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Abstract. Private information retrieval (PIR) enables a user to retrieve a data item
from a database, replicated among one or more servers, while hiding the identity of
the retrieved item. This problem was suggested by Chor, Goldreich, Kushilevitz, and
Sudan in 1995, and since then efficient protocols with sub-linear communication were
suggested. However, in all these protocols the servers’ computation for each retrieval
is at least linear in the size of entire database, even if the user requires only a single bit.

In this paper we study the computational complexity of PIR. We show that in the
standard PIR model, where the servers hold only the database, linear computation cannot
be avoided. To overcome this problem we propose the model of PIR with preprocessing:
Before the execution of the protocol each server may compute and store polynomially
many information bits regarding the database; later, this information should enable the
servers to answer each query of the user with more efficient computation.

∗ A preliminary version of this work appeared in [10]. Part of the work was done while the first author was
at the Division of Engineering and Applied Sciences, Harvard University, supported by Grants ONR-N00014-
96-1-0550 and ARO-DAAL03-92-G0115. Part of the second author’s work was done at DIMACS and AT&T
Labs – Research. This work was done while the third author was at AT&T Labs – Research, and at the Lab
for Computer Science, Massachusetts Institute of Technology.
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We demonstrate that preprocessing can significantly save work. In particular, we
construct for any constants k ≥ 2 and ε > 0: (1) a k-server protocol with O(n1/(2k−1))

communication, O(n/log2k−2 n) work, and O(n1+ε) storage; (2) a k-server protocol
with O(n1/k+ε) communication and work and nO(1) storage; (3) a computationally pri-
vate k-server protocol with O(nε) communication, O(n1/k+ε)work, and nO(1) storage;
and (4) a protocol with a polylogarithmic number of servers, polylogarithmic commu-
nication and work, and O(n1+ε) storage. On the lower bounds front, we prove that the
product of the extra storage used by the servers (i.e., in addition to the length of the
database) and the expected amount of work is at least linear in n. Finally, we suggest
two alternative models to saving computation, by batching queries and by allowing a
separate off-line interaction per future query.

Key words. Privacy, Distributed databases, Information-theoretic protocols, Sub-
linear computation, Sub-linear communication.

1. Introduction

As the Internet becomes ubiquitous, it is essential to protect the privacy of users. An
important aspect of this problem is hiding the information a user is interested in. For
example, an investor might want to know the value of a certain stock in the stock-market
without revealing the identity of this stock, or a company might want to search for
a certain patent without revealing the patent’s identity. Towards this end, Chor et al.
[13] introduced the problem of Private Information Retrieval (PIR). A PIR protocol
allows a user to access a database such that the server storing the database does not gain
any information on the records the user read. To make the problem more concrete, the
database is modeled as an n bit string x , and the user has some index i and is interested
in privately retrieving the value of xi .

Since its introduction, PIR has been an area of active research, and various settings and
extensions have been considered (e.g., [1], [29], [12], [23], [19], [18], [15], [11], [8], [20],
[16], and [24]). Most of the initial work on PIR has focused on the goal of minimizing the
communication, which was considered the most expensive resource. However, despite
considerable success in realizing this goal, the real-life applicability of the proposed
solutions remains questionable. One of the most important practical restrictions is the
computation required by the servers in the existing protocols; in all protocols described
in previous papers the (expected) work of the server(s) for each query is at least n, the
size of the entire database. This computation overhead may be prohibitive, since the
typical scenario for using PIR protocols is when the database is big.

In this paper we initiate the study of using preprocessing to reduce server computation.1

We demonstrate that, while without any preprocessing linear computation is unavoid-
able, with preprocessing and some extra storage, computation can be reduced. Such
a tradeoff between storage and computation is especially motivated today; as storage
becomes very cheap, the computation time emerges as the more important resource.
We also provide some lower bounds on this tradeoff, relating the amount of additional
storage and the computation required. Finally, we present some alternative models to

1 Gertner et al. [18] have used preprocessing in a different model, allowing most computation to be moved
to special purpose servers (though not reducing the total work). See more below.



Reducing the Servers’ Computation in Private Information Retrieval 127

saving computation. While this paper is still within the theoretical realm, we hope that
the approach introduced here will lead to PIR protocols which are implemented in
practice.

1.1. Previous Work

Before proceeding, we give a brief overview of some known results on PIR. The simplest
solution to the PIR problem is that of communicating the entire database to the user.
This solution is impractical when the database is large. However, if the server is not
allowed to gain any information about the retrieved bit, then the linear communication
complexity of this solution is optimal [13]. To overcome this problem, Chor et al. [13]
suggested that the user accesses replicated copies of the database kept on different servers,
requiring that each server gets absolutely no information on the bit the user reads (thus,
these protocols are called information-theoretic PIR protocols). The best information-
theoretic PIR protocols known prior to our work are summarized below (see Section 1.4
for some updated results): (1) a two-server protocol with communication complexity of
O(n1/3) bits [13], (2) a k-server protocol, for any constant k > 1, with communication
complexity of O(n1/(2k−1)) bits [1] (improving on [13], see also [20] and [6]), and (3) a
protocol with O(log n) servers and communication complexity of O(log2 n log log n)
bits [4], [5], [13]. In all these protocols it is assumed that the servers do not communicate
with each other. Extensions to t-private protocols, in which the user is protected against
collusions of up to t servers, have been considered in [13], [20], and [6].

A different approach for reducing the communication is to limit the power of the
servers; i.e., to relax the perfect privacy requirement into computational indistinguisha-
bility against computationally bounded servers (thus, these protocols are called compu-
tational PIR protocols). Kushilevitz and Ostrovsky [23], following a two-server protocol
of Chor and Gilboa [12], proved that in this setting one server suffices; under a stan-
dard number-theoretic intractability assumption they obtain, for every constant ε > 0,
a single-server protocol with communication complexity of O(nε) bits. Essentially the
same protocol can be based on any homomorphic encryption scheme [26], [30], [31].
Cachin et al. [11] present a single-server protocol with polylogarithmic communica-
tion complexity, based on a new number-theoretic intractability assumption called the
�-hiding assumption. Kushilevitz and Ostrovsky [24] construct a protocol based on a
very general assumption, the existence of trapdoor permutation, with communication
complexity n(1 − 1/polylog n). Other works in this setting are [29], [8], and [16].

Gertner et al. [18] were the first to address the servers’ computation (see also [25]).
They present a model for PIR utilizing special-purpose privacy servers, achieving stronger
privacy guarantees and small computation for the original server holding the database.
While their protocols save computation for the original server, the computation of the
special-purpose servers (who do not hold the database) is still linear for every query. In
contrast, our goal is to reduce the total computation by all servers. Di-Crescenzo et al.
[15] present another model for PIR using special-purpose servers. Their main goal is
to shift most of the communication in PIR protocols to an off-line stage. However, by
extending their technique, it is possible to shift most of the servers’ work to an off-line
stage as well, at the expense of requiring additional off-line work for each future query.
This application is discussed in Section 7. Finally, Itoh [22] presents protocols slightly
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improving the computation of the servers compared with the protocols of [13]; however
the time complexity of his protocols is still higher than n.

1.2. Our Results

As a starting point for this work, we prove that in any k-server protocol the total expected
work of the servers is at least n. Consequently, we suggest the model of PIR with
preprocessing: Before the first execution of the protocol each server computes and stores
some additional information regarding the database. These bits of information are called
the extra bits (in contrast to the original data bits). Later, this information should enable
the servers to perform less computation for each of the (possibly many) queries of the
users.2 To make this model reasonable, the number of extra bits each server is allowed
to store in the preprocessing stage is polynomial in n.3

We show that preprocessing can save computation. There are three important perfor-
mance measures that we would like to minimize: communication, servers’ work (i.e.,
computation), and storage. Using different constructions, we obtain the following in-
comparable tradeoffs:

1. For any ε > 0 and constant k ≥ 2, we construct a k-server protocol with
O(n1/(2k−1)) communication, O(n/(ε log n)2k−2) work, and O(n1+ε) extra bits
(where n is the size of the database). The importance of this protocol is that it
saves work without increasing the communication compared with the best known
information-theoretic PIR protocols.4 We define a combinatorial problem for which
a better solution will further reduce the work in this protocol.

2. Our second construction moderately increases the communication; however the
servers’ work is much smaller. For any constants k ≥ 2 and ε > 0, we construct a
k-server protocol with polynomially many extra bits and O(n1/k+ε) communication
and work.

3. We show that with a larger (polylogarithmic) number of servers, there exist proto-
cols with polylogarithmic communication and work and with a slightly super-linear
number of extra bits.

All the above protocols maintain information-theoretic user privacy, that is, the privacy
is guaranteed without relying on any computational assumptions. We also present a
protocol which maintains only computational privacy, that is, the privacy is guaranteed
only against polynomial time servers and relies on cryptographic assumptions:

4. For any constants k ≥ 2 and ε > 0, assuming homomorphic encryption exists, we
obtain a k-server protocol with polynomially many extra bits, O(nε) communica-
tion, and O(n1/k+ε) work.

2 Following the standard PIR model, we assume that each server holds a copy of the database, and define
the storage complexity to include only the number of extra bits. See Remark 2.3 for further discussion.

3 Note that if the servers were allowed to store an exponential number of extra bits, then they could store
the answers to every possible query in a PIR protocol without preprocessing, and their work in response to
each query would simply be equal to the number of bits they have to send to the user.

4 As mentioned in Section 1.4, the same techniques can be used to save work also in the subsequent
protocols of [9], thus still allowing one to achieve the best communication complexity known to date with
reduced (sub-linear) work.
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Thus, the work in the above protocol is essentially the same as the second protocol above,
but the communication is much smaller.

On the negative side, we show that if the servers are only allowed to store a small
number of bits in the preprocessing stage, then their computation in response to each
query must be large. Specifically, we prove that the product of the expected total work
done by the servers and the number of extra bits is at least linear in n. Our lower bounds
also hold for a relaxed model, where the servers may store arbitrary bits of information
about the database, and the storage complexity is measured as the number of stored
bits in excess of n (that is, in the relaxed model the servers do not necessarily hold the
original database as is). However, in our lower bound we require that all servers store
the same bits. The above lower bound tradeoff indicates that our upper bounds cannot
be substantially improved in two extreme cases: (1) when the number of extra bits is
small, and (2) when the number of servers is polylogarithmic and the work is small.
When the number of extra bits is constant, the lower bound asserts that the work can be
improved by at most a constant factor. We show that constant-factor savings can indeed
be achieved, even by a two-server protocol with a single extra bit per server. When the
work is close to a constant (say, polylogarithmic), the bound asserts that the storage must
be close to linear. Indeed, the third construction above essentially meets the lower bound
in this case (however, with a polylogarithmic number of servers).

Finally, we suggest two alternative models for saving work. First, we show that sub-
linear (amortized) work can be achieved by batching a large number of queries, which
may possibly originate from different users. Second, we show how to shift most of the
work to an off-line stage, at the cost of requiring additional off-line interaction for each
future query. While generally more restrictive than our default model, both of these
alternatives may be applied in the single-server case as well.

1.3. On the Difficulty of Obtaining Strong Lower Bounds

Our lower bounds on the work in PIR with preprocessing, while nearly optimal in some
extreme cases, are generally very weak compared with our upper bounds. In particular, for
the case where any polynomial number of extra bits is allowed to be stored, our best pro-
tocols achieve polynomial work (namely, nδ work for 1/k ≤ δ ≤ 1), but we do not know
of any polynomial lower bounds for this case. Below we provide some evidence to the
difficulty of finding such strong lower bounds on the work, by relating it to lower bounds
in the cell-probe model (which captures our understanding of the usefulness of prepro-
cessing in general), and by pointing the relation to communication lower bounds for PIR.

Relation to the Cell-Probe Model. Yao’s cell-probe model [32] provides a general
framework for studying time–space tradeoffs obtainable via preprocessing (see [27] for
a recent survey). The general setting considers a data-structure that enables some class
of queries to be answered while reading “few” bits from the data-structure to answer
each query. More formally, the cell-probe problem defined by a function f (·, ·) is the
following: Given an input x , precompute a “short” string y (the data-structure) such that
any query of the form f (x, q) can be answered by probing “few” entries (bits by default)
in y. The goal of the current work may be rephrased as that of finding communication-
efficient PIR protocols in which the computation each server needs to perform to answer



130 A. Beimel, Y. Ishai, and T. Malkin

the user’s query (viewed as a function f of the database x and the user’s query q) admits
efficient solutions in the cell-probe model.

Interestingly, the connection between cell-probe complexity and branching program
complexity [28] provides evidence that proving strong lower bounds on the complexity
of PIR with preprocessing (if they exist) should be difficult.

Example 1.1. Assume that for some ε > 0 one can rule out the existence of a two-server
protocol with O(n1/3) communication, polynomially many extra bits, and O(n2/3+ε)
work. We argue that this would imply strong lower bounds for branching programs. Fix
any PIR protocol with communication O(n1/3) and suppose that each answer bit in this
protocol can be computed by a poly-size read-r branching program (the variables in the
branching programs are the n bits of the database and the O(n1/3) bits of the query).
Then, for any fixed x , each server eliminates, in the preprocessing stage, all x-variables
from the branching program, resulting in a poly-size branching program which contains
only query bits. Each server can compute each answer bit by adaptively querying nodes
of the branching program (each returning an O(log n)-bit pointer to the next node). The
work is O(rn1/3 log n) per answer bit (as each query variable can appear at most r times
on a path), and the total work is O(rn2/3 log n). Thus, the assumption that we can prove a
lower bound as above implies that some explicit polynomial-time computable function,
namely some answer bit in an O(n1/3)-communication PIR protocol, has no polynomial-
size read-r branching program, for r as large as nε. This should be contrasted with the
fact that the largest r for which a super-polynomial lower bound for read-r branching
program is proven is roughly

√
log n [3].

Relation to Communication in Standard PIR. In Section 4 we show a transformation
from PIR with short communication to PIR with preprocessing, where in the prepro-
cessing stage the server stores the answers to all possible queries, and when getting a
query it simply sends the prepared answer (see Lemma 4.1). It follows, for instance, that
if there is a PIR protocol with O(log n) communication, then there is a PIR protocol
with polynomial storage, and O(log n) communication and work. The best known lower
bound for the communication in k-server protocols is a constant-factor improvement
over the trivial log n bound, for any constant k [26]. Thus, without improving lower
bounds on the communication in PIR protocols with no preprocessing, one cannot hope
to prove even an ω(log n) lower bound on the work in PIR protocols with preprocessing
and polynomial storage.

1.4. Prologue

Subsequently to this work, the communication complexity of information-theoretic PIR
has been improved in [9], where it was shown that for every constant k there is k-
server protocol with communication complexity O(nc log log k/k log k) (c is some constant
independent of k). Using the same techniques as in Section 3, it is possible to reduce the
work in this protocol to n/ polylog n (while maintaining the same communication).

Another subsequent work which has relevance to our problem is [21]. This work pro-
vides better solutions for the batching model considered in Section 7.1, allowing one to
obtain single-server PIR protocols in which a batch of t queries can be answered with
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(essentially optimal) time complexity O(n · polylog n) and (essentially optimal) com-
munication complexity O(t · polylog n). However, the solutions from [21] are restricted
to the case where the t queries originate from the same user, whereas the amortization
technique from Section 7.1 can also apply to the case where each query originates from
a different user.

A different result from [21] can be used to construct PIR protocols with preprocess-
ing in which, unlike our protocols, all three efficiency parameters are (simultaneously)
slightly sub-linear: communication, extra storage, and work. We note, however, that
these protocols require a large (linear) number of servers.

Organization. In Section 2 we provide the necessary definitions, in Sections 3–5 we
construct PIR protocols with reduced work, and in Section 6 we prove our lower bounds.
In Section 7 we present the alternative models of batching and off-line interaction, and
in Section 8 we mention some open problems.

2. Definitions

We start by defining the standard model for information-theoretic PIR. We restrict our
attention to one-round, 1-private PIR protocols.5

Definition 2.1 (PIR). A k-server PIR protocol is defined by a triple of algorithms P =
(Q,A, C): a query algorithmQ(·, ·), an answer algorithmA(·, ·, ·), and a reconstruction
algorithm C(·, ·, . . . , ·) (C has k+2 arguments). At the beginning of the protocol, the user
invokesQ(n, i) to pick a (randomized) k-tuple of queries (q1, q2, . . . , qk), along with an
auxiliary information string aux.6 It sends to each server Sj the query qj and keeps aux
for later use. Each server Sj responds with an answer aj = A(x, j, qj ). Finally, the user
computes the bit xi by applying the reconstruction algorithm C(n, a1, . . . , ak,aux). We
assume that all algorithms are efficient in the data length n. We also assume, without
loss of generality (see Remark 2.6), that bothA and C are deterministic. A PIR protocol
is secure if the following requirements hold:

Correctness. For any data length n, index i , where 1 ≤ i ≤ n, and database x ∈ {0, 1}n ,
the user computes the correct value of xi with probability 1 (where the probability is
over the randomness of Q).

Privacy. Each server has no information about the bit that the user tries to retrieve.
Formally, for every data length n, indices i1, i2 (1 ≤ i1, i2 ≤ n), and server Sj (1 ≤

5 All the protocols obtained in this paper, as well as all previous information-theoretic PIR protocols from
the literature, use a single round of queries and answers. Our definitions may be extended to multi-round PIR
in the natural way, and our lower bounds hold for the multi-round case as well. Also, in the current work we
do not consider the more general case of t-private PIR, where the user’s privacy holds against collusions of t
servers. Again, most of the PIR literature focuses on the special case of 1-private PIR, and most of our results
extend to the general case as well.

6 In the computational setting for PIR, defined below, the string aux stores trapdoor information required
for efficient reconstruction. The string aux is also needed in some information-theoretic PIR protocols, though
in all such protocols obtained in the current work it would suffice to let aux = i .
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j ≤ k), the distributionsQj (n, i1) andQj (n, i2) are identical, whereQj denotes the j th
output of Q.

We also consider the relaxed notion of computationally private information retrieval
(or computational PIR for short). For defining computational PIR, it is convenient to let
the data length n also serve as a cryptographic security parameter. A computational PIR
protocol should satisfy the following relaxed privacy requirement:

Computational Privacy. A computationally bounded server can only gain a negligible
advantage in guessing the bit that the user tries to retrieve. Formally, for every polynomial
p(·), data length n, indices i1, i2 (1 ≤ i1, i2 ≤ n), server Sj (1 ≤ j ≤ k), and Boolean
circuit C of size p(n),

∣∣Pr[C(Qj (n, i1)) = 1] − Pr[C(Qj (n, i2)) = 1]
∣∣ ≤ n−ω(1).

We next define the model proposed in this paper, PIR with preprocessing. Adding the
preprocessing algorithm E will become meaningful when we define the work in PIR
protocols.

Definition 2.2 (PIR Protocol with Preprocessing). A PIR protocol with e(n) extra bits
P = (E,Q,A, C) consists of four algorithms: a preprocessing algorithm E which com-
putes a mapping from {0, 1}n to {0, 1}e(n), query and reconstruction algorithmsQ and C
which are the same as in standard PIR protocols, and the answer algorithm A(·, ·, ·, ·),
which, in addition to x, j, qj , has a fourth argument—the extra bits. In an invocation of
a PIR protocol with preprocessing, the string of extra bits y = E(x) is pre-computed and
is used by the servers as the fourth input toA. The correctness and privacy requirements
are the same as in the above PIR definitions.

Remark 2.3. Definition 2.2 makes the implicit assumption that each server must store
a full copy of the database. This may be justified by the need to allow direct retrieval from
each server (with no privacy requirement), and by the fact that databases are commonly
already replicated in the real world (e.g., for achieving fault tolerance). Thus, we consider
the database replication to be given “for free,” and take the storage complexity to include
only the number of extra bits |y|. However, it is also natural to consider a relaxed model
where the servers may store arbitrary bits of information about the database (without
storing the database itself), and the storage complexity is measured as the number of
stored bits in excess of n. Clearly, any protocol for our model can also be applied in
the relaxed model. The lower bounds we obtain in Section 6 apply also to the relaxed
model.

Definition 2.4 (Communication in PIR). The communication in a k-server PIR proto-
col is the total number of bits communicated between the user and any single server on
a database of size n, maximized over all choices of x ∈ {0, 1}n, i ∈ [n], and all random
inputs of the user. The query complexity is the maximal number of bits sent from the
user to any single server, and the answer complexity is the maximal number of answer
bits sent by any server.
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Next we define the work in a PIR protocol. We measure the work as in the cell-probe
model: we only count the number of bits that the servers read (both from the database
itself and from the extra bits). This definition is reasonable when dealing with lower
bounds (and might even be too conservative as the work might be higher). In general
this definition is not suitable for proving upper bounds. However, with the exception of
the example warm-up protocol in Section 3.1, in all our protocols the servers’ total time
complexity (in the RAM model) is linear in the number of bits they read.

Definition 2.5 (Work in PIR). LetP=(E,Q,A, C)be a PIR protocol, and letQj (n, i, r)
denote the j th query qj produced byQ on inputs n, i and a random input r . For a query
q and database x ∈ {0, 1}n we denote the number of bits that Sj reads from x and E(x)
in response to q by BITSj (x, q). For a random input r , an index i ∈ {1, . . . , n}, and
a database x , the work of the servers is defined as the sum of the number of bits each

server reads. Formally, WORK(i, x, r)
def= ∑k

j=1 BITSj (x,Qj (n, i, r)). Finally, the work
of the servers for an i ∈ {1, . . . , n}, and a database x is the expected value, over r , of

WORK(i, x, r). That is, WORK(i, x)
def= Er [WORK(i, x, r)].

Remark 2.6. In the definition of PIR we consider deterministic servers. When we
consider worst-case complexity, it is easy to see that this assumption is without loss
of generality. This is not true when we consider average-case complexity, as in our
definition of work for a PIR protocol. However, in all our protocols the servers are
deterministic. Furthermore, in our lower bounds on the (average) work we do not care
what the communication is, and thus we can assume that the user sends to each server a
random string in addition to its query.

Notation. We let [m] denote the set {1, . . . ,m}. For sets A and B, we define A � B
as the symmetric difference between the sets, namely, (A\B) ∪ (B\A). For a set A
and an element i , we define A ⊕ i as A ∪ {i} if i �∈ A and as A\{i} if i ∈ A (that is,
A ⊕ i = A � {i}). For a finite set A, we define i ∈U A as assigning a value to i which
is chosen randomly with uniform distribution from A independently of any other event.
We let GF(2) denote the finite field of two elements. Finally, by H we denote the binary
entropy function, that is, H(p) = −p log p − (1 − p) log(1 − p).

3. Upper Bounds: A First Approach

In this section we consider variants of the information-theoretic PIR protocols of [13]
and [20], and obtain time–space tradeoffs for the servers’ computation in these specific
protocols. This approach will yield our first family of PIR protocols with preprocessing,
achieving information-theoretic protocols with low communication complexity and with
sub-linear computation.

The rest of this section is organized as follows. In Section 3.1 we describe a simple
protocol which demonstrates some of the ideas of the subsequent protocols. In Section 3.2
we present a two-server protocol with O(n/log2n)work, and in Section 3.3 we generalize
it to a k-server protocol, for a constant k, with O(n/log2k−2n)work. In these protocols the
communication is O(n1/(2k−1)), and the storage can be made as low as O(n1+ε), for an
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arbitrary constant ε > 0. In Section 3.4 we describe a combinatorial problem concerning
spanning of cubes, and show that a good solution for this problem will further reduce
the work in the protocols of Sections 3.2 and 3.3.

3.1. A Warm-Up

We show that using n2/log n extra bits we can reduce the work to n/log n.7 This is only
a warm-up, as the communication in this protocol is O(n). We save work in a simple
two-server protocol of Chor et al. [13].

Original Protocol [13]. The user selects a random set A1 ⊆ [n], and computes A2 =
A1 ⊕ i . The user sends A j to Sj for j = 1, 2. Server Sj answers with a j = ⊕

�∈A j x�.
The user then computes a1 ⊕ a2 which equals

⊕
�∈A1 x� ⊕⊕

�∈A1⊕i x� = xi . Thus, the
user outputs the correct value. The communication in this protocol is 2(n + 1) = O(n),
since the user needs to send n bits to specify (the characteristic vector of) a random
subset A j to Sj , and Sj replies with a single bit.

Our Construction. We use the same queries and answers as in the above protocol, but
use preprocessing to reduce the servers’ work while computing their answers. Notice
that in the above protocol each server only computes the exclusive-or of a subset of bits.
To save on-line work, the servers can pre-compute the exclusive-or of some subsets of
bits. More precisely, the set [n] is partitioned to n/log n disjoint sets D1, . . . , Dn/log n of
size log n (e.g., Dt = {(t − 1) log n + 1, . . . , t log n} for t = 1, . . . , n/log n), and the
exclusive-or of every subset of these sets is computed and stored by each server. That
is, for every t , where 1 ≤ t ≤ n/log n, and every G ⊆ Dt , each server stores ⊕�∈G x�.
This requires (n/log n) · 2log n = n2/log n extra bits. Once a server has these extra bits,
it can compute its answer as an exclusive-or of n/log n bits; that is, Sj computes the
exclusive-or of the pre-computed bits

⊕
�∈A j ∩D1

x�,
⊕

�∈A j ∩D2
x�, . . . ,

⊕
�∈A j ∩Dn/log n

x�.

3.2. A Two-Server Protocol with Improved Work

We now apply an extension of the above approach to a two-server protocol with O(n1/3)

communication.

Theorem 3.1. For every ε, where ε > 4/log n, there exists a two-server PIR proto-
col with n1+ε extra bits in which the work of the servers is O(n/(ε2 log2 n)) and the
communication is O(n1/3).

Proof. We first describe a variant of a two-server protocol of [13], and then show how
preprocessing can save work for the servers.

Original Protocol (variant of [13]). Let n = m3 for some m, and consider the database
as a three-dimensional cube, i.e., every i ∈ [n] is represented as 〈i1, i2, i3〉 where ir ∈ [m]
for r = 1, 2, 3. This is done using the natural mapping from [m3] to [m]3. In Fig. 1 we

7 This example can be can be easily modified to use O(n/log n)work and O(n1+ε) storage, for any constant
ε > 0.
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A Two-Server Protocol with Low Communication

1. The user selects three random sets A1
1, A1

2, A1
3 ⊆ [m], and computes A2

r = A1
r ⊕ ir for

r = 1, 2, 3. The user sends A j
1, A j

2, A j
3 to Sj for j = 1, 2.

2. Server Sj computes for every � ∈ [m],

a j
1,�

def= ⊕
�1∈A j

2
,�2∈A j

3
x�,�1,�2 , a j

2,�
def= ⊕

�1∈A j
1
,�2∈A j

3
x�1,�,�2 ,

and a j
3,�

def= ⊕
�1∈A j

1
,�2∈A j

2
x�1,�2,�,

and sends the 3m bits {a j
r,�: r ∈ {1, 2, 3} , � ∈ [m]} to the user.

3. The user outputs
⊕

r=1,2,3(a
1
r,ir

⊕ a2
r,ir
).

Fig. 1. A two-server protocol with communication O(n1/3).

describe the protocol. It can be checked that each bit, except for xi1,i2,i3 , appears an
even number of times in the exclusive-or the user computes in Step 3, and thus cancels
itself. Therefore, the user outputs xi1,i2,i3 as required. Furthermore, the communication
is O(m) = O(n1/3). Note that while the database is considered as a three-dimensional
space, every bit of the answer is computed as the exclusive-or of a two-dimensional
space.

Our Construction. To save on-line work the servers pre-compute the exclusive-or of
some sub-cubes of bits. Let ε ≥ 4/log n and α = 0.5ε log n. The set [m] is partitioned
to m/α disjoint sets D1, . . . , Dm/α of size α (e.g., Dt = {(t − 1)α + 1, . . . , tα} for
t = 1, . . . ,m/α). For every � ∈ [m], every t1, t2, where 1 ≤ t1, t2 ≤ m/α, every
G1 ⊆ Dt1 , and every G2 ⊆ Dt2 , each server computes and stores the three bits

⊕
�1∈G1,�2∈G2

x�,�1,�2 ,
⊕

�1∈G1,�2∈G2

x�1,�,�2 , and
⊕

�1∈G1,�2∈G2

x�1,�2,�.

This requires 3m · (m/α)2 · 22α ≤ m3 · 2ε log n = n1+ε extra bits. Once a server has
these extra bits, it can compute each bit of its answer as an exclusive-or of O(m2/α2)

pre-computed bits.

Analysis. The answer of each server contains O(m) bits, and each bit requires read-
ing O(m2/α2) pre-computed bits. Thus, the work of each server is O(m3/α2) =
O(n/(ε log n)2). Note that the identity of the precomputed bits is very easy to com-
pute from the user’s query. Thus, in this case (as well as all subsequent protocols) our
measure for work (as the number of bits read) coincides with the time complexity in a
RAM model up to a constant factor.

3.3. A k-Server Protocol

We now present a k-server generalization of the previous two-server protocol. As in
Theorem 3.1, our protocol exhibits some tradeoff between the number of extra bits and
the work, without increasing communication. The work in the following protocol has a
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leading factor of kO(k) which is constant for every constant k. This seems to imply that
this protocol can be considered practical only when k is relatively small, however, as
indicated in the theorem below, as long as k ≤ 0.5(log n)1/4 the work is still n/ polylog n.
The exact tradeoff is described in the next theorem.

Theorem 3.2. For every k and ε > 4k/log n, there is a k-server PIR protocol with
n1+ε extra bits in which the work is O((2k)4kn/(ε log n)2k−2) and the communication is
O(k3n1/(2k−1)). If k is constant, the work is O(n/(ε log n)2k−2), and if k ≤ 0.5(log n)1/4

and ε ≥ 1, then the work is O(n/(ε log n)k−2).

Proof. We save work in a k-server protocol of Ishai and Kushilevitz [20].

Original Protocol [20]. As the protocol of [20] involves some notation, we only de-
scribe the protocol’s relevant properties. Let n = md for some m and for d = 2k −1. The
database is considered as a d-dimensional cube. That is, every index i ∈ [n] is represented
as 〈i1, i2, . . . , id〉 where ir ∈ [m] for r = 1, 2, . . . , d. A sub-cube of the d-dimensional
cube is defined by d sets A1, . . . , Ad and contains all indices 〈i1, i2, . . . , id〉 such that
ir ∈ Ar for every r ∈ {1, . . . , d}. A sub-cube is a (d − 1)-dimensional sub-cube if there
exists some r such that |Ar | = 1. In the protocol from [20] each server has to compute,
for kdm sub-cubes of dimension (d − 1), the exclusive-or of bits of the sub-cube. The
communication in the protocol is O(k3n1/(2k−1)).

Our Construction. To save on-line work the servers compute in advance the exclusive-
or of bits for some (d − 1)-dimensional sub-cubes. Let α = (ε log n)/(d − 1). Note
that α ≥ 2 (since ε > 4k/log n and d = 2k − 1). The set [m] is partitioned to
m/α disjoint sets D1, . . . , Dm/α of size α. For every r ∈ {1, . . . , d}, every � ∈ [m],
every t1, t2, . . . , td−1, where 1 ≤ t1, t2, . . . , td−1 ≤ m/α, every G1 ⊆ Dt1 , every
G2 ⊆ Dt2 , . . ., and every Gd−1 ⊆ Dtd−1 , each server computes and stores the bit⊕

�1∈G1,...,�d−1∈Gd−1
x�1,...,�r−1,�,�r ,...,�d−1 . This requires dm · (m/α)d−1 · 2(d−1)α < md ·

2(d−1)α = n ·2(d−1)(ε log n)/(d−1) = n1+ε extra bits (the inequality holds since d1/(d−1) < 2
and since α ≥ 2). Once a server has these extra bits, it can compute each exclusive-or
of the bits of any (d − 1)-dimensional sub-cube as an exclusive-or of O(md−1/αd−1)

pre-computed bits.

Analysis. The answer of each server requires computing the exclusive-or of the bits of a
(d−1)-dimensional sub-cube for O(kdm) sub-cubes, and each sub-cube requires reading
O((m/α)d−1) bits. Thus, the number of bits that each server reads is O(kdmd/αd−1).
Recall that d = 2k − 1, thus the work reduces to O((2k)4kn/(ε log n)2k−2).

3.4. Can the Protocols Be Improved?

We now describe a combinatorial problem concerning spanning of cubes. This problem
is a special case of a more general problem posed by Dodis [17]. Our protocols in
Sections 3.2 and 3.3 are based on constructions for this problem; better constructions
will enable us to reduce the work in these protocols further.
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We start with some notation used to define the combinatorial problem. Consider the

collection of all d-dimensional sub-cubesFd
def= {G1 × · · · × Gd : G1, . . . ,Gd ⊆ [m]} .

The exclusive-or of subsets of [m]d is defined in the natural way: for sets S1, . . . , St ⊆
[m]d , the point � ∈ [m]d is in

⊕t
j=1 Sj if and only if � is in an odd number of sets Sj .

Definition 3.3 (q-xor Basis). A collection X ⊆ 2[m]d
is a q-xor basis of Fd if every

sub-cube in Fd can be expressed as the exclusive-or of at most q sets from X .

For example, let D1, . . . , Dm/log m be the partition of [m], defined in Section 3.2, into

equal size sets. The collection X0
def= {G1 × G2: ∃i, j G1 ⊆ Di ,G2 ⊆ Dj } is an

m2/log2m-xor basis of F2. We next show how to use a q-xor basis of F2 for two-server
PIR protocols. A similar claim holds for q-xor basis ofF2k−2 for k-server PIR protocols.

Lemma 3.4. If there is a q-xor basis X of F2, then there exists a two-server PIR
protocol in which the communication is O(n1/3), the work is O(n1/3q), and the number
of extra bits is O(n1/3|X |).

Proof. We start with the protocol of [13], described in Fig. 1, in which n = m3. For
each set S ∈ X , each server computes and stores 3m bits: for every � ∈ [m] it stores the
bits

⊕
(�1,�2)∈S

x�,�1,�2 ,
⊕

(�1,�2)∈S

x�1,�,�2 , and
⊕

(�1,�2)∈S

x�1,�2,�.

Recall that in the protocol of [13] each server has to compute the exclusive-or of the bits
of a two-dimensional sub-cube for O(m) sub-cubes. Each exclusive-or requires reading
at most q stored bits, hence the total work per server is O(mq) = O(n1/3q).8

Lemma 3.4 suggests the following problem:

The Combinatorial Problem. Construct a q-xor basis of Fd of size poly(md) such
that q is as small as possible.

The next lemma shows that q cannot be too small, it is at least �(m/log m). In
particular, the m/log m-xor basis of F1 which we constructed in Section 3.1 is optimal
up to a constant factor.

Lemma 3.5. If there is a q-xor basis of Fd whose size is poly(md), then q =
�(m/log m).

8 Each server should be able to decide efficiently which q bits it needs for computing each answer bit;
otherwise our measure of work may be inappropriate.
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Proof. Let X be a q-xor basis of Fd , and assume that |X | ≤ mdc for some constant c.
Every d-dimensional sub-cube must be expressed as the exclusive-or of t sets from X ,
where t ≤ q . (However, the exclusive-or of some choices of t sets is not necessarily a
d-dimensional sub-cube.) The number of ways to choose t sets is

q∑
t=0

(|X |
t

)
≤

q∑
t=0

(
mdc

t

)
≤ qmdcq = 2O(dcq log m).

Thus, 2O(dcq log m) ≥ |Fd | = 2md , and since c is constant, q = �(m/log m).

Thus, the smallest q for which there is a polynomial size q-xor basis of Fd satisfies
�(m/log m) ≤ q ≤ O(md/logdm). We do not know where in this range the minimum
q lies. A construction with a smaller q than the current upper bound will further reduce
the work in PIR protocols without increasing the communication.

4. Upper Bounds: A Second Approach

In this section we present our second family of PIR protocols with preprocessing, which
has the best work that we achieve, while maintaining sub-linear communication. The
protocols we construct in this section are based on the following simple observation.
Suppose that we have a PIR protocol with a logarithmic query length and a sub-linear
answer length. Then it is feasible for the servers to compute and store in advance the
answers to all of the (polynomially many) possible queries. When a server receives a
query it only needs to read the prepared answer bits. In general,

Lemma 4.1. If there is a k-server PIR protocol in which the length of the query sent to
each server is α and the length of the answer of each server is β, then there is a k-server
PIR protocol with k · β work, k(α + β) communication, and k · 2α · β extra bits.

In the rest of this section we instantiate the above lemma with different constructions of
PIR protocols with logarithmic query length. Section 4.1 addresses the case of a constant
number of servers (containing an information-theoretic and a computational protocol),
and Section 4.2 concerns the case where the number of servers is at least polylogarithmic
in n.

4.1. Protocols with a Constant Number of Servers

The following lemma, from [6], gives upper bounds on the length of the answers in PIR
protocols with a constant number of servers and a logarithmic query length.

Lemma 4.2 [6]. For any integer k ≥ 2 and constant 0 < θ ≤ 1
2 , there exists a k-server

PIR protocol with (k−1)(1/H(θ)+o(1)) log n query bits per server and nH(θ/k)/H(θ)+o(1)

answer bits. In particular, for any constants k ≥ 2 and ε > 0 there exists a k-server
protocol with O(log n) query bits and O(n1/k+ε) answer bits.
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Applying the transformation of Lemma 4.1, we obtain:

Theorem 4.3. For any constants k ≥ 2 and 0 < θ ≤ 1
2 , there exists a k-server

PIR protocol with nH(θ/k)/H(θ)+o(1) communication and work, and n(k−1+H(θ/k))/H(θ)+o(1)

extra bits. In particular, for any constants k ≥ 2 and ε > 0 there exists a k-server protocol
with O(n1/k+ε) communication and work and polynomially many extra bits.

If we do not care about the exact number of extra bits and only require it to be
polynomial in n, Theorem 4.3 gives our best upper bounds on the attainable work.
However, better general tradeoffs between the storage and work can be obtained by
extending the underlying family of PIR protocols. We rely on the following lemma
from [13].

Lemma 4.4 [13]. Suppose that there is a k-server PIR protocol in which the user sends
α(n) bits to each server and receives β(n) bits in return. Then, for any 1 ≤ m(n) ≤ n,
there is a PIR protocol in which the user sends α(m(n)) bits to each server and receives
�n/m(n)�β(m(n)) bits in return.

We apply Lemma 4.4 to the PIR protocols of Lemma 4.2 with m(n) = nµ, where
0 ≤ µ ≤ 1 is a parameter. Using Lemma 4.1, we obtain the following generalized
family of PIR protocols with preprocessing:

Theorem 4.5. For any constants k ≥ 2, 0 < θ ≤ 1
2 , and 0 ≤ µ ≤ 1, there is

a k-server PIR protocol with nµH(θ/k)/H(θ)+(1−µ)+o(1) communication and work and
nµ(k−1+H(θ/k))/H(θ)+(1−µ)+o(1) extra bits.

Note that in the caseµ = 1, Theorem 4.5 coincides with Theorem 4.3. The other extreme
case, whereµ = 0, roughly corresponds to the naive protocol in which the entire database
is being sent to the user (requiring no storage and linear communication and work). Thus,
the parameter µ may be viewed as defining a convex combination of these two extreme
cases.

4.1.1. Choosing the Optimal Parameters for k = 2

Theorem 4.5 involves two parameters, θ andµ. It does not specify how these parameters
should be chosen, and does not explicitly specify the best obtainable tradeoff between
work and storage. In the following we provide an explicit analysis of this tradeoff for
the two-server case.

Suppose that we require nτ+o(1) work (and communication) for some τ > 0.5. This
imposes the constraint µH(θ/2)/H(θ)+ (1 − µ) = τ , or equivalently

µ

H(θ)
= 1 − τ

H(θ)− H(θ/2)
.

Under this constraint and the additional constraint 0 ≤ µ ≤ 1 we want to minimize the
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Table 1. Numerical examples.∗

Comm./Work Storage θ µ

1 1 — 0
0.9 1.27 θ0 0.32
0.8 1.54 θ0 0.64
0.7 1.80 θ0 0.96
0.65 2.04 0.2 1
0.6 3.20 0.075 1
0.575 6.45 0.025 1
0.55 37.7 0.0027 1
0.525 19,235 0.0000026 1

∗The first column is the exponent of communication and
work in the protocol (where, for example, 0.9 means that
the communication and work is n0.9+o(1)), the second
column is the exponent of the number of bits, and the
third and fourth columns are the optimal values of θ and
µ for the protocol of Theorem 4.5.

storage, i.e., to minimize

µ(1 + H(θ/2))

H(θ)
+ (1 − µ) = τ + µ

H(θ)
= τ + 1 − τ

H(θ)− H(θ/2)
.

This is equivalent to maximizing H(θ)− H(θ/2) under the constraintµ = (1−τ)H(θ)/
(H(θ)− H(θ/2)) ≤ 1. Let θ0

def= 1−1/
√

2 ≈ 0.293 and τ0 = H(θ0/2)/H(θ0) ≈ 0.689.
The function H(θ)− H(θ/2) increases in the interval 0 < θ ≤ θ0 and decreases in the
interval θ0 ≤ θ ≤ 0.5. If τ0 ≤ τ ≤ 1 then

µ = (1 − τ)H(θ0)

H(θ0)− H(θ0/2)
≤ (1 − τ0)H(θ0)

H(θ0)− H(θ0/2)
= 1.

Therefore, the optimal storage in this case is obtained when θ = θ0 and is

nτ+(1−τ)/0.271···+o(1) = n3.682···−τ ·2.682···+o(1).

It is therefore possible to get the storage arbitrarily close to linear while maintaining
polynomial savings in computation. If 0.5 < τ ≤ τ0 we must choose θ < θ0 and the
optimal storage is obtained when µ = 1 and θ is such that H(θ/2)/H(θ) = τ ; the
storage is then nτ+1/H(θ)+o(1). Table 1 contains some numerical examples of the storage
for various values of τ .

4.1.2. A Computationally Private Protocol with Improved Communication

All of the above protocols satisfy the information-theoretic notion of PIR. We show that
an asymptotically better communication complexity can be obtained in the computational
model.



Reducing the Servers’ Computation in Private Information Retrieval 141

We rely on the PIR protocol of [6], whose properties are summarized by Lemma 4.2.
A small modification of this protocol, described in [7], allows the user to reconstruct xi

by probing a small number of bits from the answers.

Lemma 4.6 [7]. There exists a PIR protocol with the parameters of Lemma 4.2, in
which the user needs to read only nθ/H(θ)+o(1) bits from the answer of each server (the
location of which is determined by the retrieval index i). In particular, for any integer
k ≥ 2 and constant ε > 0, there exists a k-server protocol with O(log n) query bits and
O(n1/k+ε) answer bits, in which the user needs to read only O(nε) bits from each answer.

We now show how to use the above PIR protocol to achieve a low-communication PIR
protocol with preprocessing. As before, the server prepares the answers to all possible
queries in the preprocessing stage. When a server receives a query, it reads the prepared
answer bits, but does not directly send them to the user. Instead, for each answer bit that
the user needs, the user and the appropriate server execute a single-server computational
protocol in which the database is the answer in the original protocol. Thus, the user
and each server have to execute O(nε) single-server (computational) protocols. Using
the single-server protocol of [23] and its generalization in [26], [30], and [31], whose
communication complexity is O(nδ) for an arbitrarily small δ > 0, we have:

Theorem 4.7. Suppose that homomorphic encryption exists.9 Then, for any constants
k ≥ 2 and ε > 0 there exists a k-server computational PIR protocol with polynomially
many extra bits, O(nε) communication, and O(n1/k+ε) work.

4.2. Protocols with a Polylogarithmic Number of Servers

We now consider the case where the number of available servers is at least logarithmic
in n, and show that in this case there exist protocols with polylogarithmic work and
polynomial storage. Note that the previous construction from Section 4.1 is insufficient
for this purpose. Indeed, the length of each query in the PIR protocol of Lemma 4.2 is at
least (k − 1) log n and the length of the answers is at least n1/k ; it is thus impossible in
that protocol for the answer length to be polylogarithmic while maintaining logarithmic
query length (which translates into polynomial storage).

PIR protocols with polylogarithmic number of servers, logarithmic query length, and
polylogarithmic answer length may be obtained from the following lemma (which opti-
mizes previous constructions from [13], [5], and [2]).

Lemma 4.8 [15], [6]. Let m and d be positive integers such that
(m+d

d

) ≥ n. Then there
exists a (d + 1)-server PIR protocol with α = �log(d + 2)�m query bits and a single
answer bit per server.

9 Roughly speaking, a homomorphic encryption scheme is a probabilistic encryption together with an
efficient algorithm Hom such that: (1) the message domain is some Abelian group, and (2) given two encryptions
c1 = Enck(m1, r1) and c2 = Enck(m2, r2), the algorithm Hom outputs c = Hom(c1, c2) such that c is a valid
encryption of m1 +m2. Intuitively, Hom “sums” the encrypted messages. For example, homomorphic schemes
exist under the decisional Diffie–Hellman assumption and under the quadratic-residuosity assumption. See,
e.g., [30] for more details.
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Substituting m = log n/(ε log log n) and d = m logε n = log1+ε n/(ε log log n), and
applying Lemma 4.1, we get:

Theorem 4.9. For any constant γ > 0 there is an O(log1+γ n/log log n)-server PIR
protocol with O(log2+γ n/log log n) communication and work, and Õ(n1+1/γ ) extra bits.

In Theorem 6.5 we will show that the product of the work and the number of extra
bits must be at least linear in n. It follows that the number of extra bits in the protocol of
Theorem 4.9 is not far from optimal when γ is large.

5. Reducing the Work with One Extra Bit

In this section we show that even a single extra bit is helpful. Specifically, we describe a
k-server protocol with one extra bit and k/(2k − 1) · n work. The work in this protocol
is close to optimal, since in Theorem 6.5 we will show that, for any k, the work in
any k-server PIR protocol with one extra bit must be at least n/4. Our protocol is thus
nearly optimal as the work approaches n/2 as the number of servers grows. However,
the communication in this protocol is linear in the size of the database. The purpose
of presenting this protocol is to show that even with one extra bit things become non-
trivial, thus giving some explanation why the proof of the lower bound in Theorem 6.5
is somewhat complicated, and to show that our lower bounds for a constant number of
extra bits are close to optimal in terms of the tradeoff between work and storage.

Theorem 5.1. There is a k-server PIR protocol with one extra bit, k/(2k − 1) · (n +1)
work, and O(kn) communication.

Proof. We prove the theorem by describing in Fig. 2 a protocol satisfying its conditions.

In this protocol the extra bit is b
def= ⊕n

�=1x� and it is held by S1.
We next analyze the properties of this protocol.

Privacy. Fix j . ServerSj gets no information if Bj = ⊥. We prove that Pr[� ∈ Bj |Bj �=
⊥] = 1/k for every �, implying that Sj gets no information about i when Bj �= ⊥. For
� �= i , index � is equally likely to be in any A1, . . . , Ak , thus the probability that it
belongs to Bj , provided that Bj �= ⊥, is 1/k. For � = i :

Pr[i ∈ Bj |Bj �= ⊥] = Pr[i ∈ Bj∧Bj �= ⊥]

Pr[Bj �= ⊥]
= 1/(2k − 1)

1/(2k − 1)+ (k − 1)/(2k − 1)
= 1

k
.

Hence, Sj gets no information about i . This holds for every j , and privacy follows.

Work. With probability (k − 1)/(2k − 1) the work is n and with probability k/(2k − 1)
the expected work is 1 + (n − 1)/k. Thus, the expected work is

k − 1

2k − 1
· n + k

2k − 1

(
1 + n − 1

k

)
<

k(n + 1)

2k − 1
.

Thus, for k = 2 the work is 2n/3 and it asymptotically approaches n/2 as k grows.
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A Protocol with One Extra Bit

Servers’ input: a database x ∈ {0, 1}n and an extra-bit b = ⊕n
i=1xi .

User’s input: an index i ∈ [n].
User:

• Randomly partition the set [n]\ {i} into k disjoint sets A1, . . . , Ak .
• Choose a random number h ∈U {1, . . . , 2k − 1}.
• If h ≤ k, then send Ah ∪ {i} to Sh and send ⊥ to S1, . . . ,Sh−1,Sh+1, . . . ,Sk

(where ⊥ is a special symbol).
• Otherwise (i.e., h > k), send Aj to Sj for every j = 1, . . . , k.

Server Sj upon reception of a set Bj �= ⊥: send the bits {x�: � ∈ Bj } to the user. In
addition, Server S1 sends the extra bit b to user.
User: If h ≤ k, then the user has received the bit xi . Otherwise, it has received
x1, . . . , xi−1, xi+1, . . . , xn and b = ⊕n

�=1x�, and can reconstruct xi .

Fig. 2. A k-server protocol with one extra bit and k/(2k − 1) · n work.

Communication. We naively implement the protocol such that the user sends the set
Aj using Aj ’s characteristic vector of length n. The answer of Sj is a string of length
|Aj |. Thus, the communication is O(kn).

Finally, we show that we can still save some work with one extra bit even if we want
the communication to be sub-linear; however, we only save an additive term of the order
of the communication complexity.

Corollary 5.2. For every δ, where 1
2 ≤ δ ≤ 1, there exists a two-server PIR protocol

with one extra bit, n −�(nδ) work, and O(nδ) communication.

Proof. Partition the n bits of the database into two parts, one part 1, . . . , nδ of size nδ ,
and the other part nδ + 1, . . . , n of size n̂ = n − nδ . The bit that the user wants is in
one of the parts; the user chooses an arbitrary bit from the other part. The user and the
server execute the PIR protocol of Theorem 5.1 on the first part, and the two-server PIR
protocol of [13] with communication O(n̂1/2) and expected work n̂ on the second part,10

each execution with the appropriate bit (the bit that the user wants and the arbitrary bit
it chose). The expected work is 2

3 · nδ + n − nδ = n − 1
3 · nδ . The communication is

O(nδ)+(n−nδ)1/2 = O(nδ). Finally, only a single extra bit is required for preprocessing
the first part of the database.

10 They cannot use the better protocol of [13] with communication O(n̂1/3) since the work in this protocol
is 3n̂/2.
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6. Lower Bounds

In this section we obtain lower bounds on the complexity of PIR with preprocessing.
We first prove that without extra bits the expected number of bits all servers must read
together is at least n, the size of the database. We then prove that if there are e extra
bits (e ≥ 1), then the expected number of bits all servers must read is �(n/e). These
lower bounds hold for any number of servers k, and regardless of the communication
complexity of the protocol. Furthermore, the lower bounds also hold for the relaxed
model, discussed in Remark 2.3, where the servers may store arbitrary n + e bits of
information about the database, and the storage complexity is measured as the number
of stored bits in excess of n. However, in our lower bound we require that all servers
store the same string of n + e bits.

Note that we only prove that the expectation is big, since there could be specific
executions where the servers read together less bits.11 The fact that there are executions
with small work should be contrasted with single-server (computational) PIR protocols
without preprocessing, where each server stores the database as it is. In this case the
server has to read the entire database for each query, except with negligible probability:
if the server does not read xi in response to some query, it knows that the user is not
interested in xi , violating the user’s privacy.

To prove the lower bounds, we fix a PIR protocol P , and introduce some notation
referring to this protocol. Let m = n + e, that is, m is the number of bits held by each
server. We assume that each server holds the same encoding of the database, and E
denotes the encoding function, mapping from {0, 1}n to {0, 1}m . The notation P j (h, x)
denotes the probability that server Sj on database x reads the hth bit of E(x) when
the retrieval index is i = 1. This probability is taken over the user’s random input r .

Next, define P(h, x)
def= ∑k

j=1 P j (h, x), and P(h)
def= Ex ∈U {0,1}n P(h, x). By linearity of

expectation, P(h) is the sum, over all servers Sj , of the probability that Sj reads the hth
bit of E(x), where this time each probability is taken over both the user’s random input
and the uniform distribution over the database x .

By the privacy requirement the probability that server Sj reads the hth bit of E(x) on
database x is independent of the retrieval index i . Thus, although we defined P j (h, x)
with respect to retrieval index 1, we could have chosen any index. Therefore, the same
holds for P(h, x) which is the sum of the probabilities P j (h, x).

Observation 6.1. The sum of probabilities P(h, x) is independent of the retrieval
index i .

We next prove that
∑m

h=1 P(h, x) is the expected work of the servers on database x .

Claim 6.2. For every retrieval index i it holds that WORK(i, x) = ∑m
h=1 P(h, x).

11 For example, consider the following two-server protocol (without any extra bits). The user with probability
1/n sends i to server S1, and nothing to server S2, and with probability (1 − 1/n) sends a random j �= i to
S1, and sends [n] to S2. Server Sj , upon reception of a set Bj , replies with the bits {x�: � ∈ Bj } to the user.
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Proof. Fix any retrieval index i , and define the random variables Y j (x, 1), . . . , Y j (x,m)
where Y j (h, x) = 1 if server Sj reads the hth bit with database x and retrieval index i
and Y j (h, x) = 0 otherwise (these random variables depend on the query, which in turn
depends on r—the random input of the user). Clearly, Er [Y j (h, x)] = Pr[Y j (h, x) =
1] = P j (h, x). Next define Y (x)

def= ∑
h∈[m]

∑k
j=1 Y j (h, x). That is, Y is a random

variable denoting the number of bits the servers read and WORK(i, x) = Er [Y (x)]
(by Observation 6.1 this is true for every index i). The claim follows by noting that
Er [Y (x)] = Er [

∑k
j=1

∑
h∈[m] Y j (h, x)] = ∑

h∈[m]

∑k
j=1 Er [Y�] = ∑

h∈[m] P(h, x).

To get a lower bound of w on the expected work, it suffices to show that for some
database x ,

∑
h∈[m] P(h, x) ≥ w. Towards this goal, we make the following definition:

Let H ⊂ [m]. We say that x is H-dependent if there is some x ′ �= x such that E(x) and
E(x ′) agree on all coordinates in [m]\H .

Claim 6.3. If x is H-dependent, then
∑

h∈H P(h, x) ≥ 1.

Proof. Let x ′ �= x be such that E(x) and E(x ′) agree on all coordinates in [m]\H , and
fix an index i such that xi �= x ′

i . If in any execution of the PIR protocol with retrieval
index i and database x the servers read only bits from [m]\H , then the user gets the same
answers for databases x and x ′, and it errs for at least one of these databases, contradicting
the correctness requirement. Thus, the probability that at least one of the servers reads
a bit from H when the database is x and the retrieval bit is i is 1. Since P(h, x) is an
upper bound on the probability that at least one of the servers reads the hth bit, and since
P(h, x) is independent of the retrieval index i , we conclude that

∑
h∈H P(h, x) ≥ 1.

6.1. Lower Bound without Extra Bits

We next prove that without extra bits the expected number of bits that the servers read
is at least n. This lower bound holds for every database.

Theorem 6.4. For every PIR protocol without extra bits, WORK(i, x) ≥ n for every
x ∈ {0, 1}n and every i ∈ [n].

Proof. In this case the encoding function E : {0, 1}n → {0, 1}n must be one-to-one and
onto. Thus, for every x ∈ {0, 1}n and every h ∈ [n] there must be some x ′ �= x such that
E(x) and E(x ′) agree on all coordinates in [n]\ {h}. Claim 6.3 implies that P(h, x) ≥ 1
for every h, and, by Claim 6.2, WORK(i, x) ≥ n.

6.2. Lower Bound with Extra Bits

In this section we show that a small number of extra bits cannot reduce the work too
much.

Theorem 6.5. For every PIR protocol with e extra bits Ex WORK(i, x) ≥ n/
(2(e + 1)) for every i ∈ [n]. In particular, there exists a database x ∈ {0, 1}n such
that WORK(i, x) ≥ n/(2(e + 1)).
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Proof. Assume, without loss of generality, that P(1) ≥ P(2) ≥ · · · ≥ P(m) and
consider the set H = {n, n + 1, . . . , n + e} of size e + 1. The probability that a random
database x is not H -dependent is at most 1

2 . (The worst case is when the projection of
E({0, 1}n) on {1, . . . , n − 1} contains 2n−1 − 1 words with multiplicity 1, and one word
with multiplicity 2n−1 + 1.) By Claim 6.3, for at least half of the databases it holds that∑n+e

h=n P(h, x) ≥ 1. Therefore,
∑n+e

h=n P(h) = ∑n+e
h=n Ex P(h, x) ≥ 1

2 . By the assumption
that the probabilities are non-decreasing, we get that P(h) ≥ 1/(2(e + 1)) for every
1 ≤ h ≤ n. Thus, by Claim 6.2 and the linearity of the expectation, Ex WORK(i, x) ≥∑n+e

h=1 P(h) ≥ n/(2(e + 1)) as required.

Remark 6.6. Theorems 6.4 and 6.5 hold (up to a negligible difference) even for com-
putational PIR. The reason that the lower bound remains valid is that we only use the
privacy requirement in the assumption that P j (h, x) is independent of the retrieval index.
This assumption must hold also with respect to computational privacy (up to a negligible
factor), or otherwise we get an efficient distinguisher between two indices. While we
explicitly address only the (perfect) information-theoretic setting, all the lower bounds
in this section hold, up to a negligible difference, for k-server computational PIR proto-
cols as well. The same holds if the perfect correctness requirement is relaxed to allow
negligible error probability.

7. Alternative Models for Saving Work

The PIR with preprocessing model allows us to reduce the on-line work in PIR protocols.
In this section we discuss two alternative models for achieving the same goal. While
both are in a sense more restrictive than our original model, in some situations they
may be preferred. For instance, they both allow substantial reduction in the on-line
work in a single-server computational PIR, an important advantage over the solutions of
Sections 3–5.

7.1. Batching Queries

In the first alternative setting, we allow servers to batch together several queries before
replying to all of them. By default, no preprocessing is allowed. The main performance
measures of PIR protocols in this setting are: (1) the amortized communication complex-
ity, defined as the average communication per query; (2) the amortized work per query;
(3) the batch size, i.e., the minimum number of queries which should be processed to-
gether; and (4) the extra space required for storing and manipulating the batched queries.
Note that in the case of a single user, the trivial PIR solution of communicating the en-
tire database gives an optimal tradeoff between the batch size and the amortized work,
namely their product is n. (This is optimal by the lower bound of Theorem 6.4.) How-
ever, this solution provides a poor tradeoff between the amortized communication and
the batch size (their product is n). Moreover, as in the remainder of this paper, we are
primarily interested in the general situation where different queries may originate from
different users.

Our main tool for decreasing the amortized work is a reduction to matrix multiplication.
The savings achieved by the state-of-the-art matrix multiplication algorithms can be
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translated into savings in the amortized work of the PIR protocols. To illustrate the
technique, consider the two-server PIR protocol described in Fig. 1. In a single invocation
of this protocol, each server has to compute the exclusive-or of O(n1/3) two-dimensional
sub-cubes. Each such computation can be expressed as evaluating a product (over GF(2))
of the form at X�b, where a and b are vectors in GF(2)n

1/3
determined by the user’s query,

and X� is an n1/3×n1/3 matrix determined by the database x . It follows that the answers to
n1/3 queries can be computed by evaluating O(n1/3)matrix products of the form A·X� ·B,
where the j th row of A and the j th column of B are determined by the j th query. The
communication complexity of the protocol is O(n1/3) per query, and its space and time
requirements depend on the matrix multiplication algorithm being employed. Letting ω
denote the exponent of matrix multiplication (Coppersmith and Winograd [14] prove
that ω < 2.376), the amortized work can be as low as O(n1/3nω/3)/n1/3 = O(nω/3),
with batch size n1/3.

Theorem 7.1. There exists a two-server amortized PIR protocol with batch size n1/3,
amortized communication O(n1/3), and amortized work O(nω/3), where ω denotes the
exponent of matrix multiplication.

The same approach can also be employed towards reducing the amortized work in
computational single-server PIR protocols. We use the protocols from [23], [26], [30],
and [31], which utilize homomorphic encryption.

In the protocols of [23], [26], [30], and [31], the server’s computation on multiple
queries can be reduced to evaluating several matrix products. In each product one matrix
depends on the queries and is given in an encrypted form (using a key held by the user)
and the other depends on the database and is given in a plain form. Now, by the definition
of homomorphic encryption, an encryption of the sum of two encrypted values and an
encryption of the product of an encrypted value with a non-encrypted value are both
easy to compute. It turns out that these two operations are sufficient for implementing a
fast matrix multiplication algorithm where one of the matrices is given in an encrypted
form and the output may be encrypted as well. (The protocols of [23], [26], and [30] are
recursive and the above statement is true only for the first level of recursion; however the
work in the first level dominates the work in the entire protocol.) Thus, the next theorem
follows by modifying the protocol from [23], [26], and [30].

Theorem 7.2. If homomorphic encryption exits, then for any constant ε > 0 there
exists a constant δ > 0 and a computational one-server amortized PIR protocol with
batch size nε, communication O(nε), and amortized work O(n1−δ).

For general homomorphic encryption schemes, the above requires that all users encrypt
their query vectors using the same key (otherwise, there is no meaningful way of “adding”
encrypted entries from distinct vectors). Luckily, this problem can be avoided if the
homomorphic encryption scheme being employed is El-Gamal encryption, where the
same multiplicative group is used by all users (yet, different users can have independent
public and private keys). In this case, a fast matrix multiplication algorithm can be
applied, where the addition of two encrypted entries is replaced by multiplication in
their common group.
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7.2. Off-Line Interaction

In the PIR with preprocessing model, a single off-line computational effort by each
server can reduce the on-line work in each of an unlimited number of future queries. It
is natural to ask whether the on-line work can be further reduced if a separate off-line
procedure is applied for each query. More precisely, we allow the user and the servers
to engage in an off-line protocol, involving both communication and computation, to
minimize the total on-line work associated with answering a single future query. (The
off-line protocol may be repeated an arbitrary number of times, allowing many on-line
queries to be processed efficiently.) During the off-line stage, the database x is known
to the servers but the retrieval index i is unknown to the user. The goal is to obtain
protocols with little on-line work (for both the user and the servers) and “reasonable”
off-line work.12

Towards achieving the above goal we extend an idea from [15]. Recall that in contrast to
the current goal, the goal of Di-Crescenzo et al. [15] is to shift most of the communication
and the user’s computation to an off-line stage. A simple solution proposed in [15] is the
following. LetP be a k-server (information-theoretic or computational) PIR protocol, in
which the user sends at most α bits to each server and receives at most β bits in return.
The execution of P is broken into an off-line stage and an on-line stage as follows.
During the off-line stage, the user picks a random retrieval index r ∈ [n], computes a
corresponding k-tuple of queries (q1, . . . , qk), and sends each query qj to the server Sj .

During the on-line stage the user, on input i , computes the offset�
def= i − r(mod n) and

sends it to each server; each server Sj replies with the answer (according to P) to the
off-line query qj on a virtual database obtained from cyclically shifting x by � places
to the left. Finally, the user reconstructs xi by applying the reconstruction function of P
to obtain the r th bit of the shifted database, which is the desired bit xi .

The off-line communication in the above protocol is O(α), and the on-line com-
munication is O(β + log n). Fortunately, most known PIR protocols admit variants in
which the answer complexity β is very small, as small as a single bit in the multi-
server case, while α is still sub-linear (see [15] for a detailed account). For instance, in

the two-server computational PIR protocol of Chor and Gilboa [12], α = 2O(
√

log n)

and β = 1. Substituting such a protocol for P in the above procedure makes the
on-line communication and the total user’s computation very small (in fact, compa-
rable with those of non-private retrieval) while maintaining a reasonably low off-line
communication.

Note, however, that the on-line work performed by the servers is still linear. The only
observation that is left to make is that since there are only n possible on-line queries
made by the user, the servers can pre-compute the answers to each of these queries. Thus,
paying at most O(βn) storage and O(n2) off-line computation (assuming that the time
complexity of P is O(n)), the on-line work is reduced to O(β).

Finally, we note that when instantiating the above general scheme with some concrete
PIR protocols (including the abovementioned two-server protocol from [12]) the time

12 This may be compared with the model of Gertner et al. [18], where they shift most computation to a “more
reasonable place” (special purpose servers); here we shift most computation to a “more reasonable time” (the
off-line stage).
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complexity of the off-line stage can be significantly reduced. Specifically, in these cases
each server needs to compute the modulo-2 inner product of a length-n vector determined
from the user’s off-line query with all cyclic shifts of the database. This may be viewed
as multiplication of an n × n Toeplitz matrix determined by the database by a vector
determined from the user’s query. Using the FFT algorithm, this computation can be
done in nearly-linear time.

8. Open Problems

We have shown that using preprocessing in PIR protocols one can obtain substantial
savings in the amount of computation without severely affecting the communication
complexity. However, this work only initiates the study on PIR with preprocessing, and
there are many open problems for further research. The obvious open problem is whether
our upper bounds for the case of a constant number of servers can be improved:

How much can the work be reduced using polynomially many extra bits?
How much can be saved using linearly many extra bits?

All the solutions provided in this work (with the exception of Section 7) are multi-
server PIR protocols. It is therefore natural to ask:

Can preprocessing substantially save work in single-server PIR protocols?
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