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Abstract. We consider the problem of constructing randomness extractors that are
locally computable; that is, read only a small number of bits from their input. As
recently shown by Lu (this issue, pp. 27–42), locally computable extractors directly
yield secure private-key cryptosystems in Maurer’s bounded-storage model [M2].

We suggest a general “sample-then-extract” approach to constructing locally com-
putable extractors: use essentially any randomness-efficient sampler to select bits from
the input and then apply any extractor to the selected bits. Plugging in known sampler
and extractor constructions, we obtain locally computable extractors, and hence cryp-
tosystems in the bounded-storage model, whose parameters improve upon previous
constructions. We also provide lower bounds showing that the parameters we achieve
are nearly optimal.

The correctness of the sample-then-extract approach follows from a fundamental
lemma of Nisan and Zuckerman [NZ], which states that sampling bits from a weak
random source roughly preserves the min-entropy rate. We also present a refinement of
this lemma, showing that the min-entropy rate is preserved up to an arbitrarily small
additive loss, whereas the original lemma loses a logarithmic factor.

Key words. Extractors, Bounded-storage model, Everlasting security, Space-bounded
adversaries, Unconditional security, Averaging samplers, Expander graphs.

1. Introduction

Maurer’s bounded-storage model for private-key cryptography [M2] has been the subject
of much recent activity. In this model, one assumes that there is public, high-rate source

∗ Preliminary versions of this paper have appeared on the Cryptology e-print archive [V1] and in CRYPTO
03 [V2]. This research was supported by NSF Grants CCR-0205423 and CCR-0133096 and a Sloan Research
Fellowship.
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of randomness and that all parties have limited storage so that they cannot record all of
the randomness coming from the source. Remarkably, this quite plausible model makes it
possible to construct private-key cryptosystems that are information-theoretically secure
and require no unproven complexity assumptions (in contrast to most of modern cryp-
tography). Intuitively, a shared secret key can be used by legitimate parties to randomly
select bits from the random source about which the adversary has little information (due
to the bound on its storage). With some further processing, the legitimate parties can
convert these unpredictable bits into ones which the adversary cannot distinguish from
truly random (in an information-theoretic sense), and hence they can safely be used for
cryptographic purposes, e.g., as a one-time pad for encryption.

A sequence of works [M2], [CM], [AR], [ADR], [DR], [DM], [L] has given increas-
ingly secure and efficient protocols in this model. In particular, the works of Aumann,
Ding, and Rabin [ADR], [DR] showed that protocols in this model have the novel prop-
erty of “everlasting security”—the security is preserved even if, after the protocol is used,
the key is revealed to the adversary and the adversary’s storage becomes unbounded.

Recently, Lu [L] showed that work in this model can be cast nicely in the framework of
randomness extractors. Extractors, introduced by Nisan and Zuckerman [NZ], are pro-
cedures for extracting almost-uniform bits from sources of biased and correlated bits.
These powerful tools have been the subject of intense study, and have found many appli-
cations to a wide variety of topics in the theory of computation. (See the surveys [NT]
and [S1].) One of the first applications, in the original paper of Nisan and Zuckerman,
was to construct pseudorandom generators for space-bounded computation. Thus, they
seem a natural tool to use in the bounded-storage model, and indeed Lu [L] showed that
any extractor yields secure private-key cryptosystems in the bounded-storage model.
However, the efficiency considerations of the bounded-storage model require a nonstan-
dard property from extractors—namely that they are locally computable;1 that is, they
can be computed by reading only a few bits from the random source. Lu constructed
locally computable extractors by first constructing locally computable error-correcting
codes, and then plugging them into the specific extractor construction of Trevisan [T2].

In this paper we suggest a general “sample-then-extract” approach to constructing
locally computable extractors: use essentially any randomness-efficient “sampler” to
select bits from the source and then apply essentially any extractor to the selected bits.
Plugging in known sampler and extractor constructions, we obtain locally computable
extractors, and hence cryptosystems in the bounded-storage model, whose parameters
improve upon previous constructions. We also provide lower bounds that show that the
parameters we achieve are nearly optimal.

The correctness of the sample-then-extract approach follows directly from a funda-
mental lemma of Nisan and Zuckerman [NZ]. Roughly speaking, the lemma states that a
random sample of bits from a string of high min-entropy2 also has high min-entropy. We
also present a refinement of this lemma, showing that the min-entropy rate is preserved

1 This terminology was suggested by Yan Zong Ding and we prefer it to the terminology “on-line extractors,”
which was used (with different meanings) in [BRST] and [L]. The issue of “local computation” versus “on-line
computation” is discussed in more detail in Section 3.

2 Like Shannon entropy, the min-entropy of a probability distribution X is a measure of the number of bits
of “randomness” in X . A formal definition is given in Section 3.
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up to an arbitrarily small additive loss, whereas the original lemma loses a logarithmic
factor. This improvement is not necessary for the sample-then-extract approach to work,
but increases its efficiency. Together with some of our techniques for constructing sam-
plers, it has also played a role in the recent explicit construction of extractors that are
“optimal up to constant factors” [LRVW].

In retrospect, several previous cryptosystems in the bounded storage model, such as
[CM] and [ADR], can be viewed as special cases of the sample-then-extract approach,
with particular choices for the extractor and sampler. By abstracting the properties needed
from the underlying tools, we are able to use state-of-the-art extractors and samplers,
and thereby obtain our improvements.

Organization

Section 2 contains some general definitions and notation. In Section 3 we present Mau-
rer’s bounded-storage model [M2], generalized to sources that need not be perfectly
random, along with the relevant definitions of security. In Section 4 we identify the two
main efficiency measures we consider, and state the performance of both previous and
our constructions with respect to these measures. Section 5 recalls the notion of random-
ness extractors [NZ] and Lu’s connection between locally computable extractors and the
bounded-storage model [L]. In Section 6 we present our sample-then-extract approach for
constructing locally computable extractors and our refinement to the Nisan–Zuckerman
lemma. Section 7 contains the results obtained by plugging optimal (but nonconstructive)
samplers and extractors into the sample-then-extract approach. In Section 8 we instead
plug in known explicit constructions to obtain an explicit and efficient cryptosystem.
Finally, in Section 9 we prove lower bounds showing that the parameters we achieve are
nearly optimal.

2. Preliminaries

Except where otherwise noted, we refer to random variables taking values in discrete sets.
We generally use capital letters for random variables and lowercase letters for specific
values, as in Pr[X = x]. For a random variable X , we write x

R← X to indicate that x is
selected according to X . If S is a set, then x

R← S indicates that x is selected uniformly
from S. For a random variable A and an event E , we write A|E to mean A conditioned
on E . We write Un to denote a random variable distributed uniformly on {0, 1}n .

The statistical difference (or variation distance) between two random variables X , Y
taking values in a universe U is defined to be

�(X, Y )
def= max

S⊂U
|Pr[X ∈ S] − Pr[Y ∈ S]| = 1

2

∑
x∈U

|Pr[X = x] − Pr[Y = x]|.

We say X and Y are ε-close if �(X, Y ) ≤ ε.

The min-entropy of a random variable X is defined to be H∞(X)
def= minx log(1/Pr[X =

x]). (All logarithms in this paper are base 2.) Intuitively, min-entropy measures random-
ness in the “worst case,” whereas standard (Shannon) entropy measures the randomness
in X “on average.” X is called a k-source if H∞(X) ≥ k, i.e., for all x , Pr[X = x] ≤ 2−k .
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3. The Bounded-Storage Model

The Random Source. A central component of the Maurer’s bounded-storage model
[M2] is a public, high-rate source of randomness. In the original model the random source
was envisioned as a stream of perfectly random bits being broadcast from some natural
or artificial source of randomness. However, since it may be difficult to obtain perfectly
random bits from a physical source, particularly at a high rate, we feel it is important
to investigate the minimal conditions on the random source under which this type of
cryptography can be performed. As noted in [L] and [DM], the existing constructions
still work even if we only assume that the source has sufficient min-entropy. Below we
formalize this observation, taking particular note of the kind of independence that is
needed when the cryptosystem is used many times.

We model the random source as a sequence of random variables X1, X2, . . . , each
distributed over {0, 1}n , where Xt is the state of the source at time period t . To model
a random source which is a high-rate “stream” of bits, the Xt ’s can be thought of as
disjoint, contiguous substrings of the stream. However, our formulation also allows for
the possibility that the random source is not a stream, but rather a (natural or artificial)
“oracle” of length n, which changes over time and can be probed at positions of one’s
choice. In both cases, n should be thought of as very large, greater than the storage
capacity of the adversary (and the legitimate parties).

In the original model of a perfectly random stream, the Xt ’s are uniform on {0, 1}n

and independent of each other. However, we allow biases and correlations in the source,
only assuming that each Xt has sufficient randomness, as measured by min-entropy (the
measure advocated in [CG1] and [Z1]). That is, we require each Xt to be an αn-source
for some α > 0. Using a worst-case measure like min-entropy rather than Shannon
entropy is important because we want security to hold with high probability and not just
“on average.” (Our results also apply for random sources that are statistically close to
having high min-entropy, such as those of high Renyi entropy.)

We also do not insist that the Xt ’s are independent, only that they have high min-
entropy conditioned on the future.

Definition 3.1. A sequence of random variables X1, X2, . . . , each distributed over
{0, 1}n is a reverse block source of min-entropy rate α if for every t ∈ N and every
xt+1, xt+2, . . . , the random variable Xt |Xt+1=xt+1,Xt+2=xt+2,... is an αn-source.

As the terminology suggests, this is the same as the Chor–Goldreich [CG1] notion of a
block source, but “backwards” in time. Intuitively, it means that Xt possesses αn bits of
randomness that will be “forgotten” at the next time step. This is somewhat less natural
than the standard notion of a (forward) block source, but it still may be a reasonable
model for some imperfect physical sources of randomness.3 Below we will see why
some condition of this form (high entropy conditioned on the future) is necessary for
cryptography in the bounded-storage model. In the special case α = 1, Definition 3.1 is

3 The consideration of such sources raises interesting philosophical questions: does the universe keep a
perfect record of the past? If not, then reverse block sources seem plausible.
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equivalent to requiring that Xt ’s are uniform and independent, so in this case the issue
of reversal is moot.

Cryptosystems. Here, as in previous works, we focus on the task of using a shared key
to extract pseudorandom bits from the source. These pseudorandom bits can then be
used for encryption (as a stream cipher) or message authentication. A bounded-storage
model (BSM) pseudorandom generator is a function PRG: {0, 1}n × {0, 1}d → {0, 1}m

(typically with d,m � n). Such a scheme is to be used as follows. Two parties share a
seed K ∈ {0, 1}d . At time t , they apply PRG(·, K ) to the random source Xt to obtain
m pseudorandom bits, given by Yt = PRG(Xt , K ). At time t + 1 (or later), Yt will be
pseudorandom to the adversary (if the scheme satisfies the definition of security below),
and hence can be used by the legitimate parties as a shared random string for any purpose
(e.g., as a one-time pad for encryption). The pseudorandomness of Yt will rely on the fact
that, at time t + 1 and later, Xt is no longer accessible to the adversary. More generally,
we need Xt to be unpredictable from future states of the random source, as captured by
our notion of a reverse block source. Note that even if Yt is only used exactly at time
t + 1, we still need Xt to have high min-entropy given the entire future, because the
adversary can store Yt .

We now formally define security for a BSM pseudorandom generator. Let βn be
the bound on the storage of the adversary A, and denote by St ∈ {0, 1}βn the state
of the adversary at time t . For a sequence of random variables Z1, Z2, . . . , we use
the shorthand Z[a,b] = (Za, Za+1, . . . , Zb), Z[a,∞) = (Za, Za+1, . . .). Following the
usual paradigm for pseudorandomness, we consider the adversary’s ability to distinguish
two experiments—the “real” one, in which the pseudorandom generator is used, and
an “ideal” one, in which truly random bits are used. Let A be an arbitrary function
representing the way the adversary updates its storage and attempts to distinguish the
two experiments at the end.

Real Experiment.

• Let X1, X2, . . . be the random source, let K
R←{0, 1}d be the key, and let the adver-

sary’s initial state be S0 = 0βn .
• For t = 1, . . . , T , let Yt = PRG(Xt , K ) be the pseudorandom bits, and let St =

A(Y[1,t−1], St−1, Xt ) be the adversary’s new state.
• Output A(Y[1,T ], ST , X [T+1,∞), K ) ∈ {0, 1}.

Ideal Experiment.

• Let X1, X2, . . . be the random source, let K
R←{0, 1}d be the key, and let the adver-

sary’s initial state be S0 = 0βn .
• For t = 1, . . . , T , let Yt

R←{0, 1}m be truly random bits, and let St = A(Y[1,t−1],

St−1, Xt ) be the adversary’s new state.
• Output A(Y[1,T ], ST , X [T+1,∞), K ) ∈ {0, 1}.
Note that at each time step we give the adversary access to all the past Yi ’s “for free”

(i.e., with no cost in the storage bound), and in the last time step, we give the adversary
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the adversary access to all future Xi ’s and the key K . The benefits of doing this are
explained below.

Definition 3.2. We call PRG: {0, 1}n × {0, 1}d → {0, 1}m an ε-secure BSM pseudo-
random generator for storage rate β and min-entropy rate α if for every reverse block
source (Xt ) of min-entropy rate α, every adversary A with storage bound βn, and every
T > 0, A distinguishes between the real and ideal experiments with advantage at most
T · ε. That is,∣∣∣∣Pr

real
[A(Y[1,T ], ST , X [T+1,∞), K ) = 1] − Pr

ideal
[A(Y[1,T ], ST , X [T+1,∞), K ) = 1]

∣∣∣∣ ≤ T · ε.

Remarks

• In the real experiment we give the pseudorandom strings Yt explicitly to the ad-
versary, as is typical in definitions of pseudorandomness. However, when they are
used in a cryptographic application (e.g., as one-time pads), they of course will
not be given explicitly to the adversary. Note that the string Yt−1 extracted at time
t − 1 is not given to the adversary (i.e., is not used in an application) until time t .
As mentioned above, this is crucial for Yt−1 to be pseudorandom (as required by
Definition 3.2).

• No constraint is put on the computational power of the adversary except for the
storage bound of βn (as captured by St ∈ {0, 1}βn). This means that the distributions
of (Y[1,T ], ST , X [T+1,∞), K ) in the real and ideal experiments are actually close in
a statistical sense—they must have statistical difference at most T · ε.

• The definition would be interesting even if Y1, . . . , Yt−2 were not given to the
adversary at time t (i.e., St = A(Yt−1, St−1, Xt )), and if K and XT+2, XT+3, . . .

were not given to the adversary at the end. Giving all the previous Yi ’s implies that
it is “safe” to use Yi at any time period after i (rather than exactly at time i + 1).
Giving the adversary all subsequent Xi ’s at the end is to guarantee that the security
does not deteriorate if the adversary waits and watches the source for some future
time periods. Giving the adversary the key at the end means that even if the secret
key is compromised, earlier transactions remain secure. This is analogous to the
“forward security” property studied in the computational setting (e.g., as applied to
pseudorandom generators in [BY]). However, unlike the computational setting, here
the security is preserved even if the adversary subsequently gains more resources
(i.e., storage). That is, the pseudorandomness of Y[1,T ] only relies on the adversary’s
storage being limited until time T (along with X [1,T ] being inaccessible after time T ,
except via ST and X [T+1,∞)). This nice property was dubbed “everlasting security”
in [ADR].

• We require that the security degrades only linearly with the number of times the
same key is reused.

• The definition is impossible to meet unless α > β: If α ≤ β, we can take each Xt

to have its first αn bits uniform and the rest fixed to zero. Then an adversary with
βn storage can entirely record Xt , and thus can compute Yt once K is revealed.
(Even if K is not revealed, in this example the bounded-storage model still clearly
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provides no advantage over the standard private-key setting, and hence is subject
to the usual limitations on information-theoretic security [S2].4

• Definition 3.2 should not be confused with the notion of pseudorandom generators
for space-bounded computation, e.g., as studied in [N] and [NZ]. In the latter notion,
there is no public random source and one typically allows both the seed length and
space usage of the pseudorandom generator to be greater than the distinguisher’s
space bound. (Here we want to set the storage bound to be infeasibly large, and
hence will aim for all the resources used by the BSM pseudorandom generator to
be much smaller). Nevertheless, our construction (building on [L]) makes heavy
use of the techniques from [NZ].

As usual, the above definition implies that to design a cryptosystem (e.g., private-
key encryption or message authentication) one need only prove its security in the ideal
experiment, where the two parties effectively share an infinite sequence of random strings
Y1, Y2, . . .. Security in the bounded-storage model immediately follows if these random
Yi ’s are then replaced with ones produced by a secure BSM pseudorandom generator.

Even though Definition 3.2 explicitly requires that security be preserved under multiple
uses (degrading linearly), it turns out that it suffices to analyze schemes for one time
period, as shown by the following lemma, which generalizes the “key reuse” results of
[DR] and [L].

Lemma 3.3. PRG: {0, 1}n × {0, 1}d → {0, 1}m is an ε-secure BSM pseudorandom
generator for storage rate β and min-entropy rate α if and only if for every αn-
source X on {0, 1}n and for every function A: {0, 1}n → {0, 1}βn , the random variable
(PRG(X, K ), A(X), K ) is ε-close to (Um, A(X), K ), where K

R←{0, 1}d .

Proof Sketch. We begin with the “only if” direction. Definition 3.2, with T = 1,
says that for every αn-source X1 and every A with output length βn, the random vari-
able (PRG(X1, K ), A(0βn, X1), K ) is ε-close to (Um, A(0βn, X1), K ). This is clearly
equivalent to the condition in Lemma 3.3.

For the “if” direction, we only outline the proof, as it is essentially the same as that of
[L] with a minor augmentation to deal with reverse block sources. Let X1, X2, . . . be a
reverse block source of min-entropy rateα, and let A be any adversary with storage bound
βn. We distinguish random variables in the Real Experiment and the Ideal Experiment
by superscripts, e.g., Y real

t versus Y ideal
t . We need to prove that, for every T , the random

variable Z real
T = (Y real

[1,T ], Sreal
T , X [T+1,∞), K ) has statistical difference at most T · ε from

Z ideal
T defined analogously. We prove this by induction on T . Z real

T is obtained from
Z real

T−1 by applying a function fT which updates the state Sreal
T = A(Y real

[1,T−1], Sreal
T−1, XT ),

computes Y real
T = PRG(XT , K ), and removes XT from the distribution. Then we have

�(Z real
T , Z ideal

T ) = �( fT (Z
real
T−1), Z ideal

T )

≤ �( fT (Z
real
T−1), fT (Z

ideal
T−1))+�( fT (Z

ideal
T−1), Z ideal

T )

4 Shannon’s impossibility result is for encryption schemes defined in the standard, noninteractive model. It
was generalized to interactive protocols in [M3].
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≤ �(Z real
T−1, Z ideal

T−1)+�( fT (Z
ideal
T−1), Z ideal

T )

≤ (T − 1) · ε +�( fT (Z
ideal
T−1), Z ideal

T ).

Thus it suffices to show that the following two random variables are ε-close:

fT (Z
ideal
T−1) = (Y ideal

[1,T−1],PRG(XT , K ), A(Y ideal
[1,T−1], Sideal

T−1, XT ), X [T+1,∞), K ) and

Z ideal
T = (Y ideal

[1,T−1], Y ideal
T , A(Y ideal

[1,T−1], Sideal
T−1, XT ), X [T+1,∞), K ).

The proof of this proceeds as follows. By the definition of a reverse block source, XT

is an αn-source even conditioned on X [T+1,∞). We can view the adversary’s new state
A(Y ideal

[1,T−1], Sideal
T−1, XT ) as a probabilistic function of XT mapping to {0, 1}βn . Thus, by

the hypothesis of the lemma, (K ,PRG(XT , K )) is ε-close to (K ,Um) ≡ (K , Y ideal
T )

even conditioned on all other components of fT (Z ideal
T−1). Thus, fT (Z ideal

T−1) and Z ideal
T have

statistical difference at most ε, as desired.

4. Efficiency Criteria and Results

In addition to providing security, it is important for BSM pseudorandom generators to
be efficient. In the usual spirit of cryptography, we would like the honest parties to need
much smaller resources than the adversary is allowed. In this case that means we would
like the computation of PRG to require much less space than the adversary’s storage
bound of βn. Note that the honest parties will have to store the entire extracted key
Yt ∈ {0, 1}m during time t (when it is not yet safe to use), so reducing their space to
m is the best we can hope for (and since we envision m � n, this is still very useful).
However, since n is typically envisioned to be huge, it is preferable to reduce not just
the space for PRG to much less than n, but also the time spent.5 Thus, we adopt as our
main efficiency measure the number of bits read from the source. Of course, once these
bits are read, it is important that the actual computation of PRG is efficient with respect
to both time and space. In our constructions (and all previous constructions), PRG can
be computed in polynomial time and polylogarithmic work space (indeed even in NC).6

Thus the total storage required by the legitimate parties is dominated by the number of
bits read from the source.

Another common complexity measure in cryptography is the key length, which should
be minimized. Table 1 describes the performance of previous schemes and our new con-
structions with respect to these two complexity measures.7 With respect to both measures,
our constructions give an asymptotic improvement over previous constructions. In Sec-
tion 9 we give lower bounds showing that our parameters are within a constant factor of

5 If having PRG computable in small space with one pass through the random source is considered sufficiently
efficient, then the work of Bar-Yossef et al. [BRST] is also applicable here. See Section 5.

6 Actually, in Section 7 we present some nonconstructive results showing the existence of BSM pseudoran-
dom generators that read few bits from the source, but are not efficiently computable. In Section 8 we present
explicit constructions that come close to the nonconstructive bounds, and these are the results we refer to in
Table 1.

7 Most of the previous schemes were explicitly analyzed only for the case of a perfectly random source, i.e.,
α = 1, but the proofs actually also work for weak random sources provided α > β (except where otherwise
noted) [L]. Also note that the schemes with key length greater than m do not follow trivially from the one-time
pad, because the same key can be used many times.



Constructing Locally Computable Extractors 51

Table 1. Comparison of pseudorandom generators in the bounded storage model.∗

Reference Key Length Number of bits read Restrictions

[CM] O(log n) O(m/ε2) Interactive
[AR] O(log n · log(1/ε)) O(m · log(1/ε)) α = 1, β < 1/m
[ADR] O(m · log n · log(1/ε)) O(m · log(1/ε))
[DR] O(log n · log(1/ε)) O(m · log(1/ε)) α = 1, β < 1/log m
[DM] O(log n · log(1/ε)) O(m · log(1/ε))
[L] O(m · (log n + log(1/ε))) O(m · log(1/ε))
[L] O((log2(n/ε)/log n)) O(m · log(1/ε)) m ≤ n1−�(1)

Here O(log n + log(1/ε)) O(m + log(1/ε)) ε > exp(−n/2O(log∗ n))

∗Parameters are for ε-secure schemes PRG: {0, 1}n ×{0, 1}d → {0, 1}m , for constant storage rate
β, and constant min-entropy rate α, where α > β. We only list the parameters for the case that the
number of bits read from the source is o(n), as n is assumed to be huge and infeasible.

optimal. In fact, for the number of bits read from the source, this constant factor can be
made arbitrarily close to 1 in the (natural) case that ε = 2−o(m).

We now touch upon a couple of additional efficiency considerations. First, if the
random source is implemented as a high-rate stream, it is important that the positions to
be read from the source can be computed off-line (from just the key) and sorted so that
they can be quickly read in order as the stream goes by. This is the case for our scheme
and previous ones.

Second, one can hope to reduce the space for computing the pseudorandom generator
to exactly m + d (i.e., the length of the extracted string plus the key). That is, even
though the schemes read more than m bits from the source, the computation does not
require any workspace beyond the locations where it writes its output. This property
holds for most of the previous constructions, as each bit of the output is a parity of
O(log(1/ε)) bits of the source. Our construction does not seem to have this property in
general (though specific instantiations may); each bit of the output can be a function of
the entire O(m+ log(1/ε)) bits read from the source. Still the space used by our scheme
is O(m + log(1/ε)), only a constant factor larger than optimal.

The fact that in previous constructions each bit of the pseudorandom generator’s out-
put depends on only O(log(1/ε)) bits of the source has one other potential benefit: it can
enable error-correction in case the random source cannot be accessed perfectly [R]: As-
sume that the pseudorandom generator’s output is used as a one-time pad for encryption.
Then a bit-error probability of O(1/log(1/ε)) in accessing the source can be viewed as
a constant bit-error probability in the output of the pseudorandom generator, which in
turn can be viewed as constant bit-error probability in the plaintext (since the ciphertext
is the XOR of the pseudorandom generator’s output and the plaintext). A constant bit-
error probability in the plaintext can be overcome by encoding messages in a standard,
asymptotically good error-correcting code.

5. Locally Computable Extractors

In this section we define extractors and locally computable extractors, and recall Lu’s
result [L] about their applicability to the bounded-storage model.
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An extractor is a procedure for extracting almost-uniform bits from any random source
of sufficient min-entropy. This is not possible to do deterministically, but it is possible
using a short seed of truly random bits, as captured in the following definition of Nisan
and Zuckerman.

Definition 5.1 [NZ]. Ext: {0, 1}n × {0, 1}d → {0, 1}m is a strong8 (k, ε)-extractor if
for every k-source X , the distribution Ud ◦ Ext(X,Ud) is ε-close to Ud × Um .

The goal in constructing extractors is to minimize the seed length d and maximize
the output length m. We will be precise about the parameters in later sections, but, for
reference, an “optimal” extractor has a seed length of d = O(log n + log(1/ε)) and an
output length of m = k − O(log(1/ε)), i.e., almost all of the min-entropy is extracted
using a seed of logarithmic length.

Recently, Lu proved that any extractor yields secure cryptosystems in the bounded-
storage model:

Theorem 5.2 (implicit in [L]). If Ext: {0, 1}n × {0, 1}d → {0, 1}m is a strong (δn −
log(1/ε), ε)-extractor, then for every β > 0, PRG = Ext is a 2ε-secure BSM pseudo-
random generator for storage rate β and min-entropy rate β + δ.

Proof Sketch. We use Lemma 3.3. Let A: {0, 1}n → {0, 1}βn be any function, and
let X be any (β + δ)n-source. We need to show that (Ext(X,Ud), A(X),Ud) is 2ε-
close to (Um, A(X),Ud). As in [NZ] and [L], with probability at least 1 − ε over
s

R← A(X), the random variable X |A(X)=s is a ((β + δ)n − βn − log(1/ε))-source (be-
cause |s| = βn), i.e., X |A(X)=s is a (δn − log(1/ε))-source. For each such s, the strong
extractor property says that (Ud ,Ext(X |A(X)=s,Ud)) is ε-close to Ud × Um . It follows
that (A(X),Ud ,Ext(X,Ud)) is 2ε-close to (A(X),Ud ,Um).

However, as noted by Lu, we cannot simply use off-the-shelf constructions of extrac-
tors. Recall that our main efficiency measure in the bounded-storage model is the number
of bits read from the source. In contrast, most works in the extractor literature assume
that the source can be accessed in its entirety. Thus we make the following definition:

Definition 5.3. Ext: {0, 1}n ×{0, 1}d → {0, 1}m is t-locally computable (or t-local) if
for every r ∈ {0, 1}d , Ext(x, r) depends on only t bits of x , where the bit locations are
determined by r .

Thus, in addition to the usual goals of minimizing d and maximizing m, we also wish
to minimize t . Our results will show that reading t = m/δ+�(log(1/ε) bits is necessary
and sufficient to construct a t-local (δn, ε)-extractor (for constant δ).

Bar-Yossef et al. [BRST] studied a related notion of on-line extractors, which are
required to be computable in small space in one pass, but we feel that locally computable

8 A standard (i.e., nonstrong) extractor requires only that Ext(X,Ud ) is ε-close to uniform.
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extractors are preferable in the bounded-storage model (where the source is envisioned
to be huge).

Lu [L] observed that the encryption schemes of Aumann, Ding, and Rabin [AR],
[ADR], [DR] can be viewed as locally computable extractors, albeit with long seeds.
He constructed locally computable extractors with shorter seeds based on Trevisan’s
extractor [T2]. The construction of Dziembowski and Maurer [DM] is also a locally
computable extractor. The parameters of these constructions can be deduced from Table 1.

6. Sample-Then-Extract

There are many constructions of extractors in the literature that have excellent parameters,
but lack the local computability property that we need. Thus we seek a general method
for converting nonlocal extractors into local ones. Our approach is to separate the task
of a local extractor into two parts: the “sample” step—deciding which bits to read from
the source—and the “extract” step—the actual processing of those bits. In our approach
the extract step is done by an extractor, but this extractor need not be local (since it only
operates on the bits selected in the sample step) and hence can be taken from the existing
literature. So the question is how to perform and analyze the sample step.

The sample step is based on a fundamental lemma of Nisan and Zuckerman [NZ],
which says that if one samples a random subset of bits from a weak random source,
the min-entropy rate of the source is (nearly) preserved. More precisely, if X ∈ {0, 1}n

is a δn-source and X S ∈ {0, 1}t is the projection of X onto a random set S ⊂ [n] of t
positions, then, with high probability, X S is ε-close to a δ′t-source, for some δ′ depending
on δ. Thus, to obtain a locally computable extractor, we can simply apply a (standard)
extractor to X S , and thereby output roughly δ′t almost-uniform bits. That is, part of the
seed of the locally computable extractor will be used to select S, and the remainder will
be used as the seed for applying the extractor to X S .

However, choosing a completely random set S of positions is expensive in the seed
length, requiring approximately |S| · log n random bits. (This gives a result analogous to
[ADR], because |S| ≥ m.) To save on randomness, Nisan and Zuckerman [NZ] showed
that S could be sampled in a randomness-efficient manner, using k-wise independence
and/or random walks on expander graphs. More generally, their proof only requires that
with high probability S has a large intersection with any subset of [n] of a certain density
(see [RSW]). In order to achieve improved performance, we impose a slightly stronger
requirement on the sampling method: for any [0, 1]-valued function, with high probability
its average on S should approximate its average on [n]. Such sampling procedures are
known as averaging (or oblivious) samplers, and have been studied extensively [BR],
[CEG], [Z2], [G2]. Our definition differs slightly from the standard definition, to allow
us to obtain some savings in parameters (discussed later).

Definition 6.1. A function Samp: {0, 1}r → [n]t is a (µ, θ, γ ) averaging sampler if
for every function f : [n] → [0, 1] with average value (1/n)

∑
i f (i) ≥ µ, it holds that

Pr
(i1,...,it )

R←Samp(Ur )

[
1

t

t∑
j=1

f (i j ) < µ− θ
]
≤ γ.
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Samp has distinct samples if for every x ∈ {0, 1}r , the samples produced by Samp(x)
are all distinct.

That is, for any function f whose average value is at least µ, with high probability
(i.e., at least 1 − γ ) the sampler selects a sample of positions on which the average
value of f is not much smaller than µ. The goal in constructing averaging samplers
is usually to minimize the randomness r and sample complexity t simultaneously. We
will be precise about the parameters in later sections, but, for reference, an “optimal”
averaging sampler uses only t = O(log(1/γ )) samples and r = O(log n + log(1/γ ))
random bits (for constant µ, θ ).

In contrast to most applications of samplers, we are not necessarily interested in
minimizing the sample complexity. Ideally, we prefer samplers where the number of
distinct samples can be chosen anywhere in the interval [t0, n], where t0 is the minimum
possible sample complexity. (Note that without the requirement of distinct samples, the
number of samples can be trivially increased by repeating each sample several times.)
Another atypical aspect of our definition is that we make the parameter µ explicit.
Averaging samplers usually require that the sample average is within θ of the global
average, regardless of the average value of f , but being explicit about µ will allow us to
obtain some savings in the parameters.9

Using averaging samplers (rather than just samplers that intersect large sets) together
with an idea from [T1] allows us to obtain a slight improvement to the Nisan–Zuckerman
lemma. Specifically, Nisan and Zuckerman show that sampling bits from a source of min-
entropy rate δ yields a source of min-entropy rate �(δ/log(1/δ)); our method can yield
min-entropy rate δ − τ for any desired τ .

For a string x ∈ {0, 1}n and a sequence s = (i1, . . . , it ) ∈ [n]t , define xs ∈ {0, 1}t to
be the string xi1 xi2 · · · xit . Recall that for a pair of jointly distributed random variables
(A, B), we write B|A=a for B conditioned on the event A = a.

Lemma 6.2 (refining [NZ]). Let 1 ≥ δ ≥ 3τ > 0. Suppose that Samp: {0, 1}r → [n]t

is an (µ, θ, γ ) averaging sampler with distinct samples for µ = (δ − 2τ)/log(1/τ)
and θ = τ/log(1/τ). Then for every δn-source X on {0, 1}n , the random variable
(Ur , XSamp(Ur )) is (γ + 2−�(τn))-close to (Ur ,W ) where for every a ∈ {0, 1}r ,10 the
random variable W |Ur=a is a (δ − 3τ)t-source.

The above lemma is where we use the fact that the sampler has distinct samples.
Clearly, sampling the same bits of X many times cannot increase the min-entropy of the
output, whereas the above lemma guarantees that the min-entropy grows linearly with t ,
the number of samples.

An alternative method to extract a shorter string from a weak random source while
preserving the min-entropy rate up to a constant factor was given by Reingold et al.

9 Averaging samplers also typically consider deviations above the average in addition to deviations below
the average as in Definition 6.1. However, if the sampler works for all values of µ, then a bound on deviations
below implies a bound on deviations above by considering the function 1 − f .

10 Intuitively, the reason we can guarantee that B has high min-entropy conditioned on every value of A, is
that the “bad” values of A are absorbed in the γ + 2−�(τn) statistical difference.



Constructing Locally Computable Extractors 55

[RSW], as a subroutine in their improved extractor construction. However, the string
produced by their method consists of bits of an encoding of the source in an error-
correcting code rather than bits of the source itself. Since computing even a single bit
of the encoding might require reading all of the bits in the source, their method is not
suitable, hence is not good, for constructing locally computable extractors (which was
not their goal). As pointed out to us by Chi-Jen Lu and Omer Reingold, Lemma 6.2
eliminates the need for error-correcting codes in [RSW].

The proof of Lemma 6.2 is deferred to Section 6.1. Given the lemma, it follows that
combining an averaging sampler and an extractor yields a locally computable extractor.

Theorem 6.3 (Sample-Then-Extract). Let 1 ≥ δ ≥ 3τ > 0. Suppose that Samp:
{0, 1}r → [n]t is a (µ, θ, γ ) averaging sampler with distinct samples for µ = (δ −
2τ)/log(1/τ) and θ = τ/log(1/τ) and that Ext: {0, 1}t ×{0, 1}d → {0, 1}m is a strong
((δ − 3τ)t, ε) extractor. Define Ext′: {0, 1}n × {0, 1}r+d → {0, 1}m by

Ext′(x, (y1, y2)) = Ext(xSamp(y1), y2).

Then Ext′ is a t-local strong (δn, ε + γ + 2−�(τn)) extractor.

Proof. For every (y1, y2), Ext′(x, (y1, y2)) only reads the t bits of x selected by
Samp(y1), so Ext′ is indeed t-local. We now argue that it is a (δn, ε + γ + 2−�(τn))

extractor. Let X be any δn-source. We need to prove that the random variable Z =
(Ur ,Ud ,Ext′(X, (Ur ,Ud))) = (Ur ,Ud ,Ext(XSamp(Ur ),Ud)) is close to uniform. By
Lemma 6.2, (Ur , XSamp(Ur )) is (γ+2−�(τn))-close to (Ur ,W )where W |Ur=a is a (δ−3τ)t-
source for every a. This implies that Z is (γ + 2−�(τn))-close to (Ur ,Ud ,Ext(W,Ud)).
Since Ext is a strong ((δ−3τ)t, ε) extractor, (Ud ,Ext(W |Ur=a,Ud)) is ε-close to Ud×Um

for all a. This implies that (Ur ,Ud ,Ext(W,Ud)) is ε-close to Ur × Ud × Um . By the
triangle inequality, Z is (ε + γ + 2−�(τn))-close to Ur × Ud × Um .

For intuition about the parameters, consider the case when δ > 0 is an arbitrary
constant, τ = δ/6, and γ = ε. Then using “optimal” averaging samplers and extractors
will give a locally computable extractor with seed length r + d = O(log n + log(1/ε))
and output length m = �(δt)− O(log(1/ε)). As we will see in Section 9, both of these
bounds are optimal up to constant factors.

We stress that the above refinement to the Nisan–Zuckerman lemma is not necessary
to achieve these parameters (or those in Table 1). Those parameters can be obtained by
applying the sample-then-extract method with the original lemma and sampler of Nisan
and Zuckerman [NZ] together with the extractor of Zuckerman [Z2]. The advantage
provided by the refined lemma lies in the hidden constant in the number of bits read
from the source. Specifically, when ε = 2−o(t) and we take τ → 0, then m approaches
the optimal bound of δt . With the Nisan–Zuckerman lemma, however, the min-entropy
guaranteed in the t sampled bits is smaller than (δ/log(1/δ)) · t , and thus we can extract
at most m < (δ/log(1/δ)) · t almost-uniform bits.
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6.1. Proof of Lemma 6.2

In this section we prove Lemma 6.2. For readers willing to assume the lemma, this section
can be skipped. Our proof has the same general structure as the Nisan–Zuckerman proof;
the main point of departure is pointed out below.

Recall our convention that capital letters denote random variables and that lowercase
letters denote specific values for them.

Let X be a δn-source X and let S = Samp(Ud). We write Xi (resp., xi ) for the i th bit
of X (resp., x). (Note that this is different from Section 3 where Xi denotes the i th block
of a reverse block source.)

For every x ∈ Supp(X), define pi (x) = Pr[Xi = xi |X1 = x1, . . . , Xi−1 = xi−1]. Let
hi (x) = log(1/pi (x)). Intuitively, hi (x) is the min-entropy contributed by the i th bit
of x . Note that for any x ∈ Supp(X), Pr[X = x] = ∏

i pi (x) = 2−�i hi (x). Since
X is a δn-source, 2−�i hi (x) ≤ 2−δn , i.e., the average of hi (x) is at least δ for every
x ∈ Supp(X). The intuition for the lemma is that, with high probability, the sampler
will select a sequence of positions i on which this average is preserved, and hence the
min-entropy rate will be preserved on the sample. One problem is that the sampler is
guaranteed to work for [0, 1]-valued functions, but hi (x) may be greater than 1. Thus,
we truncate large values and argue that we do not lose much by doing this. Specifically,
let h′

i (x) = min{hi (x), log(1/τ)}.
Here we see the main difference between our proof and the Nisan–Zuckerman proof

(which is analogous to one of the improvements made by Ta-Shma [T1] to the disperser
construction of [SSZ]). In the Nisan–Zuckerman proof, they consider the set of positions
i where pi (x) ≤ 1

2 , and argue that there are usually many such positions so the sampler
will hit this set many times. This can be seen as counting either 1 or 0 bits of min-entropy
per position (define h′

i (x) to be 1 if hi (x) ≥ 1 and 0 otherwise). Here, the bits of min-
entropy we count per position can be fractional or greater than 1 (up to log(1/τ)). This
allows us to lose less min-entropy, but forces us to use samplers for functions (rather
than sets).

We argue now that truncating the hi ’s does not cost us too much min-entropy. Call x
well-spread if

∑
i h′

i (x) ≥ (δ−2τ)n (i.e., truncating costs at most 2τ in the min-entropy
rate).

Claim 6.4. Pr[X is not well-spread] ≤ 2−�(τn).

Proof of Claim. Consider the random variables�1, . . . , �n defined by�i = hi (X)−
h′

i (X). We need to show that Pr[
∑

i �i > 2τn] ≤ 2−�(τn). We first bound the tails
of the individual �i ’s, conditioned on any prefix. For any q > 0 and x ∈ {0, 1}i−1,
we have

Pr[�i = q|X1 = x1, . . . , Xi−1 = xi−1]

= Pr[hi (X) = q + log(1/τ)|X1 = x1, . . . , Xi−1 = xi−1]

= Pr[pi (X) = 2−q+log(1/τ)|X1 = x1, . . . , Xi−1 = xi−1]
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=




2−q+log(1/τ) if ∃xi ∈ {0, 1} s.t.

Pr[Xi = xi |X1 = x1 · · · Xi−1 = xi−1] = 2−q+log(1/τ),

0 otherwise.

In particular, the above conditional probability is nonzero for at most one value of q, and
thus, for any q > 0,

Pr[�i ≥ q|X1 = x1, . . . , Xi−1 = xi−1] ≤ τ · 2−q . (1)

Since each�j is a function of X1, . . . , X j , this implies that for every q1, q2, . . . , qi−1 ≥ 0
and q > 0,

Pr[�i ≥ q|�1 = q1, . . . , �i−1 = qi−1] ≤ τ · 2−q . (2)

The claim now follows from a Chernoff-type bound proven in the Appendix, which
says that for any sequence of nonnegative random variables satisfying the inequalities
(2), Pr[

∑
i �i > 2τn] < 2−�(τn).

We call a sequence s = (i1, . . . , it ) ∈ [n]t good for x if

1

t

t∑
j=1

h′
i j
(x) ≥ δ − 3τ,

and otherwise call s bad for x . Let b(s) = Pr[s is bad for X ]. First we argue that the
sampler rarely produces bad sequences.

Claim 6.5. E[b(S)] ≤ γ + 2−�(τn).

Proof of Claim. Consider any well-spread element x ∈ Supp(X). Consider the func-
tion f : [n] → [0, 1] defined by f (i) = h′

i (x)/log(1/τ). Because x is well-spread, f
has average value at least µ = (δ − 2τ)/log(1/τ). A sequence s is good for x iff the
average of f on s is at least (δ − 3τ)/log(1/τ) = µ − θ . Thus, since S comes from a
(µ, θ, γ ) averaging sampler, we have Pr[S is not good for x] ≤ γ (for any well-spread
x). Now, averaging over x

R← X , we get

E[b(S)] = Pr[S is not good for X ]

≤ Pr[S is not good for X |X well-spread] + Pr[X not well-spread]

≤ γ + 2−�(τn).

Next, we show that good sequences yield high min-entropy on the sampled bits.

Claim 6.6. For every s, the random variable Xs is b(s)-close to a (δ − 3τ)t-source.

Proof of Claim. Fix s = (i1, . . . , it ). The basic idea is to “fix” the bits of X in positions
outside of s, and then argue that whenever s is good for x , xs has low probability mass.
Then averaging over the fixed bits can only increase the min-entropy. However, as in
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the proof of [NZ], fixing the bits of X is somewhat delicate because of the correlations
between the bits of X .

We can envision X (indeed, any random variable on {0, 1}n) being generated by
a process of the following form. The probability space consists of independent ran-
dom variables F1, . . . , Fn , where Fi is distributed (arbitrarily) over functions from
{0, 1}i−1 → {0, 1}, and, given these functions, X is deterministically generated by
setting Xi = Fi (X1 X2 · · · Xi−1).

We now fix Fi for every i /∈ s. Consider any f = ( fi )i /∈s , and let X f denote X
conditioned on Fi = fi for all i /∈ s. Then, for any string z ∈ {0, 1}t in the support of

X f
s , there is a unique x ∈ {0, 1}n in the support of X f such that xs = z. (Namely the x

inductively defined by setting xi = zi if i ∈ s and xi = fi (x1, . . . , xi−1) if i /∈ s.) We
denote this x by x f (z). Then

Pr[X f
s = z] = Pr[X f = x f (z)]

=
n∏

i=1

Pr[X f
i = x f (z)i |X f

1 = x f (z)1, . . . , X f
i−1 = x f (z)i−1].

The conditional probability in the i th factor above is 1 when i /∈ s (because then

X f
i = fi (X

f
1 · · · X f

i−1) always) and equals pi (x f (z)) otherwise. Thus, if s is good

for x f (z) (and consists of distinct samples), we have

Pr[X f
s = z] =

∏
i∈s

pi (x
f (z)) ≤

∏
i∈s

2−h′i (x
f (z)) ≤ 2−(δ−3τ)t .

Let b(s, f ) be the probability that s is bad for X f . Then, by the above, X f
s is b(s, f )-close

to some (δ−3τ)t-source, call it Z f . Now consider the random variable F = (Fi )i /∈s . Then
Xs = X F

s and Z F is a convex combination of (δ−3τ)t-sources and hence is a (δ−3τ)t-

source itself. The statistical difference between Xs and Z F is at most E[b(s, F)] = b(s),
as desired.

Now we deduce Lemma 6.2 from Claims 6.5 and 6.6. By Claim 6.6, Xs is b(s)-close
to some (δ − 3τ)t-source Zs . Consider the random variable (Ur , ZSamp(Ur )) (i.e., first

sample y
R←Ur , then sample z

R← ZSamp(y), and output (y, z)). The statistical difference
between (Ur , ZSamp(Ur )) and (Ur , XSamp(Ur )) is exactly the expected statistical difference

between Xs and Zs over s
R←Samp(Ur ) = S, which is at most E[b(S)] ≤ γ + 2−�(τn)

by Claim 6.5. Thus, (A, B) = (Ur , ZSamp(Ur )) satisfies the requirements of Lemma 6.2.

7. Nonexplicit Constructions

In this section we describe the locally computable extractors obtained by using truly
optimal extractors and samplers in Theorem 6.3. This does not give efficient construc-
tions of locally computable extractors, because optimal extractors and samplers are only
known by nonconstructive applications of the Probabilistic Method. However, it shows
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what Theorem 6.3 will yield as one discovers constructions which approach the optimal
bounds. In fact, the explicit constructions known are already quite close, and (as we
will see in Section 8) match the optimal bounds within constant factors for the range of
parameters most relevant to the bounded-storage model.

7.1. The Extractor

The Probabilistic Method yields extractors with the following expressions for seed length
d and output length m, both of which are tight up to additive constants [RT].

Lemma 7.1 (Nonconstructive Extractors (see [Z2] and [RT])). For every n and δ, ε >
0, there exists a strong (δn, ε)-extractor Ext: {0, 1}n × {0, 1}d → {0, 1}m with d =
log((1 − δ)n)+ 2 log(1/ε)+ O(1), m = δn − 2 log(1/ε)− O(1).

7.2. The Sampler

Similarly, the following lemma states the averaging samplers implied by the Probabilis-
tic Method. There are matching lower bounds for both the randomness complexity and
the sample complexity [CEG] (except for the dependence on µ, which was not con-
sidered there). The proof of the lemma follows the argument implicit in [Z2], with the
modifications that it makes the dependence onµ explicit and guarantees distinct samples.

Lemma 7.2 (Nonconstructive Samplers). For every n ∈ N, 1
2 > µ > θ > 0, γ > 0,

there exists a (µ, θ, γ ) averaging sampler Samp: {0, 1}r → [n]t that uses

• t distinct samples for any t ∈ [t0, n], where t0 = O((µ/θ2) · log(1/γ )) and
• r = log(n/t)+ log(1/γ )+ 2 log(µ/θ)+ log log(1/µ)+ O(1) random bits.

Proof. Let R = 2r so we can associate [R] = {0, 1}r . For simplicity, in this proof we
assume that the quantities γ R,µn, and n/t are all integers.11 Thus we can write n = t ·n0

for an integer n0 and associate [n] = [t]× [n0]. We consider a randomly chosen function
Samp0: [R] → [n0]t and set Samp(x)j = ( j,Samp0(x)). (This guarantees distinct
samples.)

Instead of directly proving that Samp is a sampler, we first prove that it has the
following property with high probability.

Claim 7.3. Samp has the following property with probability at least 1/2. For every
subset S ⊂ [R] of size γ R, and every boolean f : [n] → {0, 1} with average value µ,

Pr
x

R← S, j
R←[t]

[ f (Samp(x)j ) = 1] ≥ µ− θ.

11 The integrality assumptions for γ R and µn can easily be achieved by instead constructing a (µ′, θ ′, γ ′)
averaging sampler for µ′ = �µn�/n, θ ′ = θ · µ′/µ, and γ ′ = �γ R�/R, which will then also be a (µ, θ, γ )
averaging sampler. To remove the integrality assumption on n/t , the sampler below, Samp: [R] → [n]t ,
should be chosen as a random function mapping each x ∈ [R] to a uniformly selected sequence of t distinct
samples from [n] rather than defining it in terms of Samp0. Then the random variables {Xx, j } below are no
longer independent, but they do have “negative dependence” so the Chernoff bound still applies (see [DS]).
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Proof of Claim. Consider a fixed S and boolean f as in the claim. For every x ∈ S
and j ∈ [t], define the random variable Xx, j = f (Samp(x)j ) (over the choice of Samp).
These are |S| · t independent random variables. Let X be the average of the Xx, j ’s.
The expectation of X is the average value of f , which equals µ. We wish to show that
X ≥ µ− θ with very high probability.

By a Chernoff Bound (e.g., Theorem A.13 of [ASE]),

Pr
Samp

[X < µ− θ ] ≤ exp(−�(|S| · t · θ2/µ)). (3)

Thus, taking a union bound over f and S, the probability that Samp fails to satisfy the
claim is at most

exp(−�(|S| · t · θ2/µ)) ·
(

R

γ R

)
·
(

n

µn

)

≤ exp(−�(|S| · t · θ2/µ)) ·
(

eR

γ R

)γ R

·
(

en

µn

)µn

≤ exp(−�(γ R · t · θ2/µ)) · exp(log(1/γ ) · γ R) · exp(log(1/µ) · µn).

This probability is at most 1/2 if the following two conditions hold for a sufficiently
large constant c:

γ · R · t · θ2/µ ≥ c · γ · log(1/γ ) · R

and

γ · R · t · θ2/µ ≥ c · µ · log(1/µ) · n.

The first condition is t ≥ c · (µ/θ2) · log(1/γ ), which is guaranteed by the hypothesis of
the lemma. The second condition says R ≥ c · (n/t) · (1/γ ) · (µ/θ)2 · log(1/µ). Taking
logs, we obtain exactly the condition on r in the hypothesis of the lemma.

We now argue that any Samp satisfying Claim 7.3 is a (µ, θ, γ ) averaging sampler.
Suppose not. Then there is a (not necessarily boolean) function f : [n] → [0, 1] with
average value µ such that

Pr
x

R←Ur

[
1

t

t∑
j=1

f (Samp(x)j ) < µ− θ
]
> γ.

That is, there is a set S of γ R seeds x ∈ [R] such that (1/t)
∑t

j=1 f (Samp(x)j ) < µ−θ .
In particular, we have

Pr
x

R← S, j
R←[t]

[ f (Samp(x)j ) = 1] < µ− θ. (4)

This would contradict Claim 7.3, except that f is not necessarily boolean. However,
every [0, 1]-valued function with average value µ is a convex combination of boolean
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functions with average valueµ.12 Thus, the function f in inequality (4) can be viewed as
a distribution over boolean functions. By averaging, there is a boolean function satisfying
inequality (4), in contradiction to Claim 7.3.

7.3. The Local Extractor

Plugging the above two lemmas into Theorem 6.3, we obtain the following local
extractors.

Theorem 7.4 (Nonconstructive Local Extractors). Let κ > 0 be an arbitrary constant.
For every n ∈ N, δ > 0, ε > 0, and m ≤ δn − 2 log(1/ε)− O(1), there exists a t-local
strong (δn, ε) extractor Ext: {0, 1}n × {0, 1}d → {0, 1}m with

• d = log n + 3 log(1/ε)+ log log(1/δ)+ O(1) and
• t = (1 + κ)m + O(log(1/δ) · log(1/ε))/δ.

Proof. Set τ = κδ/6, µ = (δ − 2τ)/log(1/τ), and θ = τ/log(1/τ). By Lemma 7.2,
there exists a (µ, θ, ε/3) averaging sampler Samp: {0, 1}r → [n]t with distinct samples,
using

r = log(n/t)+ log(2/ε)+ 2 log(µ/θ)+ log log(1/µ)+ O(1)

= log n − log t + log(1/ε)+ log log(1/δ)+ O(1)

random bits, provided t ∈ [t0, n] for t0 = �((µ/θ2) · log(2/ε)) = O(log(1/δ) ·
log(1/ε)/δ), which is satisfied by the above setting for t . (If t ≥ n, then the theorem
follows from the existence of standard (nonlocal) extractors in Lemma 7.1.)

By Lemma 7.1, there is a strong ((1−κ/2)δt, ε/3) extractor Ext: {0, 1}t ×{0, 1}d →
{0, 1}m with d = log t + 2 log(1/ε)+ O(1), provided m ≤ (1− κ/2)δt − 2 log(1/ε)−
O(1). This follows from the above setting for t (for sufficiently small κ).

Noting that (δ − 3τ)t = (1 − κ/2)δt , we combine these via Theorem 6.3 to obtain a
t-local extractor with seed length r +d = log n+3 log(1/ε)+ log log(1/δ)+O(1). The
error of the extractor is 2ε/3 + 2−�(κδn), which we can assume is at most ε (otherwise,
we can set t = n and again the result follows from Lemma 7.1).

Using Theorem 5.2 (of [L]), we obtain the following BSM pseudorandom generators.

Corollary 7.5 (Nonconstructive BSM Pseudorandom Generators). Let δ, κ > 0 be ar-
bitrary constants. Then for every n ∈ N, ε > 0, and m ≤ δn − 2 log(1/ε)− O(1), there
exists a BSM pseudorandom generator PRG: {0, 1}n × {0, 1}d → {0, 1}m such that:

1. For every β > 0, PRG is ε-secure for min-entropy rate β + δ and storage rate β.
2. PRG has key length d = log n + 3 log(1/ε)+ O(1).

12 This is equivalent to the fact that every distribution of min-entropy k is a convex combination of flat
distributions of min-entropy k. Alternatively, it can be proven directly by calculating the vertices of the
parallelepiped consisting of all [0, 1]-valued functions with average value µ.
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3. For every key K , PRG(·, K ) reads at most t = (1 + κ)m/δ + O(log(1/ε)) bits
from the source (nonadaptively).

When ε = 2−o(m) and κ is set to be close to zero, then t ≈ m/δ, which is the optimal
relationship (as we will prove in Section 9). The dependence of the hidden constants on
κ can be deduced from the proof of Theorem 7.4, and is omitted for sake of readability.

8. Explicit Constructions

In the previous section we showed that very good locally computable extractors exist, but
for applications we need explicit constructions. For an extractor Ext: {0, 1}n×{0, 1}d →
{0, 1}m or a sampler Samp: {0, 1}r → [n]t , explicit means that it is computable in
polynomial time and polylogarithmic workspace with respect to its input + output lengths
(i.e., n + d + m for an extractor and r + t log n for a sampler). For a t-local extractor
Ext: {0, 1}n × {0, 1}d → {0, 1}m , we give it oracle access to its first input and view the
input length as log n+ t+d (log n to specify the length of the oracle, and t as the number
of bits actually read from it).

There are many explicit constructions of averaging samplers and extractors in the
literature and thus a variety of local extractors can be obtained by plugging these into
Theorem 6.3. We do not attempt to describe all possible combinations here, but rather
describe one that seems particularly relevant to cryptography in the bounded-storage
model. We recall the following features of this application:

• The local extractor should work for sources of min-entropy (α − β)n − log(1/ε),
which is �(n) for most natural settings of the parameters. (Recall that α is the
min-entropy rate of the random source and β is the storage rate of the adversary.)
That is, we can concentrate on constant min-entropy rate.

• Optimizing the number of bits read from the source seems to be at least as important
as the seed length of the extractor.

• The error ε of the extractor will typically be very small, as this corresponds to the
“security” of the scheme.

• We are not concerned with extracting all of the entropy from the source, since we
anyhow will only be reading a small fraction of the source.

The construction we present here is aimed at optimizing asymptotic performance
(given the above considerations), in particular to achieve the parameters in Table 1 and
even to have the number of bits read from the source approach the lower bounds we
give in Section 9. However, if this level of optimization is not needed, there are simpler
constructions of extractors and samplers that can be used in the sample-then-extract
paradigm, and indeed some previous constructions of cryptosystems in the bounded-
storage model can be obtained in this way. We discuss these previous constructions and
other appealing choices for the extractor and sampler in Section 8.4.

8.1. The Extractor

With the above criteria in mind, the most natural extractor to use (in Theorem 6.3) is
Zuckerman’s extractor for constant min-entropy rate [Z2]:



Constructing Locally Computable Extractors 63

Lemma 8.1 [Z2]. Let δ, κ > 0 be arbitrary constants. For every n ∈ N and every ε >
exp(−n/2O(log∗ n)), there is an explicit strong (δn, ε)-extractor Ext: {0, 1}n ×{0, 1}d →
{0, 1}m with d = O(log n + log(1/ε)) and m = (1 − κ)δn.

8.2. The Sampler

For the averaging sampler, the well-known sampler based on random walks on expander
graphs provides good parameters for this application. Indeed, its randomness and sample
complexities are both optimal to within a constant factor whenµ and θ are constant (and
the minimal sample complexity is used). However, we cannot apply it directly because
it does not guarantee distinct samples, and we do not necessarily want to minimize
the number of samples. Nisan and Zuckerman [NZ] presented some methods for getting
around these difficulties, but their analysis does not directly apply here since we impose a
stronger requirement on the sampler. (As mentioned earlier, we could use their sampler
with their version of Lemma 6.2, at the price of a constant factor in the number of
bits read from the source.) Thus we introduce some new techniques to deal with these
issues. We also note that our use of expander walks to construct locally computable
extractors is similar to Lu’s use of expander walks to construct a locally computable list-
decodable error-correcting code (equivalently, locally computable extractor with output
length 1) [L] (see Section 8.4).

The following gives a modification of the expander sampler which guarantees distinct
samples.

Lemma 8.2 (Modified Expander Sampler). For every 0 < θ < µ < 1, γ > 0, and
n ∈ N, there is an explicit (µ, θ, γ ) averaging sampler Samp: {0, 1}r → [n]t that uses

• t distinct samples for any t ∈ [t0, n], where t0 = O((1/θ2) · log(1/γ )), and
• r = log n + O(t · log(1/θ)) random bits.

Proof. Consider an explicit d-regular expander graph G on n vertices.13 Let M be the
adjacency matrix of G divided by d, i.e., the stochastic matrix which describes the random
walk on G. M has an eigenvalue of 1, and we require that all its other eigenvalues have
absolute value less than λ = θ/16. This is possible to achieve with degree d = poly(1/θ)
(by taking an appropriate power of any explicit constant-degree expander with bounded
second eigenvalue, e.g., the one from [M1] and [GG]).

The standard expander sampler outputs a random walk w = (w1, . . . , wt ) on G of
length t started at a random vertex w1. For any function f : [n] → [0, 1], Gillman’s
Chernoff bound for random walks on expanders [G1] says

Pr
w

[∣∣∣∣∣1t
t∑

i=1

f (wi )− µ
∣∣∣∣∣ > θ

2

]
< exp(−�(θ2t)) <

γ

4
,

for t ≥ O(log(1/γ )/θ2).

13 Actually, we do not have explicit constructions of expander graphs for every n. Instead, we use an expander
with n′ ∈ [n, (1+ θ)n] vertices and extend f by setting f (i) = 0 for all i ∈ [n′]\[n] (which can be simulated
by arbitrarily reassigning samples in [n′]\[n] to values in [n] subject to distinctness).
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This sampler uses r0 = log n + t · log d = log n + O(t · log(1/θ)) random bits, as
desired. However, it does not guarantee distinct samples. We now show that discarding
the repeated vertices does not affect the sampler too much. For a walk (w1, . . . , wt ), call
wi a repeat if there exists a j < i such that wj = wi , and new otherwise. We modify
our sampler to use the first (1 − (θ/2))t new vertices in the walk, and output fail if
there are not this many new vertices. If failure does not occur, this sampler uses distinct
samples and the approximation is only affected by an additive error of at most θ/2. We
describe what to do in case of failures later.

We now bound the failure probability. For a fixed j < i , the probability over a random
walk w that wi = wj is exactly the trace of Mi− j divided by n, which equals the sum
of the eigenvalues of Mi− j . We use this to bound the probability that wi is a repeat as
follows:

Pr
w

[∃ j < i, wj = wi ] ≤
i−1∑
k=1

1

n
Tr(Mk) ≤

i−1∑
k=1

(1 + (n − 1)λk)

n
≤ t

n
+ 2λ ≤ θ

4
,

where the last inequality assumes t ≤ θn/8 (otherwise log
(n

t

) = O(t · log(n/t)) =
O(t · log(1/θ)) < r , so we have enough randomness to sample a uniformly random
subset of [n] of size t). Thus, the expected fraction of vertices in a random walk that are
repeats is at most θ/4. By Markov’s inequality, the probability that there are more than
θ/2 fraction of repeats is at most 1/2.14

So our modified sampler outputs fail with probability at most 1/2, and condi-
tioned on nonfailure, outputs a sample with error greater than θ with probability at most
(γ /4)/(1/2) = γ /2. Thus our task is reduced to sampling from the nonfailing sub-
set of our sample space with high probability (1 − γ /2). This can be done by using
a random walk of length O(log(1/γ )) on an expander on 2r0 vertices, for a total of
r = r0 + O(log(1/γ )) random bits. (When this sampler does not succeed in finding a
nonfailing expander walk, it outputs an arbitrary t-subset, e.g., (1, . . . , t).)

A drawback of the expander sampler is that the randomness increases with the number
of samples, whereas in the optimal sampler of Lemma 7.2 the randomness actually
decreases with the number of samples. To fix this, we use a simple technique that
increases the number of (distinct) samples at no cost. Roughly speaking, we view the
domain as a matrix [m]× [n], use our sampler to select a subset S ⊂ [n] of the columns,
and let their union S′ = [m]× S be the final sample set. Formally, we have the following
lemma.

Lemma 8.3. Suppose there is an explicit (µ, θ, γ ) averaging sampler Samp: {0, 1}r
→ [n]t with distinct samples. Then for every m ∈ N, there is an explicit (µ, θ, γ )
averaging sampler Samp′: {0, 1}r → [m · n]m·t with distinct samples.

14 It seems likely that a stronger result may be true, namely that a random walk of length t on an expander
with second eigenvalue λ has an O(t/n + λ) fraction of repeats with probability 1 − exp(−cλt), but we do
not have a proof of this.
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In fact, there is a gain as the sample complexity increases, because the randomness
complexity depends only on the original value of n, rather than n′ = m · n. This simple
observation about samplers (employed in conjunction with Lemma 6.2) has played a role
in the recent construction of extractors that are “optimal up to constant factors” [LRVW].

Proof. We associate [m · n] and [m · t] with [m]× [n] and [m]× [t], respectively, and
define Samp′(x)(i, j) = (i,Samp(x)j ). For any function f ′: [m] × [n] → [0, 1], define
f : [n] → [0, 1] by setting f (z) to be the average of f ′(i, z) over i ∈ [m]. The average
value of f is the same as the average value of f ′, and for any coin tosses x , if Samp(x)
successfully approximates the average of f , then Samp′(x) also succeeds for f ′.

To apply this lemma to construct a sampler with given values of n, t , µ, θ , and γ ,
it is best to start with a sampler Samp0: {0, 1}r0 → [n0]t0 using the minimal sample
complexity t0 = t0(θ, µ, γ ) < t and domain size n0 = n · (t0/t). For example, for
constant µ and θ , the sampler of Lemma 8.2 will use t0 = O(log(1/γ )) samples and
r0 = log n0 + O(log(1/γ )) = log(n/t) + O(log(1/γ )) random bits. Then setting
m = t/t0, Lemma 8.3 gives a sampler for domain size n0 · m = n, using t0 · m = t
distinct samples, and r0 random bits. This is how we obtain our final sampler, stated in
the next lemma.

Lemma 8.4. For every n ∈ N, 1 > µ > θ > 0, γ > 0, there is a (µ, θ, γ ) averaging
sampler Samp: {0, 1}r → [n]t that uses

• t distinct samples for any t ∈ [t0, n], where t0 = O((1/θ2) · log(1/γ )), and
• r = log(n/t)+ log(1/γ ) · poly(1/θ) random bits.

Unfortunately, when t/t0 and n · (t0/t) are not integers, some care is needed to deal
with the rounding issues in the argument given above. The tedious details follow.

Proof. Let h = h(θ, γ ) = O(log(1/γ )/θ2) be the lower bound on t in Lemma 8.2.
Given n ≥ t ≥ h, we can find t0 ∈ [h, 2h] and m such that m ·t0 ≤ t ≤ m ·t0+min{m, t0}.
In particular, this implies that m · t0 ∈ [t − √

t, t] ⊆ [(1 − θ)t, t]. Now, we can find
n0 such that m · n0 ≥ n ≥ m · n0 − m, so m · n0 ∈ [n, n + m] ⊆ [n, (1 + θ)n]. By
Lemma 8.2, there is a (µ, θ, γ ) sampler Samp0: {0, 1}r → [n0]t0 with

r = log n0 + O(t0 · log(1/θ)) = log n + log(1/γ ) · poly(1/θ)− log t

(using the bound n0 ≤ nt0/t + 1).
Applying Lemma 8.3, we get a sampler Samp: {0, 1}r → [m · n0]m·t0 . Since m · t0

approximates t and m · n0 approximates n within relative errors of θ , we can view
this sampler as a (µ + θ, 2θ, γ ) sampler Samp′: {0, 1}r → [n]t . (Samples landing in
[m · n0]\[n] can be arbitrarily reassigned to values in [n] subject to distinctness.)

8.3. The Local Extractor

Analogously to Theorem 7.4, we plug Lemmas 8.1 and 8.4 into Theorem 6.3 to obtain:
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Theorem 8.5 (Explicit Local Extractors). Let δ, κ > 0 be arbitrary constants. For
every n ∈ N, ε > exp(−n/2O(log∗ n)), and m ≤ (1 − κ)δn, there is an explicit t-local
strong (δn, ε) extractor Ext: {0, 1}n × {0, 1}d → {0, 1}m with

• d = log n + O(log m + log(1/ε)) and
• t = (1 + κ)m/δ + O(log(1/ε)).

Proof. Set τ = κδ/9, µ = (δ − 2τ)/log(1/τ), and θ = τ/log(1/τ). When δ and
κ are constant, so are τ , µ, and θ . By Lemma 8.4, there is a (µ, θ, ε/3) averaging
sampler Samp: {0, 1}r → [n]t with distinct samples, using r = log(n/t)+O(log(1/ε))
random bits, provided t ≥ t0 for t0 = O(log(1/ε)), which is satisfied by the above
setting.

By Lemma 8.1, there is a strong ((1−κ/3)δt, ε/3) extractor Ext: {0, 1}t ×{0, 1}d →
{0, 1}m with d = O(log t+log(1/ε)) = O(log m+log(1/ε)), provided m ≤ (1−κ/2)δt ,
which is satisfied by the above setting. Noting that (δ−3τ)t = (1−κ/3)δt , we combine
these via Theorem 6.3 to obtain a t-local extractor with seed length r + d = log n +
O(log m + log(1/ε)) and error 2ε/3 + 2−�(n) < ε.

Corollary 8.6 (Explicit BSM Pseudorandom Generators). Let δ, κ > 0 be arbitrary
constants. For every n ∈ N, ε > exp(−n/2O(log∗ n)), and m ≤ (1− κ)δn, there is a BSM
pseudorandom generator PRG: {0, 1}n × {0, 1}d → {0, 1}m such that:

1. For every β > 0, PRG is ε-secure for min-entropy rate β + δ and storage rate β.
2. PRG has key length d = O(log n + log(1/ε)).
3. For every key K , PRG(·, K ) reads at most t = (1 + κ)m/δ + O(log(1/ε)) bits

from the source (nonadaptively).
4. PRG is computable in time poly(t, d) and uses workspace poly(log t, log d) in

addition to the t bits read from the source and the key of length d .

The above construction does generalize to the case of subconstant δ. Keeping κ con-
stant, the expression for t is actually t = (1+κ)m/δ+O(log(1/ε)/δ2), which is not too
bad compared with the nonexplicit construction of Theorem 7.4 and the lower bound we
prove in Section 9. The seed length is d = O((log n + log(1/ε)) · poly(1/δ)), but here
the multiplicative dependence on poly(1/δ) is much worse than the additive dependence
on log log(1/δ) in Theorem 7.4. This is due to both underlying components—the extrac-
tor (Lemma 8.1) and the averaging sampler (Lemma 8.4). The dependence on δ in the
extractor component can be made logarithmic by using one of the many known explicit
extractors for subconstant min-entropy rate. For the averaging sampler, too, there are con-
structions whose randomness complexity is within a constant factor of optimal [Z2].15

However, these constructions have a sample complexity that is only polynomial in the

15 The averaging samplers of Zuckerman [Z2] can be made to have distinct samples: he shows that taking
any (not necessarily strong) extractor Ext, defining Samp(x)y = Ext(x, y) yields an averaging sampler whose
parameters are related to those of the extractor. Thus, if Ext is a strong extractor, then Samp(x)y = y◦Ext(x, y)
is an averaging sampler with distinct samples.
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optimal bound, resulting in a t-local extractor with t ≥ poly(log(1/γ ), 1/δ).16 It is an
interesting open problem, posed in [G2], to construct averaging samplers whose sample
and randomness complexities are both within a constant factor of optimal. (Without the
“averaging” constraint, there are samplers which achieve this [BGG], [GW], [G2].)

8.4. Other Sample-Then-Extract Constructions

Here we describe some additional incarnations of the sample-then-extract paradigm. We
begin by describing how some previous constructions of cryptosystems in the bounded-
storage model can be understood using our approach (namely Theorem 6.3 together with
Theorem 5.2 (of [L])). We then mention some alternative choices for the sampler and
extractor that can be used in our approach; their parameters are not quite as good for the
bounded-storage model as the ones used in Theorem 8.5 above, but are appealing for
their simplicity and directness (which may be important in an implementation).

In the informal discussion below, we focus on the case of constructing a t-local (δn, ε)
extractor Ext: {0, 1}n × {0, 1}d → {0, 1}m , with δ > 0 constant, and t,m, log(1/ε) =
o(n).

Previous Constructions. The cryptosystem of Cachin and Maurer [CM] amounts to
using pairwise independence for both the averaging sampler and the extractor. (The fact
that pairwise independence yields a sampler follows from Chebychev’s inequality [CG2],
and that it yields an extractor is the Leftover Hash Lemma [HILL], [BBR].) Actually,
in the description in [CM], the seed for the extractor is chosen at the time of encryption
and sent in an additional interactive step. However, it follows from this analysis that it
actually can be incorporated in the secret key, so interaction is not necessary.

Our approach also yields an alternative proof of security for the ADR cryptosys-
tem [AR], [ADR]. Consider the sampler which simply chooses a random t-subset of
[n] for t = O(log(1/ε)) and the extractor Ext: {0, 1}t × {0, 1}t → {0, 1} defined by
Ext(x, r) = x · r mod 2. The correctness of the sampler follows from Chernoff-type
bounds, and the correctness of the extractor from the Leftover Hash Lemma [HILL],
[BBR]. Combining these via Theorem 6.3 yields a locally computable extractor which
simply outputs the parity of a random subset of O(log(1/ε)) bits from the source. This
is essentially the same as the ADR cryptosystem, except that the size of the subset is
chosen according to a binomial distribution rather than fixed. However, the security of
the original ADR cryptosystem follows, because subsets of size exactly t/2 are a non-
negligible fraction (�(1/

√
t)) of the binomial distribution. To extract m bits, one can

apply this extractor m times with independent seeds, as done in [ADR].
The basic construction of Lu [L] of a locally computable 1-bit extractor (equivalently,

locally computable list-decodable error-correcting code) can be viewed as using an
expander walk in place of the random-subset sampler in the above description of the
ADR cryptosystem. To obtain many bits, Lu plugs this 1-bit extractor into the extractor
construction of Trevisan [T2], [RRV].

16 To obtain this bound rather than t = poly(log(1/γ ), 1/δ, log n) as claimed in [Z2], the averaging samplers
of [RVW] should be used; these are also obtained by applying Zuckerman’s transformation to appropriate
extractors.
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Other Samplers. As mentioned above, choosing a completely random t-subset is an
excellent sampler (requiring only t = O(m+ log(1/ε))), except for its poor randomness
complexity. In particular, it requires r = �(t log n) = �((m+ log(1/ε)) · log n) random
bits in order to construct a locally computable extractor with output length m and error
ε. However, the dependence on m can be easily eliminated using Lemma 8.3: let t0 =
�(log(1/ε)), view the bits of the source as a matrix [n] = [t/t0]×[n0], sample a random
t0-subset S0 ⊂ [n0] of the columns, and let their union S = [t/t0]×S0 be the final sample
set. This sampling procedure uses only O(log n · log(1/ε)) random bits, and is similar
in spirit to the access pattern of the [DM] construction (though the latter directly XORs
the bits read to obtain the output, whereas we need to apply an additional extractor).
We also recall that our sampling method in Section 8.2 is constructed in the same way,
except that we use an expander walk to choose the t0-subset of [n0] (with some minor
complications to ensure distinctness).

Other Extractors. The extractor of Zuckerman [Z2], while based on intuitive and ap-
pealing techniques, involves a sophisticated recursion. Here we mention some recent
constructions of extractors that are more direct, while still achieving excellent parame-
ters (though not as good for the case of a constant min-entropy rate).

There are elegant extractor constructions in [TZS] and [SU] that have optimal seed
length, but extract only a sublinear fraction of the min-entropy. Using either of these in a
local extractor would contribute O(log m + log(1/ε)) to the seed length, while reading
t = m1+�(1)+polylog(1/ε) bits from the source. Another direct extractor from [T2] and
[RRV] extracts a constant fraction of the min-entropy, but has seed length polynomial
in the optimal. Using it in a local extractor would contribute O((log2 m) · log(1/ε)) to
the seed length while reading only t = O(m + log(1/ε)) bits from the source.

The benefits of these two constructions can be combined to obtain a better local ex-
tractor using the following technique (on which most of the early extractor constructions,
including [NZ], were based): run the sampler twice, first to sample a “large” block of
length O(m) and next to sample a “small” block of length polylog(m, 1/ε). As in [NZ],
the small block is likely to have a constant min-entropy rate even conditioned on the
large one. Using the extractor of [TZS] or [SU] mentioned above, we can use a very
short seed of length O(log log m + log(1/ε)) to extract O((log2 m) · log(1/ε)) bits from
the small block, and then use these extracted bits as the seed for the extractor of [T2]
and [RRV] to extract �(m) bits from the large block. Thus, this combined construc-
tion contributes only O(log m + log(1/ε)) to the seed length and requires reading only
t = O(m + polylog(m, 1/ε)) bits from the source.

9. Lower Bounds

In this section we prove lower bounds on the efficiency of cryptosystems in the bounded
storage model and of locally computable extractors, addressing both the number of bits
read from the source and the key length.

9.1. Number of Bits Read

First, we show that the number of bits read from the source must be linear in m, and
must grow when the difference between the min-entropy rate α and storage rate β goes
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to zero. For simplicity, the results in this section assume that αn and βn are integers.
This assumption can be removed with an insignificant cost in the bounds by using the
rounded values α′ = �αn�/n and β ′ = �βn�/n.

Theorem 9.1. Suppose that PRG: {0, 1}n × {0, 1}d → {0, 1}m is an ε-secure BSM
pseudorandom generator for storage rate β and min-entropy rate α, such that for every
key K ∈ {0, 1}d , PRG(·, K ) reads at most t bits of its input. Then, setting δ = α − β,
we have

1. t ≥ (1 − ε − 2−m) · (1/δ) · m, and
2. t ≥ min{(1 − δ)n/2, log((1 − 2−m)/ε)/log((1 + δ)/(1 − δ))}. In particular if
δ = 1 −�(1), then t = �(min{n, log(1/ε)/δ}).

When δ is a constant, our constructions (in Corollaries 7.5 and 8.6) match the above
lower bounds to within a constant factor. Moreover, in the natural case that ω(1) ≤ m ≤
o(n) and o(1) ≥ ε ≥ 2−o(m), the above lower bound says t ≥ (1 − o(1))m/δ, which is
quite close to the upper bound of t = (1 + κ)m/δ achieved by our constructions.

Proof. For simplicity, we assume that PRG(·, K ) selects the t bits to read nonadap-
tively, and sketch how to extend the result to adaptive access at the end. In the proof,
we use the equivalent formulation of security for BSM pseudorandom generators from
Lemma 3.3. For a subset T rnd ⊂ [n] of size |T rnd| = αn, consider a source X that is
uniform on the bits in T rnd and 0 elsewhere. For a subset T adv ⊂ T rnd of size |T adv| = βn,
consider an adversary A: {0, 1}n → {0, 1}βn that records the bits of the source in T adv.
(We describe how to choose T rnd and T adv later.) For any T adv and T rnd, this source
has min-entropy rate α and the adversary has storage rate β. For a key k ∈ {0, 1}d , let
T key

k ⊂ [n] denote the set of positions from the source read by PRG(·, k). Intuitively,
PRG accesses only |T key

k ∩ (T rnd\T adv)| bits from the source that are unknown to the
adversary, so this should be an upper bound on m.

Formally, we consider the distribution PRG(X, K ) conditioned on the key K and
the adversary’s state A(X). Specifically, let ε(k, s) be the statistical difference be-
tween PRG(X, K )|K=k,A(X)=s and Um . The expectation of ε(K , A(X)) is precisely
the statistical difference between (PRG(X, K ), A(X), K ) and (Um, A(X), K ), which
is at most ε by Lemma 3.3. On the other hand, when the key k and state s are fixed,
PRG(X, K )|K=k,A(X)=s is a function of only the positions of X in T key

k ∩ (T rnd\T adv).

Hence it takes on at most 2|T
key

k ∩(T rnd\T adv)| different values, and its statistical difference
from uniform satisfies

ε(k, s) ≥ 1 − 2min{|T key
k ∩(T rnd\T adv)|,m}

2m
. (5)

We complete each part of the proof by choosing T adv and T rnd so that |T key
k ∩(T rnd\T adv)|

is small for many keys k if t is small.
For part 1, we first deduce from inequality (5) that

ε(k, s) ≥ 1 − |T key
k ∩ (T rnd\T adv)|

m
− 1

2m
.
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Here we use the fact that 2u/2v ≤ u/v for all integers v ≥ u ≥ 1, setting v = m and
u = min{|T key

k ∩(T rnd\T adv)|,m}. (The case u = 0 is handled by the 1/2m term.) Taking

the expectation of both sides over k
R← K and s

R← A(X), we get

ε ≥ E
K ,A(X)

[ε(K , A(X))] ≥ 1 − EK [|T key
K ∩ (T rnd\T adv)|]

m
− 1

2m
. (6)

Thus, we seek sets T rnd and T adv such that the expectation of |T key
K ∩ (T rnd\T adv)|

is small if t is small. We obtain such sets via the Probabilistic Method. Consider a
random set T of size δn. Then for every fixed key k, the expectation of |T key

k ∩ T | equals
δ · |T key

k | ≤ δt . By averaging, there exists a fixed set T ∗ such that EK [|T key
K ∩ T ∗|] ≤ δt .

Thus, if we take T rnd\T adv = T ∗, set T adv to be an arbitrary set of βn elements outside
T ∗, and substitute into inequality (6), we conclude that

ε ≥ 1 − δt

m
− 1

2m
.

Solving for t completes the proof of part 1.
For part 2, we begin by noting that inequality (5) implies that if T key

k ∩(T rnd\T adv) = ∅,
then ε(k, s) ≥ 1 − 2−m . Thus,

ε ≥ E
K ,A(X)

[ε(K , A(X))] ≥ Pr
K

[T key
K ∩ (T rnd\T adv) = ∅] · (1 − 2−m). (7)

As before, we use the Probabilistic Method to obtain sets T rnd and T adv such that there
is a significant probability that T rnd\T adv is disjoint from T key

K . Consider a random set
T of size δn. For every fixed key k, since |T key

k | ≤ t , we have

Pr
T

[T key
k ∩ T = ∅] ≥

(
(1−δ)n

t

)
(n

t

) ≥
(
(1 − δ)n − t

n − t

)t

≥
(

1 − δ
1 + δ

)t

,

where the first inequality uses the fact that the probability that a random set of size δn
intersects a fixed set of size t equals the probability that a random set of size t intersects
a fixed set of size δn, and the last inequality assumes t ≤ (1 − δ)n/2 (otherwise, part 2
holds and we are done). By averaging, there is a fixed T ∗ of size δn such that

Pr
K

[T key
K ∩ T ∗ = ∅] ≥

(
1 − δ
1 + δ

)t

.

As before, we set T rnd\T adv = T ∗ and substitute into inequality (7) to obtain

ε ≥
(

1 − δ
1 + δ

)t

· (1 − 2−m),

as desired.
We now sketch how to generalize the results to the case that the locations read by

PRG may be chosen adaptively. In this case the set T key
k is no longer well defined. Thus,
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instead of studying the quantity |T key
K ∩ (T rnd\T adv)|, we consider the logarithm of the

size of the support of the random variable PRG(X, K ) conditioned on K , T adv, T rnd,
and X |T adv (so that the randomness is only over X |T rnd\T adv ). For part 1, we consider the
expectation of this log-support-size (over K , T adv, T rnd, and X |T adv , where T adv and T rnd

are chosen by the Probabilistic Method as above). It can be shown (by induction on t)
that if PRG makes t adaptive queries to X , then the expected log-support-size is at most
δt . Then the proof proceeds similarly to the above, using the fact that a distribution of
support size at most 2k has statistical difference at least 1 − 2min{k,m}/2m from Um . For
part 2, we note that the probability that the log-support-size is 0 is at least the probability
that PRG(X, K ) does not query any points in T rnd\T adv, and argue that this probability
is the same as in the nonadaptive case.

Setting β = 0 in the above theorem, we obtain the same bounds for locally computable
extractors.

Corollary 9.2. Suppose that Ext: {0, 1}n × {0, 1}d → {0, 1}m is a t-local strong
(δn, ε)-extractor. Then

1. t ≥ (1 − ε − 2−m) · (1/δ) · m and
2. t ≥ min{(1 − δ)n/2, log((1 − 2−m)/ε)/log((1 + δ)/(1 − δ))}. In particular if
δ = 1 −�(1), then t = �(min{n, log(1/ε)/δ}).

We recall that Bar-Yossef et al. [BRST] have previously shown lower (and upper)
bounds for “on-line” extractors. Specifically, they have shown that to evaluate extractors
with one pass through the input, space of approximately m is both necessary and suffi-
cient. Since the small-space requirement is weaker than being locally computable, their
lower bound also implies that t is at least (roughly) m.17 Part 1 of Corollary 9.2 provides
a stronger lower bound of roughly m/δ.

9.2. Lower Bounds on Key Length

Radhakrishnan and Ta-Shma [RT] have already given tight lower bounds for the seed
length of extractors:

Theorem 9.3 [RT]. There is a constant c such that if Ext: {0, 1}n×{0, 1}d → {0, 1}m is
a (δn, ε)-extractor, where δ ≤ 1−c/n and ε < 1

2 , then d ≥ log((1−δ)n)+2 log(1/ε)−
O(1).

This already implies that the seed lengths of our locally computable extractors in The-
orems 7.4 and 8.5 are optimal to within constant factors (when δ ∈ (0, 1) is a constant).
However, it does not imply optimality for the key length of our BSM pseudorandom
generators, since these are potentially weaker objects (particularly for the case of min-
entropy rate α = 1). Nevertheless we show that the same lower bound holds.

17 This is because their space lower bounds apply also to a nonuniform branching program model of
computation, where the space is always at most the number of bits read from the input.
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Theorem 9.4. There is a constant c such that the following holds. Suppose that PRG:
{0, 1}n×{0, 1}d → {0, 1}m is an ε-secure BSM pseudorandom generator for min-entropy

rate α and storage rate β, with δ
def= α − β ≤ 1 − c/n and ε < 1

2 . Then

d ≥ log((1 − δ)n)+ 2 log(1/ε)− O(1).

Proof. Throughout the proof, we use the equivalent formulation of BSM pseudorandom
generators from Lemma 3.3. Since the output length m is unconstrained in the statement
of the lemma, we must prove the lower bound even for the case of extracting only 1 bit,
and hence we set m = 1 for the rest of the proof.

A lower bound of d ≥ log((1 − α)n) + 2 log(1/ε) − O(1) already follows from
Theorem 9.3, since a BSM pseudorandom generator for min-entropy rate α is also an
(αn, ε)-extractor. Thus it suffices to prove d ≥ log(βn) + 2 log(1/ε) − O(1) (since
max{log((1 − α)n), log(βn)} ≥ log(((1 − α)n + βn)/2) = log((1 − δ)n) − 1). Since
we must prove this even when α = 1, from now on we only consider the source X = Un .
We also restrict our attention to the case m = 1 (without loss of generality).

As a warm-up, we begin by sketching a weaker lower bound of d > log(βn), based
on the lower bound techniques of [CG1] and [NZ]. Suppose that d ≤ log(βn). This
means that there are at most 2d ≤ βn different keys. Thus we can define an adversary
A: {0, 1}n → {0, 1}βn that, on input x , records the bit PRG(x, k) for all keys k ∈ {0, 1}d .
(Recall that m = 1.) Then (PRG(X, K ), A(X), K ) can be easily distinguished from
(U1, A(X), K ): in the former distribution, the first component can be predicted perfectly
from the second two components, whereas in the second it can be predicted only with
probability 1/2. Hence the two random variables have statistical difference at least 1/2.
Similarly, to show that the statistical difference is at least ε, we only need A to store the
bit PRG(x, k) for a 2ε fraction of the keys k. With this observation, we obtain a lower
bound of d ≥ log(βn)+ log(1/ε)− O(1).

To get a lower bound with 2 log(1/ε) rather than log(1/ε) requires a more delicate
argument, based on the ideas of [RT]. Suppose that 2d ≤ (βn)/cε2 (where c is a constant
to be set later in the proof). Then we can partition the keys into βn sets K1, . . . ,Kβn of
size at most 1/cε2 each. Fix a function P: {0, 1}d → {0, 1} (we describe how to pick P
later). Then our adversary A: {0, 1}n → {0, 1}βn , will do the following on input x : for
each i = 1, . . . , βn, A will store a bit bi = majk∈Ki

[PRG(x, k)⊕ P(k)], i.e., bi indicates
whether or not PRG(x, ·) (dis)agrees with P on a majority of keys in Ki .

To lower-bound the statistical difference between (PRG(X, K ), A(X), K ) and (U1,

A(X), K ), we give a method for predicting PRG(X, K ) from (A(X), K ) that succeeds
with probability significantly greater than 1/2. Given (A(x), k), we let i be such that
k ∈ Ki , read the i th bit bi of A(x), and output the prediction bi ⊕ P(k).

This predicts successfully iff bi ⊕ P(k) = PRG(x, k), i.e.,

PRG(x, k)⊕ P(k) = majk ′∈Ki
PRG(x, k ′)⊕ P(k ′).

Thus, the prediction probability over random X and K is precisely EX,I [MajProb

(X, I )], where I
R←{1, . . . , βn} and MajProb is the “majority probability” defined as



Constructing Locally Computable Extractors 73

follows:

MajProb(x, i)
def= Pr

K
R← Ki

[PRG(x, K )⊕ P(K ) = majk ′∈Ki
PRG(x, k ′)⊕ P(k ′)]

= 1

2
+
∣∣∣∣#{k ∈ Ki : PRG(x, k) = P(k)}

|Ki | − 1

2

∣∣∣∣ .
Thus our aim is to choose P such that #{k ∈ Ki : PRG(x, k) = P(k)}/|Ki | de-

viates from 1/2 by more than ε, on average. We do this by the Probabilistic Method.
Consider a random function P: {0, 1}d → {0, 1}. Then for each x and i , the quantity
#{k ∈ Ki : PRG(x, k) = P(k)} is the sum of |Ki | ≤ 1/cε2 independent, unbiased
{0, 1} random variables. By standard bounds on the binomial distribution, the average
deviation of this sum from its expectation (|Ki |/2) is �(

√|Ki |) > ε · |Ki | (when c is
a sufficiently large constant). That is EP [MajProb(x, i)] > 1

2 + ε. By averaging, there
exists a fixed P such that EX,I [MajProb(X, I )] > 1

2 + ε. This contradicts the hypothesis
that (PRG(X, K ), A(X), K ) and (U1, A(X), K ) are ε-close.
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Appendix. A Chernoff Bound

Here we prove the Chernoff-type bound needed in the proof of Lemma 6.2:

Lemma A.1. Let τ ∈ [0, 1]. Suppose that �1, . . . , �n are nonnegative random vari-
ables such that for every q1, q2, . . . , qi−1 ≥ 0 and q > 0,

Pr[�i ≥ q|�1 = q1, . . . , �i−1 = qi−1] ≤ τ · 2−q . (8)

Then Pr[
∑

i �i > 2τn] < 2−�(τn).

Unlike the most basic Chernoff-Hoeffding bounds, this lemma does not require that
the random variables �i are bounded or independent. Instead, it requires that the tail
of �i is exponentially vanishing, even conditioned on the previous �j ’s. We begin
by proving the lemma for independent random variables whose distribution function
is exactly (rather than merely bounded by) an exponential function. Here and below,
by a distribution function of a real-valued random variable X we mean the function
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F(q) = Pr[X ≥ q], which is more convenient for us than the standard definition (which
sets F(q) = Pr[X ≤ q]).

Lemma A.2. Let τ ∈ [0, 1]. Suppose Z1, . . . , Zn are independent, identically dis-
tributed, nonnegative random variables with the probability distribution function given
by Pr[Zi ≥ q] = τ ·2−q for all q > 0 (and thus Pr[Zi = 0] = 1−limq→0 τ ·2−q = 1−τ ).
Then Pr[

∑
i Zi > 2τn] < 2−�(τn).

Proof. Let f (q) = τ · 2−q be the distribution function of the Zi ’s (for q > 0). As
usual in the proofs of Chernoff bounds, we consider the expectation of an exponential
generating function 2t Z =∏n

i=1 2t Zi . For every t ∈ (0, 1), we have

E
[
2t Zi

] = Pr[Zi = 0] · 20 +
∫ ∞

q=0

(
− d

dq
f (q)

)
· 2tq dq

= (1 − τ)+
∫ ∞

q=0
(τ ln 2 · 2−q) · 2tq) dq

= (1 − τ)+
[ −τ

1 − t
· 2−(1−t)q

]∞
q=0

= 1 + τ t

1 − t

≤ eτ t/(1−t).

Thus,

E[2t Z ] =
∏

i

E[2t Zi ] ≤ (eτ t/(1−t))n.

By Markov’s inequality,

Pr[Z ≥ 2τn] = Pr[2t Z ≥ 22τ tn] ≤ eτ tn/(1−t)

22τ tn
=
(

et/(1−t)

22t

)τn

,

for every t ∈ (0, 1). For t = 1
4 , et/(1−t) < 22t , so this probability is indeed 2−�(τn), as

desired.

Now we deduce the general case of dependent random variables, using a standard
coupling argument.

Lemma A.3. If A is a real-valued random variable and F : R→ [0, 1] is a distribution
function such that for every q , Pr[A ≥ q] ≤ F(q), then there is a probabilistic function
g such that Pr[g(a) ≥ a] = 1 for all a and g(A) has distribution F .

Proof Sketch. We define f (a) as follows: let α = Pr[A > a] and β = Pr[A ≥ a] =
α+Pr[A = a]. Choose u = u(a) uniformly from the interval [α, β]. Let g(a) = max{b :
F(b) ≥ u}.

To see that g(A) is distributed identically to B, note that the definition of u is the
standard transformation mapping a random variable A to the uniform distribution on
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[0, 1] and that the max{b : F(b) ≥ u} is the standard transformation mapping a uniform
random variable u to a random variable with a specified distribution function F .

Thus, we only need to argue that g(a) ≥ a with probability 1. We have γ ≤ β =
Pr[A ≥ a] ≤ g(a). Since g(a) is defined to be the largest b such that F(b) ≥ γ , we have
g(a) ≥ a as desired.

Proof of Lemma A.1. Given random variables �1, . . . , �n satisfying the hypothesis
of Lemma A.1, we use Lemma A.3 to extend the probability space to include indepen-
dent random variables Z1, . . . , Zn satisfying the hypothesis of Lemma A.2 such that
Pr[�i ≤ Zi ] = 1. This will imply Pr[

∑
i �i > 2τn] ≤ Pr[

∑
i Zi > 2τn] < 2−�(τn), as

desired.
Suppose �1 = q1, . . . , �n = qn . We now describe how to generate the Zi ’s, condi-

tioned on these values for the �i ’s. For each prefix q = (q1, . . . , qi−1), we let gq be
the probabilistic function given by Lemma A.3 that transforms �i |�1=q1,...,�i−1=qi−1 to a
random variable with distribution function F(q) = τ · 2−q . We then define Zi = gq(qi ).

Lemma A.3 guarantees that Pr[Zi ≥ �i ] = 1, and that

Pr[Zi ≥ q|�1 = q1, . . . , �i−1 = qi−1] = τ · 2−q .

Since this holds for every (q1, . . . , qi−1), we conclude that Zi is independent of (�1, . . . ,

�i−1) and hence also of (Z1, . . . , Zi−1), as desired.
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