every iteration, we see that its com-
plexity is determined by the last iteration, which consists of O(1) multiplications of
Laurent polynomials in S with coefficients polynomials over RN of degree less than
deg S. Lemma 1 implies that the bit-size of these objects is O((gλ + gµ+ν)nN 2). Since

20 J. Denef and F. Vercauteren

the cost of the other operations in Lift Frobenius y, e.g. computing the Frobenius
substitution of O(g) elements of RN , is less than the O(1) multiplications, the overall
time complexity of step 3 is O((gλ + gµ+ν)1+εn1+εN 2+ε).

In step 4 of Algorithm 1 we reduce the 2g differential forms 2x2i+1βN y dx for
i = 0, . . . , 2g − 1 using the function Reduce MW Cohomology given in Algorithm 3.
In step 2 the dominant operations are O(1) multiplications of polynomials over RN of
degree O(g) and the extended GCD computation of two such polynomials. The for-
mer operation clearly takes time O(g1+εn1+εN 1+ε) and using Moenck’s algorithm [30]
the latter operation can also be performed in time O(g1+εn1+εN 1+ε). Lemma 1 im-
plies that these operations have to be repeated O(gνN) times, so the time complexity
of step 2 is O(g1+ν+εn1+εN 2+ε). Write βN as

∑BN
i=−L N

Vi (x)S(x)i , then step 4 essen-

tially is Horner’s rule to compute
∑BN

i=0 Vi (x)S(x)i . Note that in practise we perform
this step only once for all of the 2g reductions and use a binary tree algorithm which
is asymptotically faster than Horner’s method. The complexity of step 4 then becomes
O(gλ+εn1+εN 2+ε). Lemma 1 implies that substeps 5.1 and 5.2 have to be executed
O(gλN) times and since each iteration consists of O(g) multiplications and O(1) di-
visions in RN , the time complexity of step 5 is O(g1+λn1+εN 2+ε). Since we have to
reduce O(g) differential forms, the overall time complexity of step 4 of Algorithm 1
is O((g2+λ + g2+ν+ε)n1+εN 2+ε).

In step 5 we need to determine the norm of a 2g × 2g matrix M over K as M Mσ · · ·
Mσ n−1

. This can be accomplished by computing Mi+1 = Mi Mσ 2i

i for i = 0, . . . ,
⌊

log2 n
⌋

with M0 = M and combining these to recover the norm of M . This process takes O(log n)
multiplications of 2g × 2g matrices at a cost of O(g3n1+εN 1+ε) time and O(g2 log n)

applications of powers of σ which takes O(g2n2+εN 1+ε) time if we precompute tσ
2i

for i = 0, . . . ,
⌊

log2 n
⌋

. The overall time complexity of step 5 thus becomes O((n +
g)g2n1+εN 1+ε).

Finally, we need to compute the characteristic polynomial of a 2g×2g matrix over K ,
which can be done using the classical algorithm based on the Hessenberg form [6, Section
2.2.4]. The complexity of this algorithm is O(g3) ring operations or O(g3n1+εN 1+ε)
time.

Since (14) implies that N is O(gn), we have proved the following theorem.

Theorem 2. The zeta function of a hyperelliptic curve of genus g defined over F2n

can be computed in O((gλ+ gν)g4+εn3+ε) time and O((gλ+ gµ+ν)g2n3) space, where
λ, µ and ν are defined as in the beginning of Section 4.3. This implies the following
complexities:

– Average case: O(g4+εn3+ε) time and O(g3n3) space.
– Worst case: O(g5+εn3+ε) time and O(g4n3) space.

5. Implementation and Numerical Results

In this section we present running times of an implementation of Algorithm 1 in the
C programming language and give some examples of Jacobians of hyperelliptic curves
with almost prime group order.

An Extension of Kedlaya’s Algorithm to Hyperelliptic Curves in Characteristic 2 21

Table 1. Running time and memory usage for genus 2, 3 and 4 hyperelliptic curves over F2n

Size of Jacobian Genus 2 curves Genus 3 curves Genus 4 curves

gn Time (s) Mem (MB) Time (s) Mem (MB) Time (s) Mem (MB)

120 22 4.5 28 5.4 26 5.2
144 35 5.7 46 7.3 43 7.2
168 60 8.6 78 11 76 11
192 89 13 112 14 109 13
216 143 16 171 17 157 16

The basic operations on integers modulo 2N for N ≤ 256 were written in assembly
language. Elements of RN are represented as polynomials over Z/2NZmodulo a degree
n irreducible polynomial, which we chose to be either a trinomial or a pentanomial.
For multiplication of elements in RN , polynomials over RN and Laurent series over
RN [x] we used Karatsuba’s trick [18], which allows to multiply two m-bit integers in
time O(m log2 3). Redoing the complexity analysis then results in an average-case time
complexity of O(g5.17n4.75) bit-operations.

5.1. Running Times and Memory Usage

Table 1 contains running times and memory usages of Algorithm 1 for genus 2, 3 and 4
hyperelliptic curves over various finite fields of characteristic 2. These results were
obtained on an AMD XP 1700+ processor running Linux Redhat 7.1. Note that the field
degrees are chosen such that gn, and therefore the size of the group order of the Jacobian,
is constant across each row.

Although of no importance to cryptography, it is worth mentioning that Algorithm 1
is also practical for large genus hyperelliptic curves, e.g. the zeta function of a genus
350 hyperelliptic curve over F2 can be computed in 83 hours. For more information, we
refer the interested reader to Section 4.4.4 of [41].

5.2. Hyperelliptic Curve Examples

In this subsection we give three examples of Jacobians of hyperelliptic curves with almost
prime group order. The correctness of these results is easily proved by multiplying a
random divisor with the given group order and verifying that the result is principal, i.e.
is the zero element in the Jacobian J̃C(Fq).

It is clear that the given curves are non-supersingular, since the coefficient ag of χ(T)
is odd [12]. Furthermore, all curves are immune to Weil descent [13] and multiplicative
reduction [11].

Let α = ∑n−1
i=0 αi t i ∈ F2n , then α is represented by the integer

∑n−1
i=0 αi 2i written in

hexadecimal notation.

Genus 2 Hyperelliptic Curve over F283

Let F283 be defined as F2[t]/P(t) with P(t) = t83 + t7 + t4 + t2 + 1 and consider the
random hyperelliptic curve C2 of genus 2 defined by

y2 +
(

2∑
i=0

hi x
i

)
y = x5 +

4∑
i=0

fi x
i ,

22 J. Denef and F. Vercauteren

where

h0 = 4D168CAB78F1F7EB78D54 h1 = 3B167A2F520486B2A8A60
h2 = 507FC6D8D98A1411D1F24
f0 = 6ABF379716E615F0997AF f1 = 1D13C5C10A58A238681F3
f2 = 3ACC287DAA28D01EDDB58 f3 = 74BF8FFD1A04B1E8B845B
f4 = 10046A0ED36CF3B146071

The group order of the Jacobian J̃C2
of C2 over F283 is

J̃C2
= 2 · 46768052394612054553468807679365619497317916118893,

where the last factor is prime. The coefficients a1 and a2 of the characteristic polynomial
of Frobenius χ(T) = T 4 + a1T 3 + a2T 2 + a3T + a4 are given by

a1 = 4789617893650 and a2 = 12304549269471460402134471.

Genus 3 Hyperelliptic Curve over F259

Let F259 be defined as F2[t]/P(t) with P(t) = t59 + t7 + t4 + t2 + 1 and consider the
random hyperelliptic curve C3 of genus 3 defined by

y2 +
(

3∑
i=0

hi x
i

)
y = x7 +

6∑
i=0

fi x
i ,

where

h0 = 44EC0A3F607D5FE h1 = 183AFFC60B6C97A
h2 = 5E8C286F052173E h3 = 39BFF4C327D0FCC
f0 = 2CE03A6BD01418F f1 = 15160EE501EA31D
f2 = 2DDF3B805A56673 f3 = 72EAAC2B03D6F33
f4 = 30BF8CAF4CF398A f5 = 288F45CEB700047
f6 = 692BDF3913214F7

The group order of the Jacobian J̃C3
of C3 over F259 is

J̃C3
= 2 · 95780971232851005943503002779523943538413536699032693,

where the last factor is prime. The coefficients a1, a2 and a3 of the characteristic poly-
nomial of Frobenius χ(T) = T 6 + a1T 5 + a2T 4 + a3T 3 + a4T 2 + a5T + a6 are given
by

a1 = −428922942,

a2 = 394510910624097420,

a3 = −307916874056151778020344677.

An Extension of Kedlaya’s Algorithm to Hyperelliptic Curves in Characteristic 2 23

Genus 4 Hyperelliptic Curve over F247

Let F247 be defined as F2[t]/P(t) with P(t) = t47 + t5 + 1 and consider the random
hyperelliptic curve C4 of genus 4 defined by

y2 +
(

4∑
i=0

hi x
i

)
y = x9 +

8∑
i=0

fi x
i ,

where

h0 = 45EDAA69BB7B h1 = 29185CC987F2 h2 = 5B56AF467634
h3 = 063A420D7308 h4 = 3AD67360D2FB
f0 = 116A64DA4E4A f1 = 1267C8BFEDF4 f2 = 5DED53867285
f3 = 3E2486D3500B f4 = 66718C5D41BD f5 = 5FBD515320F1
f6 = 4B960757EC52 f7 = 67B0202BA7D5 f8 = 545283F149A8

The group order of the Jacobian J̃C4
of C4 over F243 is

J̃C4
= 2 · 196159429641733316151830117421270924231809135724223902787,

where the last factor is prime. The coefficients a1, a2, a3 and a4 of the characteristic
polynomial of Frobenius χ(T) = T 8 + a1T 7 + a2T 6 + a3T 5 + a4T 4 + a5T 3 + a6T 2 +
a7T + a8 are given by

a1 = 294806,

a2 = −5127513198846,

a3 = 236526738819576049756,

a4 = 31534922966327446198018115985.

6. Conclusion

In this paper we have presented an extension of Kedlaya’s algorithm to compute the zeta
function of an arbitrary hyperelliptic curve C over a finite field of characteristic 2. The
main difference with Kedlaya’s algorithm is that the hyperelliptic curve can no longer be
lifted arbitrarily; instead, a very specific lift is needed to ensure that the algebraic de Rham
cohomology and the Monsky–Washnitzer cohomology are isomorphic. For a genus g
hyperelliptic curve defined over F2n , the average-case time complexity is O(g4+εn3+ε)
and the average-case space complexity is O(g3n3), whereas the worst-case time and
space complexities are O(g5+εn3+ε) and O(g4n3), respectively. An implementation in
the C programming language shows that cryptographical sizes are now feasible for any
genus g, e.g. computing the order of a 160-bit Jacobian of a hyperelliptic curve of genus
2, 3 or 4 takes about 75 seconds. Due to the generality of the cohomological approach,
it seems likely that Kedlaya’s algorithm can be extended to arbitrary curves. For a first
step in this direction, we refer to [8] which presents an algorithm to compute the zeta
function of any non-singular Cab curve over a finite field of small characteristic.

24 J. Denef and F. Vercauteren

References

[1] L. M. Adleman and M.-D. Huang. Counting rational points on curves and abelian varieties over finite
fields. In H. Cohen, editor, Algorithmic Number Theory. 2nd International Symposium. ANTS-II, pages
1–16. Volume 1122 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1996.

[2] S. Arita. Algorithms for computations in Jacobians of Cab curves and their application to discrete-
log-based public key cryptosystems. In Proceedings of Conference on the Mathematics of Public Key
Cryptography, pages 165–175, 1999.

[3] A.O.L. Atkin. The number of points on an elliptic curve modulo a prime. Series of e-mails to the
NMBRTHRY mailing list, 1992.

[4] I.F. Blake, G. Seroussi, and N.P. Smart. Elliptic Curves in Cryptography. London Mathematical Society
Lecture Note Series, 265. Cambridge University Press, Cambridge, 1999.

[5] S. Bosch. A rigid analytic version of M. Artin’s theorem on analytic equations. Math. Ann., 255:395–404,
1981.

[6] H. Cohen. A Course in Computational Algebraic Number Theory. Volume 138 of Graduate Texts in
Mathematics. Springer-Verlag, New York, 1993.

[7] J. Denef and F. Vercauteren. An extension of Kedlaya’s algorithm to Artin–Schreier curves in character-
istic 2. In C. Fieker and D.R. Kohel, editors, Algorithmic Number Theory. 5th International Symposium.
ANTS-V, pages 308–323. Volume 2369 of Lecture Notes in Computer Science. Springer-Verlag, Berlin,
2002.

[8] J. Denef and F. Vercauteren. Counting points on Cab curves using Monsky–Washnitzer cohomology.
Available at http://www.cs.bris.ac.uk/~frederik/, 2003.

[9] N. Elkies. Elliptic and modular curves over finite fields and related computational issues. In D. A. Buell
and J. T. Teitelbaum, editors, Computational Perspectives on Number Theory, pages 21–76. American
Mathematical Society/International Press, Providence, RI/Somerville, MA, 1998.

[10] R. Elkik. Solutions d’équations a coefficients dans un anneau henselien. Ann. Sci. École Norm. Sup.,
6(4):553–604, 1973.

[11] G. Frey and H.-G. Rück. A remark concerning m-divisibility and the discrete logarithm in the divisor
class group of curves. Math. Comp., 62(206):865–874, 1994.

[12] S. Galbraith. Supersingular curves in cryptography. In C. Boyd, editor, Advances in Cryptology -
ASIACRYPT 2001, pages 495–513. Volume 2248 of Lecture Notes in Computer Science. Springer-Verlag,
Berlin, 2001.

[13] S. Galbraith. Weil descent of Jacobians. Discrete Appl. Math., 128(1):165–180, 2003.
[14] S. Galbraith, S. Paulus, and N. Smart. Arithmetic on superelliptic curves. Math. Comp., 71(237):393–405,

2002.
[15] P. Gaudry and N. Gürel. An extension of Kedlaya’s algorithm for counting points on superelliptic curves.

In C. Boyd, editor, Advances in Cryptology - ASIACRYPT 2001, pages 480–494. Volume 2248 of Lecture
Notes in Computer Science. Springer-Verlag, Berlin, 2001.

[16] P. Gaudry and R. Harley. Counting points on hyperelliptic curves over finite fields. In Wieb Bosma,
editor, Algorithmic Number Theory. 4th International Symposium. ANTS-IV, pages 313–332. Volume
1838 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2000.

[17] P. Gaudry and É. Schost. Construction of secure random curves of genus 2 over prime fields. In C. Cachin
and J. Camenisch, editors, Advances in Cryptology - EUROCRYPT 2004, pages 239–256. Volume 3027
of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2004.

[18] A. Karatsuba and Y. Ofman. Multiplication of multidigit numbers on automata. Soviet Phys. Dokl.,
7:595–596, 1963.

[19] K.S. Kedlaya. Counting points on hyperelliptic curves using Monsky–Washnitzer cohomology. J. Ra-
manujan Math. Soc., 16:323–338, 2001.

[20] N. Koblitz. Elliptic curve cryptosystems. Math. Comp., 48(177):203–209, 1987.
[21] N. Koblitz. Hyperelliptic cryptosystems. J. Cryptology, 1(3):139–150, 1989.
[22] A.G.B. Lauder and D. Wan. Counting points on varieties over finite fields of small characteristic. In J.P.

Buhler and P. Stevenhagen, editors, Algorithmic Number Theory: Lattices, Number Fields, Curves and
Cryptography. Cambridge University Press, Cambridge, 2002.

[23] A.G.B. Lauder and D. Wan. Computing zeta functions of Artin–Schreier curves over finite fields. LMS
J. Comput. Math., 5:34–55 (electronic), 2002.

An Extension of Kedlaya’s Algorithm to Hyperelliptic Curves in Characteristic 2 25

[24] A.G.B. Lauder and D. Wan. Computing zeta functions of Artin–Schreier curves over finite fields, II.
J. Complexity, 20:331–349, 2004.

[25] R. Lercier. Algorithmique des courbes elliptiques dans les corps finis. Ph.D. thesis, Laboratoire
d’Informatique de l’École polytechnique (LIX), 1997.

[26] R. Lercier and D. Lubicz. A quasi quadratic time algorithm for hyperelliptic curve point counting.
Preprint, 2003.

[27] J.-F. Mestre. Lettre adressée à Gaudry et Harley, December 2000. Available at
http://www.math.jussieu.fr/~mestre/.

[28] J.-F. Mestre. Algorithmes pour compter des points en petite caractéristique en genre 1 and 2. Available
at http://www.math.univ-rennes1.fr/crypto/2001-02/mestre.ps.

[29] V. S. Miller. Use of elliptic curves in cryptography. In H. C. Williams, editor, Advances in Cryptology
- CRYPTO 1985, pages 417–426. Volume 218 of Lecture Notes in Computer Science. Springer-Verlag,
Berlin, 1986.

[30] R.T. Moenck. Fast computation of GCDs. Fifth Annual ACM Symposium on Theory of Computing, pages
142–151, 1973.

[31] P. Monsky. Formal cohomology, II: The cohomology sequence of a pair. Ann. of Math., 88:218–238,
1968.

[32] P. Monsky. Formal cohomology, III: Fixed point theorems. Ann. of Math., 93:315–343, 1971.
[33] P. Monsky. p-Adic Analysis and Zeta Functions. Lectures in Mathematics, Department of Mathematics

Kyoto University. 4. Tokyo, Japan, 1970.
[34] P. Monsky and G. Washnitzer. Formal cohomology, I. Ann. of Math., 88:181–217, 1968.
[35] J. Pila. Frobenius maps of abelian varieties and finding roots of unity in finite fields. Math. Comp.,

55(192):745–763, 1990.
[36] T. Satoh. The canonical lift of an ordinary elliptic curve over a finite field and its point counting.

J. Ramanujan Math. Soc., 15:247–270, 2000.
[37] A. Schönhage and V. Strassen. Schnelle Multiplikation grosser Zahlen. Computing (Arch. Elektron.

Rechnen), 7:281–292, 1971.
[38] R. Schoof. Elliptic curves over finite fields and the computation of square roots mod p. Math. Comp.,

44(170):483–494, 1985.
[39] M. van der Put. The cohomology of Monsky and Washnitzer. Mém. Soc. Math. France, 23:33–60, 1986.
[40] F. Vercauteren. Computing zeta functions of hyperelliptic curves over finite fields of characteristic 2.

In M. Yung, editor, Advances in Cryptology - CRYPTO 2002, pages 369–384. Volume 2442 of Lecture
Notes in Computer Science. Springer-Verlag, Berlin, 2002.

[41] F. Vercauteren. Computing Zeta Functions of Curves over Finite Fields. Ph.D. thesis, Katholieke
Universiteit Leuven, November 2003. Available at http://www.cs.bris.ac.uk/~frederik/.

[42] D. Wan. Computing zeta functions over finite fields. In Finite Fields: Theory, Applications, and Algo-
rithms, pages 131–141. Volume 225 of Contemporary Mathematics, American Mathematical Society,
Providence, RI, 1999.

