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Abstract. We describe, analyze and compare some combinations of multi-
exponentiation algorithms with representations of the exponents. We are especially
interested in the case where the inversion of group elements is fast: this is true for
example for elliptic curves, groups of rational divisor classes of hyperelliptic curves,
trace zero varieties and XTR. The methods can also be used for computing single ex-
ponentiations in groups which admit an appropriate automorphism satisfying a monic
equation of small degree over the integers.
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1. Introduction

Some public-key cryptographic protocols such as the verification of digital signatures
require the computation of the product of powers of two [1], [6], [28], [24] or three
[12] elements of a group. Furthermore, if a commutative group G admits an appropriate
automorphism σ satisfying a monic equation over the integers of degree d then the single
exponentiation ge can be computed as ge0 · σ(g)e1 · · · σ d−1(g)ed−1 for suitable integers
e0, . . . , ed−1 which in many practical instances have size O(e1/d) (see [14] and [29]). In
this context, too, the cases d = 2 and d = 3 are of particular practical relevance because
of trace zero varieties and XTR (see Section 4.2). Such computations can be performed
by computing the various powers separately and then multiplying them together: in some
special contexts this approach can lead to very good performance [9].

∗ The work described in this paper has been supported by the Commission of the European Communities
through the Fifth Framework Programme under Contract IST-2001-32613 (see http://www.arehcc.com).
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An idea due to Straus [35], and since ElGamal’s paper [12] erroneously attributed
to Shamir and called Shamir’s trick, works by reading the exponents simultaneously: it
saves several squarings and also many multiplications if some products of the bases are
precomputed. Straus’ idea can be extended in a straightforward way by using sliding
windows: to our knowledge this was first reported in [38] and applied there only to the
binary representation of the exponents. Möller has compared this basic form with other
methods such as interleaved exponentiation [20]. We combine the idea of Yen et al.
[38] with different exponent recodings and thus complement Möller’s analysis. We use
signed digit representations—first introduced in [5]—for the exponents, in particular
the non-adjacent form (NAF) [27], [22] (see Theorem 3.6 and Remark 3.7) and a new
representation of pairs of integers due to Solinas [33] (see Theorem 3.14), called the joint
sparse form (JSF). The combination with the NAF, in the case of two exponents only, has
been independently proposed in [25], where a correct performance analysis is missing.

In the next section we introduce the general form of the algorithm from [38], which
is analyzed in detail in Section 3: this forms the main part of this paper. In Section 4 the
optimal choice of parameters is discussed, and some applications are outlined.

2. The Algorithm

We now review the description of the algorithm from [38]. Let G be a commutative
group of order q ≈ 2n and let d be a (small) integer. Suppose we are given elements
g1, . . . , gd ∈ G and integers e1, . . . , ed and want to compute x :=∏d

i=1 gei
i . Write

ei =
n−1∑
j=0

ei, j 2 j (1)

with ei, j ∈ {0,±1}. In an unsigned expansion the value −1 is not allowed. In this paper
the commonly accepted notation 1̄ for −1 is used.

For the moment we assume that the chosen representation is the unsigned binary one.

The most obvious way of performing the desired computation, as already mentioned,
consists in computing the powers separately and multiplying them together. The second
most natural way is perhaps the following one, which saves some squarings.

Algorithm 2.1. Simple multi-exponentiation

Input: Group elements g1, . . . , gd and exponents e1, . . . , ed written as in (1)
in base 2 (i.e. with ei, j ∈ {0, 1})

Output:
∏d

i=1 gei
i

1. x ← 1 ∈ G
2. for j = n − 1 · · · 0 do {

x ← x2 [Skip at first iteration]
for i = 1 · · · d do { if ei, j = 1 then x ← x · gi } }

3. return x
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Using Straus’ trick [35], Algorithm 2.1 is enhanced as follows (note that Straus’ trick
is more general, since it is 2w-ary and not simply binary). First, precompute the 2d

values
∏

i∈S gi for all subsets S ⊆ {1, 2, . . . , d}. Then put x =∏d
i=1 gei,n−1

i by one table
look-up. Then, for j = n− 2, . . . , 1, 0, replace x by x2 ·∏d

i=1 g
ei, j

i by one squaring, one
table look-up and one multiplication. This method requires 2d −d−1 multiplications to
prepare the table, n− 1 squarings and on average (1− 2−d)n multiplications, 2−d being
the probability that for a fixed j , ei, j is 0 for all i = 1, 2, . . . , d. If the exponents are
written in a signed binary representation, the table E can be formed from the products∏d

i=1 gki
i with ki ∈ {0,±1}. If the cost of an inversion in the group G is negligible,

which is usually the main reason for adopting a signed binary representation, one only
needs half of those values, i.e. those where the first nonzero ki equals 1. Then some
multiplications are replaced by divisions. This method can be improved by means of a
sliding window in the same way as the square-and-multiply method [36], [16]:

Algorithm 2.2. Multi-exponentiation with a sliding window

Input: Awindow sizew, integers e1, . . . , ed as in (1) and a set E of elements of
the group G of the form

∏d
i=1 gki

i including g1, . . . , gd (the set E depends
onw and on the chosen representation of the integers ei : see Remark 2.3(4)
and Sections 3.2 and 3.3)

Output:
∏d

i=1 gei
i

1. t ← n, W ← w and x ← 1 ∈ G
2. if (ei,t−1 = 0 for i = 1, 2, . . . , d) then {

(a) t ← t − 1 and x ← x2

} else {
(b) if t ≥ W then t ← t −W else { W ← t and t ← 0 }
(c) for i = 1, 2, . . . , d do fi ←

∑W−1
j=0 ei,t+ j 2 j

(d) Let s be the largest integer s ≥ 0 such that 2s | fi for all i
(e) for i = 1, 2, . . . , d do fi ← fi/2s

(f) (i) x ← x2W−s
, (ii) x ← x ·∏d

i=1 g fi

i and (iii) x ← x2s
}

3. if t = 0 then return x elsegoto Step 2

Remark 2.3. (1) The variable W is initially set tow. If, at the last iteration, the amount
t of bits still to be parsed is smaller than w, then W will be set to t to avoid reading past
the end of the ei .

(2) At the beginning of Step 2(c) fi is the integer represented by a string of W
consecutive signed bits from the exponent ei . Now s is the largest non-negative integer
such that ei,t+u = 0 for all i and all u with 0 ≤ u ≤ s. The normalization Step 2(e) is
performed such that at least one of the integers fi is odd, in order to reduce the number
of elements of E without impacting the total number of operations done in Step 2(f).

(3) In Step 2(f) the first time it is x = 1, so a multiplication can be saved and only s
squarings are needed.

(4) If the exponents are written in base 2, using only the unsigned bits 0 and 1, then
E consists of all elements of the form

∏d
i=1 gki

i such that 0 ≤ ki < 2w and at least one
of the ki is odd. Then Step 2(f) is done with one table look-up, one multiplication and
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W squarings, where W is always equal to w, except possibly for the last iteration. In
Sections 3.2 and 3.3 a detailed analysis is given of Algorithm 2.2 coupled with the NAF
and the JSF, respectively.

3. Complexity Analysis

In this section we are concerned only with Algorithm 2.2 and its complexity.

Definition 3.1. A column is a d-tuple of digits e(t) = (e1,t , . . . , ed,t ) of the represen-
tation of integers given in (1). The joint representation of the d exponents e1, . . . , ed is
the ordered sequence e(n−1), e(n−2), . . . , e(0).

If e(n−1) �= 0 then the joint representation is said to be proper and n is its length.
The number of non-zero columns in the joint representation is called its Hamming

weight, and its density is the ratio of the Hamming weight to the length.

For simplicity we require that the joint representation of the exponents e1, . . . , ed is
proper. Thus at the first iteration of Step (2), substeps (b)–(f) are always performed. To
evaluate the number of squarings one should not consider those which can be avoided
in the first iteration, which are w minus the expected first value of s.

Algorithm 2.2 scans the joint representation of the d exponents e1, . . . , ed one column
at a time, starting with the column formed by the most significant digits in the chosen
representation. Step 2 is iterated until the joint representation has been read completely.
At every iteration, first one column is read, determining which of two possible distinct
states the algorithm assumes:

S0. A zero column is found, so the scanning advances by one column (Step 2(a)).
S1. A nonzero column is found and the scanning advances by w columns (Steps

2(b)–(f)).

The amount of multiplications performed in Step 2(f,(ii)) during a multi-exponentiation
equals the number of times the algorithms enters the second state. Let π be the proba-
bility that the column read in Step 2 is zero. After m iterations, the expected number of
columns read by the scanning process is (π+w(1−π))m. Suppose that for some m this
number is n. The number of multiplications performed by Algorithm 2.2 in Step 2(d)
is then (1 − π)m − 1 (remember that the first multiplication can be replaced by an
assignment), i.e.

n · 1− π
π + w(1− π) − 1. (2)

This is, with some adaptations, the approach followed in the next two subsections.

Definition 3.2. Let e = ∑n−1
j=0 ej 2 j be an integer. We say that an algorithm scans

(generates, rewrites . . . ) the bits ej right-to-left (resp. left-to-right) if it scans (generates,
rewrites . . . ) them from the least significant ones to the most significant ones, i.e. first
e0, then e1, e2, etc. (resp. from the most significant ones to the least significant ones,
i.e. first en−1, then en−2, and so on).



The Complexity of Certain Multi-Exponentiation Techniques in Cryptography 361

Similar definitions hold for algorithms which deal with the columns of a joint repre-
sentation of several integers.

Remark 3.3. Algorithm 2.2 processes the columns of the chosen joint representation
of the exponents left-to-right. However, most methods for producing signed binary repre-
sentations rewrite the exponents right-to-left, including Reitwiesner’s algorithm [27] and
Solinas’ algorithm for the JSF. In such situations recoding and (multi-)exponentiation
cannot be interleaved, and the recoded representations must be stored explicitly.

3.1. Unsigned Binary Inputs

Here the exponents are written in base 2, i.e. ei, j ∈ {0, 1}. The set E consists of all
elements of the form

∏d
i=1 gki

i such that 0 ≤ ki < 2w and at least one of the ki is odd. It
has cardinality 2wd − 2(w−1)d .

The bits in each representation are assumed to be zero or one with equal probability
and independent from the adjacent bits, so π = 2−d . To evaluate the number of squarings
in the main loop of the algorithm we must determine the expected value of s at the first
iteration. As all the bits are independent from each other, s ≥ u with 1 ≤ u < w with
probability 2−ud . Hence the expected value of s is

∑w−1
u=1 2−ud = (1−2−d(w−1))/(2d−1).

We thus have the following result:

Theorem 3.4. Suppose that in Algorithm 2.2 the unsigned binary representation is used
for the exponents, and that their joint representation has length n. Then the set E has
cardinality 2wd−2(w−1)d and its computation requires 2wd−2(w−1)d−d multiplications
and d squarings. The expected number of multiplications in the algorithm’s main loop is
n(1/(w+ (2d −1)−1))−1 and that of the squarings is n−w+ (1−2−d(w−1))/(2d −1).

Remark 3.5. In the case w = d = 2, the set E consists of the values ga
1 gb

2 with
0 ≤ a, b ≤ 3 and at least one of a, b odd. To determine them one has to compute and
store g2

1 and g3
1, as well as g2

2 and g3
2. This requires two squarings and two multiplications.

Computing the remaining eight values requires eight further multiplications.

3.2. Using the NAF

A non-adjacent form (abbreviated as NAF) is the signed binary representation of an
integer e =∑n−1

j=0 bj 2 j with bj ∈ {0,±1} and bj bj−1 = 0. Each integer admits an NAF,
which is uniquely determined. It is a signed binary representation of minimal Hamming
weight and it has expected density 1

3 (see [22] and [2] for proofs).

Theorem 3.6. Suppose that in Algorithm 2.2 the exponents are input in NAF, and
that their joint representation is n bits long. The set E has cardinality (I d

w − I d
w−1)/2

where Iw = (2w+2 − (−1)w)/3. The expected number of squarings in the main loop
of the algorithm is n − w + 〈s〉 where 〈s〉 = ( 2

3

)d ∑w−1
t=1

(
1
2

)(w−1−t)d(
1 − (− 1

2 )
t
)(

1 −
(− 1

2 )
t+2
)d−1 + O(2−n). The value of 〈s〉 approaches

(
2
3

)d
/(1 − 2−d) for large values

of w.
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In the cases d = 1, 2 and 3 respectively, the expected number of multiplications is
n · (1− π(d))/(w − (w − 1)π(d))− 1 where

π(1) = 4
(
2w − (−1)w

)
7 · 2w − 4 · (−1)w

, π(2) = 16(4w − 1)

43 · 4w + 24 · (−2)w − 16
and

(3)

π(3) = 64
(
2w + (−1)w

)(
8w − (−1)w

)
253 · 16w + 397 · (−8)w + 324 · 4w + 80 · (−2)w − 64

.

In particular, for d = 1 this equals n · 1/(w + 4
3 (1− (− 1

2 )
w))− 1.

Remark 3.7. In the case w = d = 2, the set E consists of the values ga
1 gb

2 with either
0 < a ≤ 2 and−2 ≤ b ≤ 2 where at least one of a, b odd, or a = 0 and b = 1. A chain
for computing E by six multiplications or multiplications with the inverse is

{
g1, g2, g1g2, g1g−1

2 , g1g2
2, g1g−2

2 , g2
1 g2, g2

1 g−1
2

}
.

For the special case d = 1, a related analysis for fixed windows (rather than sliding
windows as in Algorithm 2.2) appears in [11].

The remainder of this subsection is devoted to the proof of Theorem 3.6.
First note that the largest integer representable by aw-bit number in NAF is (10 · · · 01)2

for odd w and (10 · · · 10)2 for even w: it is easy to see that this number is Tw =
(2w+2−3− (−1)w)/6. Hence, there are Iw = (2w+2− (−1)w)/3 integers in the interval
[−Tw, · · · , Tw]. Now E consists of all elements of the form

∏d
i=1 gki

i such that |ki | ≤ Tw
for i = 1, 2, . . . , d , at least one of the ki is odd and the first nonzero element in the
sequence k1, k2, . . . , kp is positive. In this way, if in Step 2(f(ii)) the first nonzero fi

is positive we compute x ← x ·∏d
i=1 g fi

i , otherwise we compute x ← x/
∏d

i=1 g− fi

i .
Hence we need only (I d

w − I d
w−1)/2 elements in E .

Definition 3.8. A joint representation of integers in NAF will be called a joint NAF.

We model the left-to-right scanning of the joint NAF performed by Algorithm 2.2 as
a Markov chain. In each iteration one column is read and the algorithm assumes one of
d + 1 possible distinct states, defined by the number of nonzero entries in the columns:

S ′0. A zero column is found, so the scanning advances by one column.
S ′k . (For 1 ≤ k ≤ d .) A column is found with exactly k nonzero entries and the

scanning advances by w columns.

To determine the transition probability from state S ′
 to state S ′k we need a few pre-
liminary results.

We begin reviewing probably the most common method to compute the NAF∑n
j=0 νj 2 j of a given integer e with |e| < 2n .
At the beginning we put j = 0. We repeat the following two steps until e = 0:

(i) If e is even, then halve e, put νj = 0 and increment j by one.
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(ii) If e is odd, then we can always choose νj ∈ {+1,−1} such that e ≡ νj mod 4.
Then we subtract νj from e: at this point e is divisible at least by 4 and so (i) is
repeated at least twice, hence the output is guaranteed to satisfy the non-adjacency
property.

In practice, the variable e is not modified and we work with a carry bit.
Since a random integer is even with probability 1

2 , and congruent to 1 or −1 modulo
4 with probability in each case 1

4 , we have the following result.

Lemma 3.9. The probability that in an NAF the digit immediately to the left of a 0 is
another 0 is 1

2 and that it is 1 or −1 is in each case 1
4 .

For our analysis we need however the probabilities that the digits to the right of a given
one are zeros or nonzeros. By the lemma just proved, an (infinite) random NAF can be
obtained essentially by outputting digit strings of length 1 or 2:

(0) with probability 1
2 ,

(1 0) with probability 1
4 and

(1̄ 0) with probability 1
4 .

However, we can regroup the digits of the output of the above process in a different way.
This is the same as outputting the “reversed” strings:

(0) with probability 1
2 ,

(0 1) with probability 1
4 and

(0 1̄) with probability 1
4 .

This equivalence shows that random NAFs look essentially the same in both directions,
so an analogue of Lemma 3.9 holds with right in lieu of left.

Lemma 3.10. The probability that in an NAF the digit immediately to the right of a 0
is another 0 is 1

2 and that it is 1 or −1 is in each case 1
4 .

We now generalize this last result by determining the probabilities that a bit ej,i−w
(resp. ej,i+w) which is w places to the right (resp. left) of ej,i is 0 or 1, depending on the
value of ej,i and w.

Lemma 3.11. If ej,i = 0, then ej,i−w = 0 with probability πw,0 and ej,i−w �= 0 with
probability πw,∗, where

πw,0 = 2
3 + 1

3

(− 1
2

)w
and

(4)
πw,∗ = 1− πw,0 = 1

2πw−1,0 = 1
3 − 1

3

(− 1
2

)w
.

Since a nonzero bit is always followed by a zero, we also have that if ej,i �= 0, then
ej,i−w = 0 with probability πw−1,0 and ej,i−w �= 0 with probability πw−1,∗.

The same probabilities hold with i − w replaced by i + w.
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Proof. Clearly, πw,0 + πw,∗ = 1. By Lemma 3.10 we have π1,0 = π1,∗ = 1
2 and{

πi−1,0 = πi,∗ + 1
2πi,0 = 1− 1

2πi,0

πi−1,∗ = 1
2πi,0.

Now (4) follows easily by induction. The last claim follows by using Lemma 3.9 instead
of Lemma 3.10.

We are now in position to model the left-to-right scanning process as a Markov chain
with states S ′0, . . . ,S ′d . Denote by τ
,k the transition probability from state S ′
 to state S ′k .

Suppose that a zero column is read. Then no window is being formed and at the next
iteration the scanning algorithm will read the next column to the right. The probability
τ0,k that this column contains exactly k nonzero entries is 2−k

(d
k

)
.

On the other hand, suppose that a column c with exactly 
 �= 0 nonzero entries has
been read. The numbers represented by this column and the next w − 1 columns at its
right are the exponents f1, . . . , fd in Step 2(c). The next column checked by the left-
to-right scanning process, say c′, will then be the one exactly w places to the right of c.
Now τ
,k is the probability that c′ has exactly k nonzero entries (where 0 ≤ k ≤ d). For
some integer r , in exactly r of the positions occupied by the 
 nonzero digits in c there
will be nonzero bits in the respective positions in c′, and in the positions of the remaining

 − r nonzero bits in c there will be zeros in c′. Therefore, to exactly k − r of the zero
bits in c will correspond nonzero bits in c′, and to the other d − 
 − (k − r) zeros of c
will correspond zeros in c′. Thus, we have

τ
,k =
∑

r : 0≤r≤
,0≤k−r≤d−


(



r

)(
d − 

k − r

)
π r
w−1,∗π


−r
w−1,0π

k−r
w,∗ π

d−
−(k−r)
w,0

=
min{
,k}∑

r=max{0,k+
−d}

(



r

)(
d − 

k − r

)
2
−rπ 
+k−2 r

w,∗
(
1− πw,∗

)(d−
−k)+r(
1− 2πw,∗

)r
.

Put

Td = (τ
,k)d
,k=0 =




1/2d τ1,0 τ2,0 · · · τd,0(d
1

)
/2d τ1,1 τ2,1 · · · τd,1

...
...

...
. . .

...( d
d−1

)
/2d τ1,d−1 τ2,d−1 · · · τd,d−1

1/2d τ1,d τ2,d · · · τd,d


 .

The limiting probabilities σk , 1 ≤ k ≤ d, of the algorithm being in state S ′k , satisfy∑d
k=1 σk = 1 and Td · (σ0 · · · σd)

′ = (σ0 · · · σd)
′. Hence, upon putting

Ud =




1 1 1 · · · 1
d/2d τ1,1 − 1 τ2,1 · · · τd,1(d

2

)
/2d τ1,2 τ2,2 − 1 · · · τd,2

...
...

...
. . .

...

d/2d τ1,d−1 τ2,d−1 · · · τd,d−1

1/2d τ1,d τ2,d · · · τd,d − 1



.
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we have Ud · (σ0 · · · σd)
⊥ = (1, 0, . . . , 0)⊥. Hence, provided that Ud is invertible,

(σ0 · · · σd)
⊥ = U−1

d · (1, 0, . . . , 0)⊥ and in particular σ0 is the value in the top left
corner of U−1

d .
We are interested in Ud only in the cases d = 1, 2 and 3. Upon putting α = 2w and

β = (−1)w we obtain

U1 =
(

1 1
1
2

α+2β
3α − 1

)
,

U2 =




1 1 1

1
2

4α2+αβ+4β2

9α2 − 1 4(α−β)(α+2β)
9α2

1
4

(α−β)(α+2β)
9α2

(α+2β)2

9α2 − 1


 and

U3 =




1 1 1 1

3
8

(2α+β)(2α2−αβ+2β2)

9α3 − 1 4(α3−β3)

9α3
4(α−β)2(α+2β)

9α3

3
8

2(α3−β3)

9α3
(α+2β)(2α2−αβ+2β2)

9α3 − 1 2(α−β)(α+2β)2

9α3

1
8

(α−β)2(α+2β)
27α3

(α−β)(α+2β)2

27α3
(α+2β)3

27α3 − 1


 .

The above matrices have been written down using maple [7]. With the same software it
is immediate to verify that the matrix Ud is invertible for d = 1, 2 and 3, and to compute
σ0, i.e. the value of π in the introductory part of this section. We thus obtain the values
π = π(d) given in (3), Theorem 3.6.

We now estimate the value of s at the first iteration of the main loop.
By virtue of Lemma 3.11, if ej,n−1 = 0 then ej,n−1−t = 0 with probability 2

3+ 1
3 (− 1

2 )
t ,

whereas if ej,n−1 = 1 then ej,n−1−t = 0 with probability 2
3 + 1

3 (− 1
2 )

t−1. Now one of the
bits ej,n−1 for j = 1, . . . , d is nonzero by assumption (the joint representation is proper)
and all others can be considered randomly distributed: We now determine the exact
probabilities with which the bits 0 and ±1 occur as the most significant coefficient in a
an n-bit NAF, in order to compute the probability that, in the corresponding expansions,
the (n − 1− t)th bit is 0.

We know that the interval [−Tn, . . . , Tn] contains In = 1
3

(
2n+2− (−1)n

)
integers, and

it is easy to see that exactly In−1 = 1
3

(
2n+2 − (−1)n

)
of those lie in [−Tn−1, . . . , Tn−1],

and In − In−1 = 1
3

(
2n+1− 2(−1)n

)
do not. Hence, the probability that a random integer∑n−1

i=0 ei 2i of up to n bits in NAF is actually of length at most n − 1 (or, in other words,
that en−1 = 0) is

2n+1 + (−1)n

2n+2 − (−1)n
= 1

2
+ O(2−n),

where the implied constant in the error term is absolute and can be made explicit. (In
fact ∣∣∣∣2n+1 + (−1)n

2n+2 − (−1)n
− 1

2

∣∣∣∣ ≤ c

2n
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for all c > 3
8 and n large enough. If c = 2

5 then the inequality holds for all n ≥ 1.) The
same consideration holds for the probability that such an integer be exactly of length n.

Therefore, the probability that the t th leftmost column e(n−1−t) of the joint represen-
tation is zero is

χt =
(

2
3 + 1

3

(− 1
2

)t−1
) (

2
3 + 1

12

(− 1
2

)t−1 + O(2−n)
)d−1

and the probability that the columns e(n−w), e(n−w+1), . . . , e(n−1−t) are all zero is(
1
2

)(w−1−t)d
χt by virtue of Lemma 3.10. It follows that the expected number of zero

columns at the beginning of the sequence formed by the columns e(n−w), e(n−w+1), . . . ,

e(n−2) (recall that by assumption e(n−2) is nonzero) is 〈s〉 =∑w−1
t=1

(
1
2

)(w−1−t)d
χt , i.e.

〈s〉 =
w−1∑
t=1

(
1
2

)(w−1−t)d
(

2
3 + 1

3

(− 1
2

)t−1
) (

2
3 + 1

12

(− 1
2

)t−1 + O(2−n)
)d−1

= (
2
3

)d
w−1∑
t=1

(
1
2

)(w−1−t)d
(

1− (− 1
2

)t
) (

1− (− 1
2

)t+2
)d−1
+ O(2−n), (5)

where the implied constant in the error term in (5) depends on d alone, and, for large w,

〈s〉 =
(2

3

)d w−1∑
t=1

(1

2

)(w−1−t)d
+ O(σ−w + 2−n)

=
(2

3

)d 1

1− 2−d
+ O(σ−w + 2−n) (6)

for some constant σ > 1 which can be determined explicitly. This completes the proof
of Theorem 3.6.

Remark 3.12. Consider the case d = w = 2, which is quite interesting in view of
the applications. Computing 〈s〉 exactly assuming n = 40, resp. 80, and with formula
(5) gives results which differ by less than 2−39, resp. 2−79. For larger values of n the
difference is accordingly smaller. For this choice of the parameters 〈s〉 ≈ 3

4 as computed
by (5). If d = 2 andw = 3 then 〈s〉 ≈ 1

2 and for d = 3 andw = 2 we have 〈s〉 ≈ 9
16 . For

these choices of the parameters d andw, the values given by (6) are extremely imprecise.

Remark 3.13. The following simple, alternative proof of Lemma 3.10, is by Robert
Israel.

To establish dependency probabilities between adjacent digits in all NAFs, we can
consider random infinite NAFs. Hence we consider representations of real numbers:
x =∑∞i=i0

ai 2−i . The numbers starting with 0. (i.e. with i0 = 0 and a0 = 0) range from
0.1̄01̄0 · · · = − 1

2 − 1
8 − · · · = − 2

3 to 0.1010 · · · = 2
3 . Of these, those beginning with 0.1̄

range from− 2
3 to 0.1̄0101 · · · = − 1

3 , i.e. lie in the interval
[− 2

3 ,−1
3

]
, those starting with

0.0 are in
[− 1

3 ,
1
3

]
, and those beginning with 0.1 are in

[
1
3 ,

2
3

]
. The same proportions

occur for any initial segment ending in 0. So, after a 0, the probabilities for the next digit
are 1

4 for 1̄, 1
2 for 0 and 1

4 for 1.
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3.3. Using the JSF

The joint sparse form (JSF) has been introduced by Solinas [33] to make the Straus–
Shamir trick more effective for elliptic curves. It applies however to all groups where
inversion is for free. It has been defined only for pairs of integers. Accordingly, we
restrict ourselves to the case d = 2 here. We also assume that w = 2: this assumption
fits naturally with the defining properties of the JSF, and by a good stroke of luck this
brings the highest improvement (over the methods studied before) for exponents in the
range in which we are interested. For precise comparisons see Section 4.1, in particular
the row for w = 2 in Table 1 and Remark 4.1(1).

In this subsection we prove the following theorem.

Theorem 3.14. Suppose that in Algorithm 2.2 Solinas’ JSF is used for the exponents,
and w = d = 2. Assume further that the JSF of the exponents has length n. The
expected number of multiplications in the main loop of the algorithm is 3

8 n − 1, and the
heuristically expected number of squarings is n − 2+ 1

2 = n − 3
2 . The set E consists of

the 12 elements ga
1 gb

2 with (i) a = 0 and b = 1, (ii) a = 1 and −2 ≤ b ≤ 2, (iii) a = 2
and b ∈ {±1,±3} and (iv) a = 3 and b = ±2. A chain for precomputing E is{

g1, g2, g1g2, g1g−1
2 , g1g2

2, g1g−2
2 ,

g2
1 g2, g2

1 g−1
2 , g2

1 g3
2, g2

1 g−3
2 , g3

1 g2
2, g3

1 g−2
2

}
. (7)

We assume that the reader is acquainted with the results in Solinas’ cited technical
report, from which we recall however a few important facts. The joint Hamming weight
of the JSF of two integers is minimal among all (un)signed joint binary representations of
the same pair of integers. Its average density is 1

2 —which gives the heuristic estimate of
the squarings in the main loop—whereas that of the joint unsigned binary representation
and of the joint NAF is 3

4 and 5
9 , respectively. It is natural then to expect that using the

JSF in Algorithm 2.2 would lead to an improvement over the complexities of the other
two cases even if w > 1.

The JSF is uniquely determined by the following properties:

(JSF-1) Of any three consecutive columns, at least one is zero.
(JSF-2) Adjacent nonzero bits have the same sign, i.e. ei, j+1ei, j = 0 or 1.
(JSF-3) If ei, j+1ei, j �= 0 then e3−i, j+1 �= 0 and e3−i, j = 0.

Solinas provides proofs for existence and uniqueness of the JSF, as well as an algorithm
for determining it. His algorithm generates the JSF right-to-left.

Property (JSF-3) suggests that the representation is particularly suitable for an im-
plementation of Algorithm 2.2 with a window width w = 2. As already announced
we restrict ourselves to this case from now on. Further, this choice also simplifies the
complexity analysis, by the following observation: Algorithm 2.2 scans a joint represen-
tation left-to-right in order to form windows, but consecutive nonzero columns always
belong to one window regardless of the direction in which we are scanning the joint rep-
resentation. In fact, by property (JSF-3) there can be at most two consecutive nonzero
columns, which must be preceded and followed by zero columns or by the boundaries
of the representation.
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Therefore to estimate the number of nonzero windows (which corresponds to the
number of multiplications performed by Algorithm 2.2 plus one) we scan our input
right-to-left. In the analysis of his algorithm Solinas considers three states which he calls
States A, B and C . In State C this algorithm outputs a zero column. In States A or B it
outputs nonzero columns. State A is always followed by State B, State B by State C , and
the transition probabilities are P(C �→ A) = 1

4 , P(C �→ B) = 1
2 and P(C �→ C) = 1

4 .
We thus consider a Markov chain with three states:

S∗0 . A nonzero column is output by State A of Solinas’ algorithm: this column will
be the second column in a “square” window when read left-to-right, as the next
state in Solinas’ algorithm is always State B.

S∗1 . A nonzero column is output by State B of Solinas’ algorithm: this column will be
the first column in a window when read left-to-right, whereas the second column
is nonzero if we are coming from state A or zero if we come from State C .

S∗2 . A zero column is output by State C of Solinas’ algorithm.

The number of times we enter inS∗3.3 equals the number of windows formed and thus equal
to the number of multiplications performed by the algorithm. The transition probability
matrix is

T = (P(S∗i �→ S∗j ))2
i, j=0 =


0 1 0

0 0 1
1
4

1
2

1
4




which yields limiting probabilities π0 = 1
8 , π1 = 3

8 and π2 = 1
2 . Hence the expected

number of multiplications performed by Algorithm 2.2 is 3
8 n − 1 with n-bit inputs.

According to the defining properties of the JSF, the admissible nonzero columns
(e1, j

e2, j

)
and windows

(e1, j e1, j−1

e2, j e2, j−1

)
with both columns nonzero that, up to sign, can be found are

[
0
1

]
,

[
1
0

]
,

[
1
±1

]
,

[
0 1
±1 0

]
,

[
1 0
0 ±1

]
,

[
1 0
ε ε

]
with ε = ±1, and

[
1 1
±1 0

]
,

thus proving the statements about E .

4. Comparisons and Applications

4.1. Optimal Parameters for Double and Triple Exponentiation

We determine for which values of the parameter w the algorithms run fastest, given the
bit length n of the inputs and the number d of the exponents. For simplicity we ignore
the number of squarings performed in the main loop and we consider the performance
of the algorithms only for d = 2 and 3.

Suppose first d = 2. Table 1 contains the cardinality of E and the sum of the number
of operations needed to build it with the expected number of multiplications in the main
loop of the algorithm. This performance parameter (similar to that used for instance
in [20]) is a natural way of comparing exponentiation algorithms: it is easy to adapt it to
the relative costs of squarings by adding csn, where cs is the cost of a squaring relative to
that of a multiplication. In the column for the JSF there is of course no entry for w = 3.
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Table 1. Cardinality of E and number of operations for d = 2.

Unsigned NAF JSF

w #E # Ops #E # Ops #E # Ops

1 3 3
4 n 4 1+ 5

9 n 4 1+ 1
2 n

2 12 9+ 3
7 n 8 5+ 11

27 n 12 9+ 3
8 n

3 48 45+ 3
10 n 48 45+ 32

117 n

Table 2 collects the analogous data for d = 3. Note that the JSF, being defined only
for d = 2, is not represented.

Remark 4.1. (1) Assume d = 2 and consider Table 1. Using the unsigned binary
representation, the optimal choice ofw isw = 1 for n ≤ 28 andw = 2 for 28 ≤ n ≤ 280.
In particular the parameter w = 2 is optimal for the exponents sizes which interest us.

With the NAF the thresholds are n = 27 and n = 14040
47 = 298.72, respectively.

With the JSF the parameter w = 1 is optimal for n ≤ 64. Furthermore, using the JSF
withw = 2 is better than using the NAF with eitherw = 2 or 3 when 124 < n ≤ 354: in
the range which concerns us most, using the NAF can be marginally slower but requires
fewer precomputations.

(2) In the case d = 3 (see Table 2) the thresholds are higher, as intuition suggests.
Using the unsigned binary representation, the optimal choice ofw isw = 1 for n ≤ 120,
and w = 2 for 121 ≤ n ≤ 2640. In the NAF case, w = 1 is optimal for n ≤ 137 and
w = 2 for 138 ≤ n ≤ 3841.

If w = 1, the NAF leads to better performance as long as n > 35, if w = 2 the NAF
will always yield a better algorithm. If w = 3, the unsigned binary representation is
better for n ≤ 7264.

Remark 4.2. We mention other (multi-)exponentiation techniques, which can also be
applied to all groups where our methods can be used. One approach has been called inter-
leaved exponentiation by Möller [20]. It is actually an idea which has been rediscovered
several times: for an earlier description see [19], and a two base case appears in [30].
In terms of exponent recording it can be seen as Algorithm 2.1 applied to a different,
less dense, representation of the exponents: As an example we combine it with signed
sliding windows [9], [8], [31], [32] of width w = 4. The resulting algorithm performs

Table 2. Cardinality of E and number of operations for d = 3.

Unsigned NAF

w #E # Ops #E # Ops

1 7 3+ 7
8 n 13 9+ 19

27 n

2 56 52+ 7
15 n 49 45+ 131

297 n

3 448 444+ 7
22 n 603 599+ 1082

3645 n
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double exponentiations in a group with free inversion with 15+ n/3 multiplications and
about n squarings, for n-bit exponents, using 16 precomputed values. For n = 160 the
performance is similar to that of the method analyses in this paper with the JSF, but the
memory usage is greater. Möller [21] also extends the sliding window methods a bit to
get possibly better performance, by allowing a few more precomputations: his signed
fractional window method with w = 3.5 applied to interleaved double exponentiation
uses 12 precomputed values, exactly as sliding windows of width 2 over a JSF, but uses
9+ 4

11 n multiplications (and about n squarings), which is 1
88 n less multiplications than

sliding windows over a JSF.

4.2. Applications

As mentioned in the Introduction, in cryptography multi-exponentiation are normally
used to verify digital signatures, and in this case only double and triple exponentiations
are needed.

However, in some algebraic structures the computation of a single exponentiation
can be reduced to such a product: In fact, the arguments in [14] essentially apply to
the problem of computing ge in a group G of order 
, where G admits an efficiently
computable automorphism σ acting on G like the exponentiation by an integer s. This
integer is a root of the characteristic polynomial of σ modulo 
. If σ is such that for
every e ∈ [0, . . . , 
 − 1] one can write e ≡ e1 + e2s (mod 
) with e1, e2 = O(

√

),

then computing ge1 ·σ(g)e2 is usually faster than computing ge. Gallant et al. reduce this
problem to that of finding a short vector in a lattice, which they solve using the extended
euclidian algorithm. A gap in their arguments is filled in [29]. In general it is possible
to write e =∑d−1

i=0 ei si if the minimal polynomial of σ has degree at least d, where the
bounds on the ei depend on the coefficients of the minimal polynomial [29, Theorem 5].

Apart from some families of elliptic [14] and hyperelliptic [17], [26], [10] curves,
there are other groups which profit from such techniques. Notable examples are the
XTR group and trace zero varieties, which we now briefly recall.

The XTR cryptosystem [37] makes use of the subgroup G of order p2 − p + 1
of the multiplicative group of the finite field extension Fp6/Fp. In the original XTR
cryptosystem elements from the field Fp6 are replaced by their traces over Fp2 , leading
to very good performance. Lenstra and Stam in [34] construct the field extension by
means of an optimal normal basis and work directly with the group elements instead
of the traces. With this representation inversion is for free and exponentiations can be
reduced to double exponentiations with exponents bounded by the square root of the
group order.

A trace zero variety is an Abelian variety constructed by Weil Descent [13] from an
elliptic curve [23] or the Jacobian of a hyperelliptic curve [17], [18]: Let C be a hyperel-
liptic curve of genus g defined over a prime field Fp, and assume that the characteristic
polynomial of the Frobenius endomorphism σ on the JacobianJC of C is known. Let d be
a (small) odd prime. The trace zero variety (ofJC relative to the extension Fpd/Fp) is the
kernel of the map D �→ ((σ d − 1)/(σ − 1))(D) on the group of rational divisor classes
of C over the finite field extension Fpd . It is an Abelian subvariety of JC of dimension
(d − 1)g over Fp, which denote by G. We call G0 the subgroup of G of large prime
order 
 in which we actually implement the cryptographic primitives. It is 
 ≈ p(d−1)g .
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It has been noted [23], [18] that if (d − 1)g ≤ 4 then the best attacks known to work
on trace zero varieties have complexity O(

√
G0). Hence we restrict our attention to the

cases g = 1 with d = 3 or 5 and g = 2 with d = 3.
The automorphism σ of G0 induced from the Frobenius automorphism of Fpd/Fp has

degree d . Hence a single exponentiation in G0 can be computed as a (d − 1)-uple expo-
nentiation with exponents O(
1/d), which require less group operations. Furthermore,
group operations on a trace zero variety are faster than on an elliptic or hyperelliptic
curve of comparable size: this is a consequence of the fact that the field operations to
be performed are the same for elliptic or hyperelliptic curves over prime fields, but the
arithmetic in the extension field is faster than in a prime field of the same size (most
arguments of [3] apply to this situation, too). This makes trace zero varieties interesting
and worthy of deeper analysis for consideration in public-key cryptosystems.
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[11] Ö. Eǧecioǧlu and Ç. K. Koç. Exponentiation using canonical recoding. Theoretical Computer Science
129(2), 407–417, 1994.

[12] T. ElGamal. A public-key cryptosystem and a signature scheme based on discrete logarithms. IEEE
Transactions on Information Theory IT-31 (1985), 469–472.

[13] G. Frey. Applications of arithmetical geometry to cryptographic constructions. In Finite Fields and
Applications (Augsburg, 1999), pp. 128–161. Springer-Verlag, Berlin, 2001.

[14] R.P. Gallant, R.J. Lambert, and S.A. Vanstone. Faster point multiplication on elliptic curves with efficient
endomorphisms In Advances in Cryptology – CRYPTO 2001 Proceedings, pp. 190–200. LNCS 2139.
Springer-Verlag, Berlin, 2001.

[15] P. Grabner, C. Heuberger, and H. Prodinger. Distribution results for low-weight binary representations
for pairs of integers. Theoretical Computer Science 319 (2004), 307–331.

[16] D. E. Knuth. The Art of Computer Programming. Vol. 2, Seminumerical Algorithms, third edn. Addison-
Wesley Series in Computer Science and Information Processing. Addison-Wesley, Reading, MA, 1997.

[17] T. Lange. Efficient Arithmetic on Hyperelliptic Curves. Ph.D. Thesis, Universität Essen, 2001.
[18] T. Lange. Trace-Zero Subvarieties for Cryptosystems. Ramanujan Journal of Mathematics, to appear.
[19] C.H. Lim. Efficient multi-exponentiation and application to batch verification of digital signatures. Un-

published manuscript. August 2000. See http://dasan.sejong.ac.kr/~chlim/english pub.

html
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