
DOI: 10.1007/s00145-003-0141-4

J. Cryptology (2004) 17: 209–229

© 2003 International Association for
Cryptologic Research

Nearly One-Sided Tests and the Goldreich–Levin
Predicate

Gustav Hast
Department of Numerical Analysis and Computer Science,

Royal Institute of Technology,
100 44 Stockholm, Sweden

ghast@nada.kth.se

Communicated by Oded Goldreich

Received 29 November 2001 and revised 23 December 2002
Online publication 10 July 2003

Abstract. We study statistical tests with binary output that rarely outputs one, which
we call nearly one-sided statistical tests. We provide an efficient reduction establishing
improved security for the Goldreich–Levin hard-core bit against nearly one-sided tests.
The analysis is extended to prove the security of the Blum–Micali pseudo-random
generator combined with the Goldreich–Levin bit. Finally, some applications where
nearly one-sided tests occur naturally are discussed.

Key words. Nearly one-sided statistical test, Goldreich–Levin predicate, Pseudo-
random generator, Provable security, List decoding of Hadamard code.

1. Introduction

Many algorithms are probabilistic and therefore require a source of randomness to be
implemented correctly. This is true in particular for most cryptographic algorithms.
Obtaining random material is often a hard and time consuming process and therefore
it is convenient to use a pseudo-random generator to generate much random looking
material from a short truly random seed. One would of course like to have a guarantee
that by exchanging random material for the output of a generator, the performance of
the algorithms are not changed in a harmful way.

The pioneering works of Blum and Micali [5] and Yao [15] laid the foundation of
the theory of pseudo-randomness. Blum and Micali showed how to construct a pseudo-
random bit generator (PRBG) whose security is based on the hardness of solving the
discrete logarithm problem. More specifically they proved and used the fact that the most
significant bit is a hard-core predicate for exponentiation. A predicate b is a hard-core
predicate for a function g if it is not feasible to determine the boolean value of b(x)
efficiently given the value of g(x). In [10] Goldreich and Levin showed how to construct
a hard-core predicate for any one-way function. This construction can be applied on

209

210 G. Hast

the above-mentioned PRBG so that the security can be based on the one-wayness of an
arbitrary permutation f . The proof of security in [5] was a polynomial reduction from
solving the discrete logarithm problem (or if we use the result from [10] inverting f) to
breaching the security of the bit generator.

In this work we analyze the security of the well-known pseudo-random generator
obtained by combining the works [5] and [10]. We refer to this generator as BMGL.
As noted in previous works (e.g., [9], [10] and [13]) the exact efficiency of a reduction
between two different cryptographic primitives is of vital interest when determining the
practical security consequences of the reduction. Examples of more recent works that
deal with the issue to bridge the gap between theoretical complexity-based cryptography
and practical cryptography by improved reductions and analysis are [3] and [6]. For a
more extensive list see [2]. In the case of BMGL, the reduction relates the one-wayness
of a permutation to the pseudo-randomness of the output from BMGL. A distribution
is considered to be pseudo-random if there is no statistical test, from a specific set of
admissible tests, that more than negligibly can distinguish between elements from that
distribution and from the uniform distribution. (A distribution is in fact not considered to
be pseudo-random, but instead an ensemble of distributions. For simplicity reasons we
do not make this distinction throughout the introduction.) Normally the set of admissible
tests is specified by a maximum running time. Improvements to the security reduction
of BMGL and its analysis have been made earlier by Rackoff (explained in [7]), Levin
[14] and Håstad and Näslund [12].

Earlier analyses of reductions have characterized the efficiency of a statistical test D,
distinguishing the distributions X and Y , by using a measure δ such that∣∣∣∣ Pr

x∈X
[D(x) = 1]− Pr

y∈Y
[D(y) = 1]

∣∣∣∣ ≥ δ. (1)

In this paper we consider nearly one-sided statistical tests which are tests that, on truly
random input, almost always output zero and rarely output one. The measure in (1) does
not capture whether or not a test is nearly one-sided and therefore we introduce the notion
of a parameterized distinguisher, which for a test and a certain pair of input distributions
imposes two thresholds, separating the corresponding output distributions of the test.
We say that a test D (δ1, δ2)-distinguishes X and Y if

Pr
x∈X

[D(x) = 1] ≤ δ1 < δ2 ≤ Pr
y∈Y

[D(y) = 1].

Thus, if δ1 is small and X is the uniform distribution, the test is considered to be nearly
one-sided. (We do not formally define “small” but instead use the parameterized dis-
tinguisher to express formal results in this paper.) The use of this characterization of a
distinguisher enables a more careful analysis of the reduction from inverting a permu-
tation to distinguishing between the output of BMGL and the uniform distribution. In
particular, if only nearly one-sided tests are considered to be admissible the new analysis
obtains a substantial increase of the efficiency of the reduction. This limitation turns out
to be quite natural in many applications. The notion of nearly one-sided statistical tests
has previously been investigated in [4].

The outline of this paper is as follows: In Section 3 the Goldreich–Levin hard-core
bit is explained and a motivating discussion is held on why low rate predictors are more

Nearly One-Sided Tests and the Goldreich–Levin Predicate 211

powerful than ordinary predictors when list decoding the Hadamard code. In the next
section we prove a theorem about list decoding Hadamard codes with both erasures and
errors and in Section 5 this theorem is used to establish the reduction from inverting
a function to predicting the Goldreich–Levin bit. Section 6 discusses nearly one-sided
statistical tests and their connection with low rate predictors and in Section 7 the security
of the BMGL is shown. Applications are considered in Section 8, in particular we study
the security consequences of the use of a PRBG in signature and encryption schemes.
The paper is concluded with some open questions.

2. Notation

In this work we use the following notation:

1. By [m] we mean the set {1, . . . ,m} and 2[m] is the set of all subsets of [m].
2. The xor operation is denoted by ⊕.
3. The function b(r, x) is the inner product of r and x modulo 2.
4. The i th unit vector ei is a bit string containing only zeros, except for the i th bit

(which is one). The dimension of ei is implicitly given by its use.
5. We let 〈J, L〉, where J and L are sets, denote the size of J ∩ L modulo 2.
6. If S is a set we denote the size of the set by |S|. If x is a bit string, the length of x

is denoted by |x |.
7. When the logarithmic function log is used without the base having been specified,

it is implicit base 2.
8. The uniform distribution of bit strings of length n is denoted by Un .

3. The Goldreich–Levin Bit and List Decoding of Hadamard Code

Goldreich and Levin showed in [10] how to modify an arbitrary one-way function to make
it have a hard-core predicate: if f is a one-way function, then b(r, x) (the inner product of
r and x modulo 2) is a hard-core predicate for the one-way function f ′(r, x) = (r, f (x)).
This means that there is no efficient algorithm that given (r, f (x)) as input (where r and
x are drawn from the uniform distribution) can guess the value of b(r, x) significantly
better than a random guess.

The above result is shown using a reduction from inverting f to predicting the value
of b(r, x). The efficiency of the reduction depends on how well the bit b(r, x) is guessed,
which usually is measured by the advantage ε(n) of the guessing algorithm P , often
called the predictor:

ε(n) = Pr
r,x∈Un

[P(r, f (x)) = b(r, x)]− 1
2 .

The main part of the reduction consists of a list-decoding algorithm for the Hadamard
code. The i th bit of the Hadamard code of x is exactly b(i, x), where i is interpreted
in the natural way as a bit string of the same length as x . The task for a list-decoding
algorithm is to produce a list of possible x , having oracle access to a Hadamard code
with a certain fraction of errors. The algorithm should come with a lower bound on the
probability that x appears in the list output and an upper bound on the number of oracle

212 G. Hast

queries made. Given the value of f (x), the predictor P corresponds in a natural way to
the oracle of the Hadamard code, and the advantage of P (over a fix x) is closely related
to the number of errors of the oracle.

Now suppose that we have a predictor P that on some input answers with high confi-
dence and on other inputs just flips a coin. The informative answers from P (when it does
not just flip a coin) would then be somewhat clouded by the random noise provided by
the other answers. We therefore give the predictor more freedom by also letting it output
⊥ in those cases when the confidence in the prediction is low. Instead of characterizing
this type of predictor with only its advantage in the traditional sense, we also use its rate,
which is how often it outputs a prediction. The advantage is generalized in a natural way
for this different type of predictor.

Definition 1. A predictor P: {0, 1}∗ × {0, 1}∗ → {0, 1,⊥} is said to have rate δ(n)
and advantage ε(n) in predicting b(x, r) from f (x) and r , where

δ(n) = Pr
x,r∈Un

[P(f (x), r) �= ⊥]

and

ε(n) = Pr
x,r∈Un

[P(f (x), r) = b(x, r)]− 1
2 Pr

x,r∈Un

[P(f (x), r) �= ⊥].

Note that the advantage of P is not the advantage conditioned on that P always
answers, Prx,r∈Un [P(f (x), r) = b(x, r) | P(f (x), r) �= ⊥]− 1

2 , which could be natural
to assume. Let us compare a predictor P with advantage ε and rate δ and a classical
predictor P ′ with the same advantage (and with rate 1). If we apply P and P ′ on N
samples of the form (f (x), r), P ′ would answer correctly on (1

2 + ε)N samples (on
average) and erroneously on (1

2 − ε)N . On the other hand P would answer correctly on
(δ/2+ ε)N samples and erroneously on (δ/2− ε)δN . The absolute difference between
the number of correct and erroneous answers is the same for P and P ′, but P only
answers on a δ-fraction of the samples while P ′ answers on all of them. This means that
when P answers, its confidence is higher than the confidence of the answers of P ′.

Going back to the list-decoding algorithm for the Hadamard code, this new type of
predictor corresponds to a Hadamard code oracle with both errors and erasures, where
the fraction of erasures is 1 − δ (where δ is the rate of the predictor). The heart of the
improved reduction is in the analysis of the list-decoding algorithm with an oracle that
has a relatively large part of erasures (or in other words a predictor with low rate). We
briefly discuss why a predictor with low rate is more powerful than one with a higher
rate and the same advantage. By more powerful we mean here that the predictor does
not have to be called as many times in the list-decoding algorithm. Later we show how
a nearly one-sided test for the Goldreich–Levin bit can be easily turned into a predictor
with low rate.

Assume that P is a predictor with rate δ and advantage ε. Earlier analyses, that only
made use of the advantage, have shown (see Section 2.5.2 of [7]) that the number of
needed calls to P should be at least proportional to ε−2 for the list-decoding algorithm to
succeed with probability one-half. The probability that P makes a correct prediction is
1
2δ+ε. We now ignore all the calls that received⊥-answers from P . The probability that

Nearly One-Sided Tests and the Goldreich–Levin Predicate 213

P , on each of the remaining calls, guesses correctly is then (1
2δ+ ε)δ−1 = 1

2 + δ−1ε. In
some sense this gives us a not fully working predictor with advantage δ−1ε, the problem
being that it does not make predictions for all inputs and that it on average only makes
one prediction per δ−1 calls. If the first problem mentioned can be dealt with in the
list-decoding algorithm we can expect that the number of calls to P is proportional to
the new advantage inverted and squared (according to the old analysis) times the extra
factor of δ−1: O((δ−1ε)−2δ−1) = O(δε−2). Note that if the advantage of P is at least a
constant fraction of the rate, we have that δ = O(ε) and thus the number of calls needed
would only be O(ε−1) compared with O(ε−2) before. In the proofs of Theorems 1 and
3 we show that this intuition really has merit.

4. List Decoding of Hadamard Code with Errors and Erasures

The main part of the proof that the Goldreich–Levin bit is a hard-core predicate, consists
of a list-decoding algorithm of a binary Hadamard code with errors. To ensure that the
power of the low rate of the predictor does not vanish, we repeat the analysis of the
list-decoding algorithm (not the original one in [10], but one due to Rackoff explained in
[7]) while letting the Hadamard code also contain erasures. As far as the author is aware
of, no previous work has been done on list decoding the Hadamard code in the presence
of errors and erasures.

Theorem 1. There is an algorithm LD that, on input l and n and with oracle access
to a binary Hadamard code of x (where |x | = n) with an e-fraction of errors and an
s-fraction of erasures, can output a list of 2l elements in time O(nl2l) asking n2l oracle
queries such that the probability that x is contained in the list is at least one-half if

l ≥ log2(8n(e + c)/(c − e)2 + 1), where c
def=1− s − e (the fraction of correct answers

from the oracle).

Proof. Let C be an oracle that represents a Hadamard code of a fixed x with an e-
fraction of errors and an s-fraction of erasures. In Table 1 the list-decoding algorithm
LDC is defined. First we prove its correctness with respect to the claim made in Theorem 1
that it outputs x with at least probability one-half. We then analyze its time complexity.

Correctness of LDC : We start by proving the following claim about the value of
C ′(ei ⊕ s J) which is a principal component in the calculations made in step 3 of our
list-decoder LDC .

Claim 2. Let s J and C ′ be defined as in the description of LDC . Then for a nonempty
J ⊆ [l] and L = { j | j ∈ [l], b(s j , x) = 1} the following equalities hold:

Pr[(−1)〈J,L〉C ′(ei ⊕ s J) = 0] = s,

Pr[(−1)〈J,L〉C ′(ei ⊕ s J) = (−1)b(e
i ,x)] = c,

Pr[(−1)〈J,L〉C ′(ei ⊕ s J) = −(−1)b(e
i ,x)] = e,

where the probabilities are taken over the choices of s j in step 1 of LDC .

214 G. Hast

Table 1. The list-decoder LDC .

Implementation of list-decoder LDC : Let LD have oracle access to C : {0, 1}n → {0, 1,⊥}.
On input l and n, LDC proceeds as follows:

1. Choose s1, . . . , sl independently from Un .
2. Define a predictor C ′ that uses C so that

C ′(r) =
{

1 if C(r) = 0,
−1 if C(r) = 1,
0 if C(r) = ⊥.

3. Calculate
di

L =
∑

J⊆[l],J �=∅
(−1)〈J,L〉C ′(ei ⊕ s J)

for all L ⊆ [l] and i ∈ [n], where s J def= ⊕j∈J s j for all J ⊆ [l].
4. Output the list {zL }L⊆[l] where the i th bit of zL is defined as (1− sgn(di

L))/2.

Proof. We observe that

b(s J , x) =
⊕
j∈J

b(s j , x) =
⊕

j∈J∩L

b(s j , x) = 〈J, L〉

and

C ′(ei ⊕ s J) =



(−1)b(e

i ,x)⊕b(s J ,x) if C answers correctly,

−(−1)b(e
i ,x)⊕b(s J ,x) if C answers incorrectly,

0 if C answers ⊥.
As J is nonempty, the value of ei ⊕ s J will be uniformly distributed and thus the
probability that C answers “⊥” is s, incorrectly is e and correctly is c. As b(s J , x) =
〈J, L〉 the claim follows from

(−1)b(s
J ,x)C ′(ei ⊕ s J) =



(−1)b(e

i ,x) if C answers correctly,

−(−1)b(e
i ,x) if C answers incorrectly,

0 if C answers ⊥.

As a consequence of their construction, the values of s J , for nonempty J ⊆ [l],
are pairwise independent and uniformly distributed. Let L be defined as { j | j ∈
[l], b(s j , x) = 1} and study for a fixed i the value of di

L calculated in step 3 of LDC . It is
a sum of expressions of the form that is analyzed in Claim 2. The probability of different
results (expressed in terms of the i th bit of x) of each term in this sum is specified in the
claim. Using the value (sign) of the sum we can thereby guess the i th bit of x and by
knowing the different probabilities we can calculate an upper bound for the probability
that the guess is incorrect.

For our guess to be correct we would like to have more terms that equal (−1)b(e
i ,x)

than −(−1)b(e
i ,x). As we know the probability for each outcome we can, by using

Chebyschev’s inequality (defined below), give an upper bound on the probability that

Nearly One-Sided Tests and the Goldreich–Levin Predicate 215

the guess is incorrect. For every nonempty J ⊆ [l], define ζ J
c to be the indicator variable

for the event that (−1)〈J,L〉C ′(ei ⊕ s J) = (−1)b(e
i ,x) and let ζ J

e be the indicator variable
for the event that (−1)〈J,L〉C ′(ei ⊕ s J) = −(−1)b(e

i ,x). We would like to be able to state
that

∑
J ζ

J
c >

∑
J ζ

J
e with high probability.

Chebyschev’s Inequality (from [1]). For any positive t

Pr[|Y − µ| ≥ tσ] ≤ t−2,

where σ is the standard deviation and µ is the expectation of the random variable Y .

This inequality is to be applied on the number of incorrect answers Y =∑J ζ
J

e which

has the expected value ofµ = Ne (where N
def= 2l−1 is the number of terms in the sum)

and the standard deviation σ is less than
√

Ne (using the fact of pairwise independency).
We set t = √N (c − e)/2

√
e which gives us

Pr

[∣∣∣∣∣
∑

J

ζ J
e − Ne

∣∣∣∣∣ > N (c − e)

2

]
≤ 4e

N (c − e)2
.

Applying the same inequality on the number of correct answers Y = ∑
J ζ

J
c with

µ = Nc, σ <
√

Nc and t = √N (c − e)/2
√

c gives

Pr

[∣∣∣∣∣
∑

J

ζ J
c − Nc

∣∣∣∣∣ > N (c − e)

2

]
≤ 4c

N (c − e)2
.

If none of the sums
∑

J ζ
J

c and
∑

J ζ
J

e deviates more than N (c − e)/2 from their
expected values we can conclude that the number of correct answers outnumbers the
number of incorrect answers. Thus, the probability that this is not the case and thereby
we are not able to make a correct prediction is at most 4(e + c)/N (c − e)2.

For the algorithm to succeed (in the supposed fashion) each of the n different bits of
x has to be predicted correctly. In other words di

L has to have the correct sign for each
i ∈ [n]. An upper bound for this not occurring is 4n(e + c)/N (c − e)2 which is the sum
of the upper bounds for each bit prediction failure. If N ≥ 8n(e + c)/(c − e)2, then this
bound is less than one-half. As N equals 2l − 1 we conclude that if the input l satisfies

l ≥ log

(
8n(e + c)

(c − e)2
+ 1

)
,

then the probability that x appears in the output list is at least one-half.
Efficiency of LDC : The first step of LDC takes time O(nl) and the last step takes time

O(n2l). The time-consuming step of the algorithm is the calculation of the different val-
ues of di

L . The naive way to do this would be by calculating each di
L value independently

for each L . This would make the algorithm work in time O(n222l) making O(n2l) calls
to C , as there are n2l different di

L values and each value is a sum of 2l − 1 terms and
each term can be calculated in time O(n).

216 G. Hast

We now show a better way to calculate di
L for all L ⊆ [l]. We define a(J)

def= C ′(ei⊕s J)

and âL
def= ∑J (−1)〈J,L〉a(J). As di

L = âL − a(∅) it is enough to calculate âL . We define

âk,J ′
L ′

def=
∑
J⊆[k]

(−1)〈J,L
′〉a(J ∪ J ′),

where L ′ ⊆ [k] and J ′ ⊆ [l]\[k]. For each k there are 2l different possible combinations
of L ′ and J ′ giving a total of l2l different variables on the form âk,J ′

L ′ with k ∈ [l]. For
k = 0 we have that âk,J ′

∅ = a(J ′) and by using the recursive formula

âk,J ′
L ′ =

{
âk−1,J ′

L ′−{k} − âk−1,J ′∪{k}
L ′−{k} if k ∈ L ′,

âk−1,J ′
L ′ + âk−1,J ′∪{k}

L ′ if k �∈ L ′,

we can calculate all variables on the form âk+1,J ′
L ′ given that we know the values of âk,J ′

L ′ .
By iteratively increasing k we can calculate the values of âl,∅

L ′ (which equals âL ′) for all
L ′ ⊆ [l].

To calculate âk,J ′
L ′ for k = 0 we have to make an oracle query for each value of J ′,

giving a total of 2l oracle queries. If k > 0 we instead perform an addition or subtraction
(demanding constant time) for each âk,J ′

L ′ we calculate, giving a total work time of O(l2l)

to calculate âL ′ and thus also di
L ′ for all L ′ ⊆ [l].

By identifying âL ′ as the discrete Fourier transform of the function a(J): 2[l] → R

(neglecting a constant factor) we see that the above algorithm is essentially the fast
Fourier transform algorithm.

5. Goldreich–Levin Hard-Core Bit

In this section we make an efficient reduction from inverting a function f to predicting
the Goldreich–Levin bit of f . The list-decoding algorithm from the previous section is
the main component of the algorithm that performs the reduction.

Theorem 3. Let P be a probabilistic algorithm with running time tP : N → N, and
rate δP : N→ [0, 1] and advantage εP : N→ [0, 1

2] in predicting b(x, r) from f (x) and
r . Define h(n) to be log2(δP(n)/εP(n)2). Then there exists an algorithm Inv that runs
in expected time (tP(n)+ h(n) log2(n)) · h(n) · O(n2) and satisfies

Pr
x∈Un

[f (Inv(f (x), n)) = f (x)] =

(
εP(n)2

δP(n)

)
.

The theorem states that if there is an algorithm P that predicts the Goldreich–Levin
bit of f , then there exists an algorithm Inv that inverts f . If P , for all possible values of
x , would have approximately the same advantage (and rate) in predicting b(r, x) from
f (x) and r , this can be shown by directly applying the list-decoding algorithm LD
with the appropriate value of l. However, as this is not true in general we need to make
an averaging argument. This is done by calling LD with small values on l with high
probability (to cope with values of x giving P a high advantage), and calling LD with

Nearly One-Sided Tests and the Goldreich–Levin Predicate 217

Table 2. The inverter Inv.

Description of inverter Inv: P is a predictor with rate δP (n) and advantage εP (n). On input
y = f (x) and n Inv proceeds as follows:

1. Select j from {−1, . . . , h − 2}, where h = �h(n)� = �log(δP (n)/εP (n)2)�, with prob-
ability 2 j−h and set l = �log(nδP (n)/εP (n)2)� − j + 2. If no j is chosen, stop and
output ⊥.

2. Call the list-decoder LDPy with input l and n, where Py(·) def= P(y, ·).
3. Apply f on each element x ′ of the output from the list-decoder. If f (x ′) = y, then

output x ′ and stop.
4. Output ⊥.

big values on l with low probability (to cope with values of x giving P an intermediate
advantage).

Proof. The inverting algorithm Inv is depicted in Table 2. For readability reasons we fix

the value of n and let ε
def= εP(n) and δ

def= δP(n). Before proceeding to the analysis of the
success probability of Inv we need some more specific definitions about the predicting
capabilities of the predictor P . By εx and δx we denote the rate and the advantage of the
predictor P when the value of x is fixed,

δx = Pr
r∈Un

[P(f (x), r) �= ⊥]

and

εx = Pr
r∈Un

[P(f (x), r) = b(x, r)]− 1
2 Pr

r∈Un

[P(f (x), r) �= ⊥].

Furthermore, we define Sj to be the set of all x ∈ {0, 1}n with εx > 0 such that

2 j ε
2

δ
≤ ε

2
x

δx
< 2 j+1 ε

2

δ
,

and let qj be the fraction of x ∈ Sj , that is to say qj
def= 2−n|Sj |. (If δx = 0 we know that

εx = 0 and we define ε2
x/δx as equal to zero, and thus those x are not contained in any

set Sj .)
The success probability of Inv depends upon the success probability of the list-decoder

which is stipulated by Theorem 1. We view Pf (x)(·) def= P(f (x), ·) as an oracle providing
the Hadamard code of x with a (1 − δx)-fraction of erasures, a (δx/2 − εx)-fraction of
errors and a (δx/2 + εx)-fraction of correct answers. Theorem 1 stipulates that if the
input

l ≥ log

(
8n(e + c)

(c − e)2
+ 1

)
= log

(
8nδx

(2εx)2
+ 1

)
= log

(
2nδx

ε2
x

+ 1

)
,

then the success probability of the list-decoder LDPf (x) is at least one-half. If the list-
decoder is successful, then x has to appear in its output which will cause Inv to output
x (or some x ′ such that f (x ′) = f (x)) successfully.

218 G. Hast

We now proceed to analyze the success probability of Inv. We show that if x ∈ Sj

and j is selected, then the condition on l is satisfied. Remember that the condition is l ≥
log(2nδx/ε

2
x+1). Suppose x ∈ Sj , then 2nδx/ε

2
x+1 ≤ 2− j (2nδ/ε2)+1 ≤ 22− j (nδ/ε2)

(where the second inequality follows from the fact that j ≤ h − 2) implying that if
l ≥ log(22− j (nδ/ε2)), then the list-decoder will succeed with probability at least one-
half. If j is selected we set l = �log(nδ/ε2)� + 2− j and thereby the condition on l is
fulfilled and x will show up in the output from the list-decoder with at least probability
one-half, as long as x ∈ Sj .

A lower bound for the probability that the inverting algorithm succeeds can now be
calculated:

h−2∑
j=−1

Pr[j is selected]Pr[x ∈ Sj]Pr[LD succeeds | j selected and x ∈ Sj]

≥
h−2∑

j=−1

2 j−hqj
1
2

= 2−(h+1)
h−2∑

j=−1

qj 2
j .

We now show that
∑h−2

j=−1 qj 2 j > 1
4 enabling us to conclude that the success probability

of Inv is
(2−h) =
(ε2/δ).
We note that Sj = ∅ for j > log(δ/ε2)− 2 because

ε2
x

δx
= (Prr∈Un [Pf (x)(r) = b(x, r)]− 1

2 Prr∈Un [Pf (x)(r) �= ⊥])2

Prr∈Un [Pf (x)(r) �= ⊥]

≤ (1
2 Prr∈Un [Pf (x)(r) �= ⊥])2

Prr∈Un [Pf (x)(r) �= ⊥]

≤ 1
4 .

From the definition of Sj we know that for x ∈ Sj we have that ε2
x/δx < 2 j+1(ε2/δ)

which implies that

∑
x∈{0,1}n :εx>0

ε2
x

δx
<

∞∑
j=−∞

|Sj |2 j+1 ε
2

δ
.

Note that εx > 0 implies that δx > 0 so we do not have to worry about division by zero.
Dividing both sides by 2n+1(ε2/δ) and using that Sj = ∅ for j > h − 2 gives

δ

2ε2
· 2−n

∑
x∈{0,1}n :εx>0

ε2
x

δx
<

h−2∑
j=−∞

qj 2
j . (2)

Nearly One-Sided Tests and the Goldreich–Levin Predicate 219

The following claim helps us analyze the left-hand side of the inequality.

Claim 4. Let ε, δ, εx and δx be defined as above, then

2−n
∑

x∈{0,1}n :εx>0

ε2
x

δx
≥ ε

2

δ
.

Proof. We regard the values of εx as fixed for all x and all the δx as non-negative
variables under the constraint that 2−n

∑
x δx = δ, and try to minimize the sum appearing

in the claim. We define f to be the sum with variables δx ,

f ({δx }) = 2−n
∑

x∈{0,1}n :εx>0

ε2
x

δx
.

We can assume that all εx are non-negative because substituting negative values of εx

with zero would only increase the right-hand side of the equation and keep the left-hand
side fixed. (We can even decrease the left-hand side by setting δx = 0 and increase δx ′

for some x ′ with positive εx ′ .)
We note that by setting δ∗x = εxδ/ε we have 2−n

∑
x δ
∗
x = δ2−n

∑
x εx/ε = δ and get

equality in the equation in the claim as

f ({δ∗x }) = 2−n
∑

x∈{0,1}n :εx>0

ε2
x

εxδ/ε
= ε

δ
2−n

∑
x∈{0,1}n :εx>0

εx = ε2

δ
.

Still to be shown is that setting δx = δ∗x is in fact optimal if we want to minimize f
under the constraint that 2−n

∑
x δx = δ and δx ≥ 0. Therefore assume that this is not

the case and that there is an assignment {δ′x } such that f ({δ′x }) < f ({δ∗x })while fulfilling
the constraints 2−n

∑
x δ
′
x = δ and δ′x ≥ 0.

Each term in f depends only on a single variable. Consider a term in f , ε2
x/δx . The

term is convex (for positive δx) and the derivative is −ε2
x/δ

2
x and thereby we conclude

that

ε2
x

δ′x
≥ ε

2
x

δ∗x
+ (δ′x − δ∗x)

(
− ε

2
x

δ∗x
2

)

for all admissible (positive) values on δ′x . We use this expression and the fact that−ε2
x/δ
∗
x

2

equals −ε2/δ2 for all δ∗x to bound f ({δ′x }) from below:

f ({δ′x }) = 2−n
∑

x∈{0,1}n :εx>0

ε2
x

δ′x

≥ 2−n
∑

x∈{0,1}n :εx>0

(
ε2

x

δ∗x
+ (δ′x − δ∗x)

(
−ε

2

δ2

))

= 2−n
∑

x∈{0,1}n :εx>0

ε2
x

δ∗x
+ 2−n

∑
x∈{0,1}n :εx>0

(
(δ′x − δ∗x)

(
−ε

2

δ2

))

220 G. Hast

= f ({δ∗x })+ 2−n

(
−ε

2

δ2

) ∑
x∈{0,1}n :εx>0

(
δ′x − δ∗x

)

= f ({δ∗x })+ 2−n

(
−ε

2

δ2

)
(δ − δ)

= f ({δ∗x }).

However, this contradicts our assumption and thus the claim is correct.

Now we continue the proof of Theorem 3. We know that
∑−2

j=−∞ qj 2 j ≤ 1
4 (because∑−2

j=−∞ qj ≤ 1) and can therefore conclude, using Claim 4 on the left-hand side of (2),
that

h−2∑
j=−1

qj 2
j > 1

4 .

As noted earlier this enables us to draw the conclusion that Inv succeeds in inverting a
randomly chosen x with probability
(ε2/δ) as stated in Theorem 3.

Still to be shown is the expected running time of Inv. The running time of Inv depends
on the value of l that is set in the first step of the algorithm. In the second step the list-
decoding algorithm takes time O(nl2l) and also n2l queries to P have to be processed.
In total the step takes time O(nl2l)+ tP(n) · n2l which makes the running times of the
other parts of the algorithm negligible. As l = �log(nδ/ε2)�− j+2 we conclude that the
running time of Inv is O(n22− j (δ/ε2)) · (tP(n)+ h(n) log(n)) and thereby the expected
running time is

h−2∑
j=−1

Pr[j is selected] · (tP(n)+ h(n) log(n))O

(
n22− j δ

ε2

)

=
h−2∑

j=−1

2 j−h(tP(n)+ h(n) log(n))O

(
n22− j δ

ε2

)

= (tP(n)+ h(n) log(n))
h−2∑

j=−1

O(n2)

= (tP(n)+ h(n) log(n)) · h(n) · O(n2),

which establishes Theorem 3.

We note that it seems unavoidable that the running time of Inv is expressed in expected
time instead of strict time if we do not want to worsen the time-success ratio. This is
realized by considering the case when P answers and answers correctly with the same
probability for all values of x (δx = δP(n) and εx = εP(n) for all x of length n). When
Inv calls LD, P is invoked 2l times where l has to be at least log(nδP(n)/εP(n)2) for
LD to work in the supposed fashion. Thus, every time Inv succeeds in inverting f it has
used considerably more time than it uses on average.

Nearly One-Sided Tests and the Goldreich–Levin Predicate 221

Another observation on Theorem 3 is that knowledge about the value of εP(n)2/δP(n)
is required if we would like to implement Inv. Therefore we define a new algorithm Inv′,
with oracle access to a predictor P , that takes an additional input h and behaves exactly
as Inv but uses h instead of log(δP(n)/εP(n)2) in the first step of the algorithm. From
the proof of Theorem 3 we can conclude that as long as h ≥ log(δP(n)/εP(n)2) the
probability of success will not decrease and the running time and the number of queries
to P will be the same as in Theorem 3 except that we substitute log(δP(n)/εP(n)2) with
h. We thus have the following corollary which will be useful in the proof of Theorem 6.

Corollary 5. Let P be an arbitrary algorithm predicting b(x, r) from f (x) and r .
There exists an algorithm Inv′ with oracle access to P such that on input y, n and h it
runs in expected time h2 log2(n) · O(n2) and makes an h · O(n2) number of expected
calls and satisfies

Pr
x∈Un

[f (Inv′P(f (x), n, h)) = f (x)] =
(2−h)

if h ≥ log2(δP(n)/εP(n)2), where P has rate δP : N→ [0, 1] and advantage εP : N→
[0, 1

2] in predicting b(x, r) from f (x) and r .

6. Nearly One-Sided Statistical Tests

A statistical test is a probabilistic algorithm that takes an input and outputs a bit. The
purpose of a statistical test is to distinguish between different distributions. This is done by
having different output distributions when the input is drawn from different distributions.
The output distribution is characterized by the probability that the output is equal to one,
respectively zero. If the test rarely outputs 1, on uniform input, we consider the test to be
nearly one-sided. The classical way to measure how well a statistical test distinguishes
between two distributions (or in fact two ensembles of distributions) is through the
following definition.

Definition 2. An algorithm D: {0, 1}∗ → {0, 1} δ(n)-distinguishes the ensembles
X = {Xn} and Y = {Yn} if for infinitely many values of n,∣∣∣∣ Pr

x∈Xn

[D(x) = 1]− Pr
y∈Yn

[D(y) = 1]

∣∣∣∣ ≥ δ(n).
The characterization of a statistical test in terms of this definition is rather coarse. For

example, it cannot be used to show if a test is nearly one-sided. This is remedied by the
definition of a parameterized distinguisher which for a test and two input distributions
separates the corresponding output distributions by imposing two specific thresholds.

Definition 3. An algorithm D: {0, 1}∗ → {0, 1} (δ1(n), δ2(n))-distinguishes the en-
sembles X = {Xn} and Y = {Yn} if for infinitely many values of n,

Pr
x∈Xn

[D(x) = 1] ≤ δ1(n) < δ2(n) ≤ Pr
y∈Yn

[D(y) = 1].

222 G. Hast

In addition, D is said to be a (δ1(n), δ2(n))-distinguisher for the ensembles X and Y if
D (δ1(n), δ2(n))-distinguishes X and Y .

Let D be a (δ1(n), δ2(n))-distinguisher for the ensembles X = {Xn} and Y = {Yn}.
If δ1(n) is “small,” then D is said to be a nearly one-sided statistical test with respect
to X . For the special case when X is the ensemble of the uniform distributions (i.e.,
Xi = Ui for all i ∈ N), then D is merely said to be a nearly one-sided statistical test.
As previously mentioned, we do not properly define the notion of a “nearly one-sided
statistical test” as we do not define “small,” but instead we use the more general notion
of a parameterized distinguisher to express the formal result (i.e., Theorem 6).

We now discuss the connection between statistical tests and predictors, and in par-
ticular how a nearly one-sided statistical test for the Goldreich–Levin bit can be easily
turned into a low rate predictor that predicts the Goldreich–Levin bit.

Assume that a distinguisher D satisfies

p1 = Pr
r,x∈Un ,σ∈U1

[D(f (x), r, σ) = 1]

and
p2 = Pr

r,x∈Un

[D(f (x), r, b(r, x)) = 1].

It is easy to transform this distinguisher into a predictor P guessing b(r, x) with ad-
vantage p2 − p1. On input (f (x), r) the predictor P samples a uniform bit σ , queries
for D(f (x), r, σ) and outputs σ iff D(f (x), r, σ) = 1 and otherwise outputs 1 − σ .
However, if the probability p1 is very small, then the truly informative answers from D
are when it returns 1. In those cases the probability that the prediction is correct is

Prσ∈U1 [σ = b(r, x)] · Prr,x∈Un ,σ∈U1 [D(f (x), r, σ) = 1 | σ = b(r, x)]

Prr,x∈Un ,σ∈U1 [D(f (x), r, σ) = 1]
= p2

2p1
,

giving an advantage of

p2

2p1
− 1

2
= p2 − p1

2p1
.

This should be compared with the success probability when D outputs 0,

Prσ∈U1 [1− σ = b(r, x)] · Prr,x∈Un ,σ∈U1 [D(f (x), r, σ) = 0 | 1− σ = b(r, x)]

Prr,x∈Un ,σ∈U1 [D(f (x), r, σ) = 0]

=
1
2 · (1− Prr,x∈Un ,σ∈U1 [D(f (x), r, σ) = 1 | 1− σ = b(r, x)])

1− p1

= 1− (2p1 − p2)

2(1− p1)

= 1+ p2 − 2p1

2(1− p1)
,

giving an advantage of

1+ p2 − 2p1

2(1− p1)
− 1

2
= 1+ p2 − 2p1 − (1− p1)

2(1− p1)
= p2 − p1

2(1− p1)
.

Nearly One-Sided Tests and the Goldreich–Levin Predicate 223

(Note that we have implicitly extended the notion of advantage to apply when also
conditioned on the output of D.)

Assume that the test is nearly one-sided (with respect to the input distribution {(f (x), r,
σ) | r, x ∈ Un, σ ∈ U1}) and thereby the value of p1 is close to zero. In this case the
advantage of the prediction when D outputs 1 is a factor p−1

1 better than if it outputs 0.
This is why it is better to change P slightly so it still returns σ iff D(f (x), r, σ) = 1 but
otherwise outputs ⊥. This new predictor has rate p1 and advantage (p2 − p1)/2. Thus
we have transformed a nearly one-sided statistical test for the Goldreich–Levin bit into
a low rate predictor that predicts the Goldreich–Levin bit.

7. Blum–Micali Pseudo-Random Generator

In [5] Blum and Micali constructed a PRBG based on a one-way permutation and a
hard-core predicate associated with the permutation. As an example they used expo-
nentiation modulo a prime as a one-way permutation and the most significant bit as
its hard-core predicate. By using an arbitrary one-way permutation and the hard-core
predicate of Goldreich–Levin [10] the following construction, referred to as BMGL,
is obtained:

Construction 1. Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time-computable length-
preserving permutation and let l: N→ Nwhere n < l(n). Given the input x0 and r such
that |x0| = |r | = n, define

G f,l(x0, r) = b(r, x1)b(r, x2) · · · b(r, xl(n)),

where xi = f (xi−1) for i = 1, . . . , l(n) and b(r, xi) is the inner product of r and xi

modulo 2. With G f,l
n we denote the output distribution of G f,l(x0, r), where r and x0 are

chosen uniformly and independently from {0, 1}n .

The security of the BMGL is described by our next theorem. For nearly one-sided
tests the reduction is an improvement over the previous most efficient reduction.

Theorem 6. Let D be a (p1(n), p2(n))-distinguisher for {Ul(n)} and {G f,l
n } with run-

ning time tD: N → N. Then there exists an algorithm Inv′′ that runs in expected time
[(t f (n) · l(n)+ tD(n))+m(n) log2(n)] ·m(n) ·O(n2), where tf (n) is the time to calculate
the function f on an n-bit input and

m(n)
def= log2

p2(n)l(n)2

(p2(n)− p1(n))2
,

and satisfies

Pr
x∈Un

[Inv′′(f (x)) = x] =
(2−m(n))

for infinitely many values of n.

224 G. Hast

Table 3. The predictor Pi .

Implementation of predictor Pi : The predictor has access to a distinguisher D: {0, 1}l(n) →
{0, 1}. On input y and r , Pi proceeds as follows:

1. Set xi+1 = y and calculate xj for j ∈ {i+2, . . . , l(n)}where xj = f (xj−1) and n = |y|.
2. Toss i unbiased coins c1, c2, . . . , ci−1 and σ .
3. Create the bit string z = c1 · · · ci−1σb(xi+1, r) · · · b(xl(n), r). If D(z) = 1, then return
σ , otherwise return ⊥.

Note that the running time of Inv′′ only depends upon p1(n) and p2(n) logarithmically.
Assuming t f (n) · l(n) ≤ tD(n) and ignoring logarithmic factors the time–success ratio is

p2(n)l(n)2tD(n)

(p2(n)− p1(n))2
· O(n2),

ameliorating the ratio given by the best previous analysis with a factor of p2(n). Fur-
thermore, if we assume that p1(n) ≤ c · p2(n) for some constant c < 1 the time–success
ratio is

l(n)2tD(n)

p2(n)
· O(n2),

still ignoring logarithmic factors.

Proof. The proof mainly consists of defining a number of predictors and showing that
combined, these have good predicting qualities. This is done by a hybrid argument. The
proof is concluded by applying Corollary 5 with these predictors.

The predictor Pi is depicted in Table 3. The bit string z that D is applied on is created
according to the i th hybrid distribution:

Hi
n = {r1 · · · ri bi+1 · · · bl(n) | r1 · · · ri ∈ Ui , b1 · · · bl(n) ∈ G f,l

n }.

The fact that f is a permutation implies that the generator output has the same prefix and
suffix distribution. By this we mean that the distribution {b1 · · · bl(n)−i | b1 · · · bl(n) ∈
G f,l

n } equals {bi+1 · · · bl(n) | b1 · · · bl(n) ∈ G f,l
n }. This motivates the claim that the bit

string z in Pi is constructed according to the distribution Hi
n .

The extreme hybrids, H 0
n and Hl(n)

n , are easily identified as the generator output dis-
tribution G f,l

n , respectively the uniform distribution Ul(n). According to the assumption
in the theorem, the algorithm D (p1(n), p2(n))-distinguishes between these two distri-
butions. Let

δi
def= Pr

z∈Hi
n

[D(z) = 1],

giving δ0 ≥ p2(n) and δl(n) ≤ p1(n) for infinitely many values of n. (For readability
reasons, the dependency on n is implicit in δi .)

Nearly One-Sided Tests and the Goldreich–Levin Predicate 225

Table 4. The inverter Inv′′.

Implementation of inverter Inv′′: The inverter has access to a distinguisher D: {0, 1}l(n) →
{0, 1}. On input y, Inv′′ proceeds as follows:

1. Choose i ∈ [l(n)] uniformly, where n = |y|.
2. Choose j from {−2,−1, . . . , �log l(n)�} with probability 2−(3+ j).
3. Call Inv′ from Corollary 5 with input y, n and

h =
⌈

log
p2(n)l(n)2

22 j (p2(n)− p1(n))2

⌉

providing Pi as the predictor. Return the output from Inv′Pi .

The predictor Pi constructs z according to Hi
n and makes a prediction if D(z) = 1.

Thus the rate of the predictor (the probability that the output is not ⊥) is δi . For Pi

to be successful in its prediction it has to choose σ = b(f −1(y), r) in step 2. Now
condition on that event when constructing z in Pi . In this case z is constructed according
to Hi−1

n , as in Pi−1, and the rate of Pi is thus δi−1. The probability that σ is chosen
equal to b(f −1(y), r) is one-half implying that the success probability of Pi is 1

2δi−1.
The advantage εi of Pi is thus 1

2 (δi−1 − δi).
Table 4 presents our inverter Inv′′. It uniformly selects a predictor and guesses a value

h and invokes the inverting algorithm Inv′ from Corollary 5. If the guessed value is large
enough compared with the predicting quality of the predictor, the corollary can be used
to obtain a lower bound on the probability that Inv′ succeeds in inverting. This enables
us to derive a lower bound on the probability that Inv′′ succeeds in inverting its input.

We start the analysis by looking at the predicting capabilities of the predictors Pi for
i ∈ [l(n)]. We can assume that δi ∈ [δl(n), δ0] for all i ∈ [l(n)] because given the rates
{δi }l(n)i=0 we can construct the rates

δ′i =



δ0 if δi > δ0,

δl(n) if δi < δl(n),

δi otherwise

that only weaken the predicting capabilities of all the predictors that have a positive
advantage, which are the only ones that add to the success probability of Inv′′. By a
similar argument we can assume that δi ≤ δi−1.

Define Sj to be the set containing all i ∈ [l(n)] such that

2 j p2(n)− p1(n)

l(n)
≤ εi < 2 j+1 p2(n)− p1(n)

l(n)
,

and let qj be the fraction of i ∈ Sj , qj
def= |Sj |/l(n). We note that

∑l(n)
i=1 εi =

∑l(n)
i=1

1
2 (δi−1−

δi) = 1
2 (δ0 − δl(n)) ≥ 1

2 (p2(n) − p1(n)) for infinitely many values of n, and can thus

226 G. Hast

conclude, by adding the upper bounds, that for these values of n,

1
2 (p2(n)− p1(n)) <

∞∑
j=−∞

|Sj |2 j+1 p2(n)− p1(n)

l(n)
.

Multiplying the above equation by 2/(p2(n)− p1(n)) and substituting |Sj |/ l(n)with qj

we get

4
∞∑

j=−∞
qj 2

j > 1.

The set Sj has to be empty if 2 j > l(n) and
∑−3

j=−∞ qj 2 j ≤ 1
8 (because

∑−3
j=−∞ qj ≤ 1)

which gives us

�log(l(n))�∑
j=−2

qj 2
j > 1

8 .

If the parameters i and h are set in Inv′′ such that h ≥ log(δi/ε
2
i), then the success

probability for Inv′′ is
(2−h) according to Corollary 5. This occurs if i and j are
chosen so that i ∈ Sj because then δi ≤ p2(n) (for infinitely many values of n) and
2 j (p2(n)− p1(n))/l(n) ≤ εi according to the definition of Sj and thus we have

log
δi

ε2
i

≤ log
p2(n)

(2 j (p2(n)− p1(n))/l(n))2
≤
⌈

log
p2(n)l(n)2

22 j (p2(n)− p1(n))2

⌉
= h.

A lower bound on the total success probability of Inv′′ which is valid for infinitely many
values of n can now be expressed:

�log(l(n))�∑
j=−2

Pr
i∈[l(n)]

[i ∈ Sj]Pr[j is selected]Pr[Inv′ succeeds]

=
�log(l(n))�∑

j=−2

qj 2
−(j+3)
(2−�log(p2(n)l(n)2/22 j (p2(n)−p1(n))2)�)

=
�log(l(n))�∑

j=−2

qj 2
j

(
(p2(n)− p1(n))2

p2(n)l(n)2

)

=

(
(p2(n)− p1(n))2

p2(n)l(n)2

)
.

The running time of the predictor Pi , called tPi , is O(t f (n) · l(n))+ tD(n). The first
two steps of Inv′′ can be done in time O(log(l(n))) which is negligible compared with
the running time of the last step. Corollary 5 states that the expected running time for
Inv′ is (tPi + h(j) log(n)) · h(j) · O(n2) where

h(j) =
⌈

log
p2(n)l(n)2

22 j (p2(n)− p1(n))2

⌉
=
⌈

log
p2(n)l(n)2

(p2(n)− p1(n))2

⌉
− 2 j.

Nearly One-Sided Tests and the Goldreich–Levin Predicate 227

The expected running time of Inv′′ is thus

�log(l(n))�∑
j=−2

Pr[j is selected] · [(tPi + h(j) log(n)) · h(j) · O(n2)]

=
�log(l(n))�∑

j=−2

2−(j+3) ·((O(t f (n)·l(n))+tD(n))+h(j) log(n))·h(j) · O(n2)

= ((O(t f (n) · l(n))+ tD(n))+ h(−2) log(n)) · h(−2) · O(n2)

= ((t f (n) · l(n)+ tD(n))+ m(n) log(n)) · m(n) · O(n2),

where m(n)
def= log(p2(n)l(n)2/(p2(n)− p1(n))2). The second equality is justified be-

cause the term with j = k is always at least twice as big as the term with j = k + 1. As
the first term in the sum is with j = −2 we can conclude that the whole sum is at most
that term doubled. This concludes the proof of Theorem 6.

8. Applications

Using pseudo-random material instead of real random material in probabilistic algo-
rithms may be convenient for many reasons. A system can have problems obtaining
enough random material or the results perhaps need to be reproducible without storing
all the random material used.

An important use of pseudo-random material can be found in many implementations
of cryptographic primitives. The security definitions of these primitives often express
either the need for authentication or that of confidentiality. In the case of authentication
there is often a natural nearly one-sided test corresponding to an attacker of the protocol,
but in the case of confidentiality this is not always so.

Here we consider the security consequences of using pseudo-random material from a
PRBG instead of true random bits in a cryptographic system. We assume that the system
that uses true randomness is secure and want to establish that the corresponding system
is also secure. The standard method for showing this is done by assuming that there is a
successful attacker, when using pseudo-random material in the system, and transforming
this attacker into a statistical test distinguishing between output from the PRBG and the
uniform distribution. This statistical test will become nearly one-sided if the successful
attacker produces a certain type of breaking which we call verifiable breakings. If the
PRBG is BMGL, then the proof of security can prosper by our more efficient reduction
established in Theorem 6. With a verifiable breaking of a cryptographic system we mean
that a successful breaking can be verified, possibly with the help of secrets lying in the
system such as secret keys.

8.1. Signature Schemes

As an example of how natural nearly one-sided tests come up in the case of authentication,
we take a closer look at signature schemes. Using the standard definition of security in
an adaptive chosen message attack environment [11], an attacker may query an oracle

228 G. Hast

for signatures of any messages of its choosing. The attacker is considered successful if it,
on a verification key as input, can output a valid signature on any message. Furthermore,
the signature should of course not be identical to a signature returned by the oracle. If
there is an attacker (from a certain group of attackers) that has more than a negligible
probability of breaking the signature scheme, then the signature scheme is considered
to be insecure against that group of attackers. Now assume that S is a secure signature
scheme but SG is not, where the only difference between SG and S is that SG uses
bits from a pseudo-random generator G when S uses true random bits. Then there is
an adversary A that can break the signature scheme SG , but not S, with non-negligible
probability. This adversary can be easily transformed into a nearly one-sided statistical
test D, distinguishing between the output of G and the uniform distribution, by first
simulating S, using its input as the source of randomness and then attacking S using A.

8.2. Encryption Schemes

A natural way to define the security of an encryption system is to say that given a
ciphertext it should be infeasible to produce the corresponding plaintext. If we adopted
this as our security definition, an attacker A could be easily turned into a natural nearly
one-sided test that would distinguish between encryptions made by a secure encryption
scheme and encryptions made by an encryption scheme that A attacks successfully. In
particular, this means that if we exchange the true random material that is used in a secure
encryption scheme against bits produced by a generator, then a successful attacker on
the resulting scheme can be turned into a nearly one-sided test distinguishing between
the uniform distribution and the generator output.

Unfortunately, this natural way of defining security is not strict enough for all situa-
tions. In general we do not permit an attacker to be able to conclude anything at all about
the plaintext by looking at the ciphertext. This notion was captured by the definition
of semantic security in [11]. Using this definition there is no natural way to transform
an attacker into a nearly one-sided test. For example, if an adversary could predict, by
looking at a ciphertext, the i th bit of the plaintext (that was drawn from the uniform
distribution) with probability 1

2 + ε, where ε is non-negligible, this would render the
system insecure. However, this adversary corresponds with a predictor with rate one,
and thus not to a nearly one-sided test.

8.3. Other Applications

In many algorithms pseudo-randomness is provided by a pseudo-random function. A
well-known construction of pseudo-random functions is the GGM construction [8] which
uses a pseudo-random generator as a building block. We note that a nearly one-sided
statistical test, distinguishing between the use of real random functions and a family of
GGM functions, can be transformed into a nearly one-sided statistical test distinguishing
the uniform distribution and the underlying generator output. Briefly, this is so because
the hybrid arguments used in the security proof of GGM will uphold the one-sidedness
in distinguishing between real random functions and GGM functions.

For some applications in simulations, nearly one-sided tests will occur naturally.
Consider a probabilistic algorithm for a decision problem that errs with very small
probability. Assume that this algorithm uses the output from a PRBG as its source of

Nearly One-Sided Tests and the Goldreich–Levin Predicate 229

randomness and that this causes the algorithm to err with substantially higher probability.
Then this algorithm can be used to produce a nearly one-sided test distinguishing the
PRBG output and the uniform distribution.

9. Open Problems

In this work we have studied nearly one-sided tests for the Goldreich–Levin hard-core
bit. A natural extension would be to consider what impact nearly one-sided tests have on
other hard-core predicates. Additional applications where nearly one-sided tests occur
could also be investigated.

Acknowledgments

I am very grateful to Johan Håstad for providing me with good ideas and continuous
support. I am also grateful to the referee of this journal for valuable advice about the
presentation as well as for suggesting interesting extensions. Finally, I thank Mikael
Goldmann, Oded Goldreich, Jonas Holmerin, Åsa Karsberg, and Mats Näslund for much
appreciated help and comments.

References

[1] N. Alon and J. H. Spencer: The Probabilistic Method, 2nd edn. Wiley Interscience, New York, 2000.
[2] M. Bellare: Practice-Oriented Provable-Security. Proceedings, ISW 97, LNCS 1396, pp. 221–231.

Springer-Verlag, Berlin, 1998.
[3] M. Bellare and P. Rogaway: The Exact Security of Digital Signatures: How to Sign with RSA and Rabin.

Proceedings, Eurocrypt 1996, LNCS 1070, pp. 399–416. Springer-Verlag, Berlin, 1996.
[4] M. Blum and O. Goldreich: Towards a Computational Theory of Statistical Tests. Proceedings, 33rd

IEEE FOCS, pp. 406–416, 1992.
[5] M. Blum and S. Micali: How to Generate Cryptographically Strong Sequences of Pseudo-Random Bits.

SIAM Journal on Computing, 13(4) (1984), 850–864.
[6] R. Fischlin and C. P. Schnorr: Stronger Security Proofs for RSA and Rabin Bits. Journal of Cryptology,

13(2) (2000), 221–244.
[7] O. Goldreich: Foundations of Cryptography: Basic Tools. Cambridge University Press, Cambridge,

2001.
[8] O. Goldreich, S. Goldwasser and S. Micali: How to Construct Random Functions. Journal of the ACM,

33(4) (1986), 792–807.
[9] O. Goldreich, R. Impagliazzo, L. A. Levin, R. Venkatesan and D. Zuckerman: Security Preserving

Amplification of Hardness. Proceedings, 31st IEEE FOCS, pp. 318–326, 1990.
[10] O. Goldreich and L. A. Levin: A Hard Core Predicate for any One Way Function. Proceedings, 21st

ACM STOC, pp. 25–32, 1989.
[11] S. Goldwasser, S. Micali and R. Rivest: A Digital Signature Scheme Secure Against Adaptive Chosen-

Message Attacks. SIAM Journal on Computing, 17(2) (1988), 281–308.
[12] J. Håstad and M. Näslund: Practical Construction and Analysis of Pseudo-Randomness Primitives.

Proceedings, Asiacrypt 2001, LNCS 2248, pp. 442–459. Springer-Verlag, Berlin, 2001.
[13] A. Herzberg and M. Luby: Public Randomness in Cryptography. Proceedings, Crypto 1992, LNCS

740, pp. 421–432. Springer-Verlag, Berlin, 1993.
[14] L. A. Levin: Randomness and Non-Determinism. Journal of Symbolic Logic, 58(3) (1993), 1102–1103.
[15] A. C. Yao: Theory and Application of Trapdoor Functions. Proceedings, 23rd IEEE FOCS, pp. 80–91,

1982.

