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Abstract. In this paper we show that any two-party functionality can be securely com-
puted in a constant number of rounds, where security is obtained against (polynomial-
time) malicious adversaries that may arbitrarily deviate from the protocol specification.
This is in contrast to Yao’s constant-round protocol that ensures security only in the
face of semi-honest adversaries, and to its malicious adversary version that requires a
polynomial number of rounds.

In order to obtain our result, we present a constant-round protocol for secure coin-
tossing of polynomially many coins (in parallel). We then show how this protocol can be
used in conjunction with other existing constructions in order to obtain a constant-round
protocol for securely computing any two-party functionality. On the subject of coin-
tossing, we also present a constant-round almost perfect coin-tossing protocol, where
by “almost perfect” we mean that the resulting coins are guaranteed to be statistically
close to uniform (and not just pseudorandom).

Key words. Secure computation, Constant-round protocols, Coin-tossing.

1. Introduction

1.1. Secure Two-Party Computation

In the setting of two-party computation, two parties with respective private inputs x and y,
wish jointly to compute a functionality f (x, y) = ( f1(x, y), f2(x, y)), such that the first
party receives f1(x, y) and the second party receives f2(x, y). This functionality may be
probabilistic, in which case f (x, y) is a random variable. Loosely speaking, the security
requirements are that nothing is learned from the protocol other than the output (privacy),
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and that the output is distributed according to the prescribed functionality (correctness).
The actual definition [22], [27], [3], [11] blends these two conditions (see Section 2.2).
The above security must be guaranteed even when one of the parties is adversarial. Such
an adversary may be semi-honest (or passive), in which case it correctly follows the proto-
col specification, yet attempts to learn additional information by analyzing the transcript
of messages received during the execution. On the other hand, an adversary may be ma-
licious (or active), in which case it can arbitrarily deviate from the protocol specification.

The first general solutions for the problem of secure computation were presented
by Yao [33] for the two-party case (with security against semi-honest adversaries) and
Goldreich et al. [24] for the multi-party case (with security even against malicious
adversaries). Thus, despite the stringent security requirements placed on such protocols,
wide-ranging completeness results were established, demonstrating that any probabilistic
polynomial-time functionality can be securely computed (assuming the existence of
trapdoor permutations).

Yao’s protocol. In [33] Yao presented a constant-round protocol for securely computing
any functionality, where the adversary may be semi-honest. Denote Party 1 and Party 2’s
respective inputs by x and y and let f be the functionality that they wish to compute (for
simplicity, assume that both parties wish to receive f (x, y)). Loosely speaking, Yao’s
protocol works by having one of the parties (say Party 1) first generate an “encrypted”
circuit computing f (x, ·) and send it to Party 2. The circuit is such that it reveals nothing
in its encrypted form and therefore Party 2 learns nothing from this stage. However,
Party 2 can obtain the output f (x, y) by “decrypting” the circuit. In order to ensure that
Party 2 learns nothing more than the output itself, this decryption must be “partial” and
must reveal f (x, y) only. Without going into unnecessary details, this is accomplished
by Party 2 obtaining a series of keys corresponding to its input y, such that given these
keys and the circuit, the output value f (x, y) (and only this value) may be obtained. Of
course, Party 2 must obtain these keys without revealing anything about y and this can
be done by running |y| instances of a (semi-honest) secure 2-out-of-1 Oblivious Transfer
protocol [14], which is constant-round. By running the Oblivious Transfer protocols in
parallel, this protocol requires only a constant number of rounds.

Now consider what happens if Yao’s protocol is run when the adversary may be
malicious. Firstly, we have no guarantee that Party 1 constructed the circuit so that it
correctly computes f (x, ·). Thus, correctness may be violated. Secondly, the Oblivious
Transfer protocol must satisfy the requirements for secure computation (in the face of
malicious adversaries), and must maintain its security when run in parallel. We know of no
such (highly secure) oblivious transfer protocol that runs in a constant number of rounds.
Finally, if the functionality f is probabilistic, then Party 1 must be forced to input a truly
random string into the circuit. Thus, some type of coin-tossing protocol is also required.

Secure protocol compilation. As we have mentioned, Goldreich et al. (GMW) [24], [25]
showed that assuming the existence of trapdoor permutations, there exist protocols for
securely computing any multi-party functionality, where the adversary may be malicious.
They achieve this in two stages. First, they show a protocol for securely computing
any functionality in the semi-honest adversarial model. Next, they construct a protocol
compiler that takes any semi-honest protocol and “converts” it into a protocol that is
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secure in the malicious model. As this compiler is generic, it can be applied to any
semi-honest protocol and, in particular, to the constant-round two-party protocol of
Yao. However, due to the nature of their compilation, the output protocol is no longer
constant-round.

1.2. Our Results

The focus of this paper is to construct a protocol compiler such that the round-complexity
of the compiled protocol is of the same order as that of the original protocol. We observe
that the only component of the GMW compiler for which there does not exist a constant-
round construction is that of coin-tossing in the well [8]. In particular, in the GMW
compiler the coins are tossed sequentially, and thus polynomially many rounds are
required. Our technical contribution is therefore in constructing a constant-round protocol
for coin-tossing in the well of polynomially many coins. That is, we obtain the following
theorem (informally stated):

Theorem 1 (Constant-Round Coin-Tossing). Assuming the existence of one-way func-
tions, there exists a constant-round protocol for the coin-tossing functionality (as required
by the GMW compiler).

In order to construct such a constant-round protocol we introduce a technique relating
to the use of commitment schemes, which we believe may be useful in other settings as
well. Commitment schemes are a basic building block and are used in the construction of
many protocols. Consider, for example, Blum’s protocol for coin-tossing a single bit [8].
In this protocol, Party 1 sends a commitment to a random-bit; then Party 2 replies with
its own random bit and finally Party 1 decommits. Loosely speaking, the security of such
a protocol is guaranteed by providing a simulator who receives a uniformly chosen bit
and “interacts” with the adversarial party in order to generate a transcript of the protocol
execution that is consistent with this bit. The difficulty in simulating this protocol with an
adversarial Party 2 is that the simulator only knows the correct value to commit to after
Party 2 sends its message. However, since the simulator is bound to its commitment, it
must somehow guess the correct value before this message is sent. In case the messages
are long (say n bits rather than a single bit or log n bits), this may be problematic. Thus,
rather than decommitting, we propose to have the party reveal the committed value and
then prove (in zero-knowledge) the validity of this revealed value. In a real execution,
this is equivalent to decommitting, since the committing party is effectively bound to
the committed value by the zero-knowledge proof. However, the simulator is able to
provide a simulated zero-knowledge proof (rather than a real one). Furthermore, this
proof remains indistinguishable from a real proof even if the revealed value is incorrect
(and thus the statement is false). Therefore, the simulator can effectively “decommit” to
any value it wishes and is not bound in any way by the original commitment that it sends.

Combining the constant-round protocol of Theorem 1 with other known constructions,
we obtain the following theorem:

Theorem 2. Assume the existence of one-way functions. Then there exists a pro-
tocol compiler that given a two-party protocol � for securely computing f in the
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semi-honest model produces a two-party protocol �′ that securely computes f in the
malicious model, so that the number of rounds of communication in �′ is within a
constant multiplicative factor of the number of rounds of communication in �.

We stress that, when ignoring the “round preservation” clause, the existence of a protocol
compiler is not new and has been shown in [24] and [25] (in fact, as we have mentioned,
we use most of the components of their compiler). Our contribution is in reducing the
overhead of the compiler, in terms of the round-complexity, to a constant factor. The
main result, stated in the following theorem, is obtained by applying the compiler of
Theorem 2 to the constant-round protocol of Yao.

Theorem 3. Assuming the existence of trapdoor permutations, any two-party function-
ality can be securely computed in the malicious model in a constant number of rounds.

While on the subject of coin-tossing, we also present a constant-round protocol for
the “almost perfect” coin-tossing (of polynomially many coins) that guarantees that
the output of the coin-tossing protocol is statistically close to uniform, and not just
computationally indistinguishable.

1.3. Related Work

Although generic feasibility results for the problem of secure computation have been
established, these protocols are not very efficient. For example, in the protocol of [24],
both the number of rounds and communication complexity are polynomial in the size
of the circuit computing the functionality. Thus some research has focused on finding
efficient protocols for specific problems of secure computation. See [9], [12], [15], and
[31] for just a few examples. This direction is not the focus of our work.

Other research has considered the efficiency of generic solutions themselves and as
such also addresses fundamental questions regarding efficiency considerations (e.g., the
possibility of obtaining protocols with only a constant number of rounds or with sub-
linear communication complexity). Specifically, in the setting of multi-party computation
with an honest majority, Beaver et al. [5] showed that any functionality can be securely
computed in a constant number of rounds, where the adversary may be malicious. Unfor-
tunately, their techniques rely heavily on the fact that a majority of the parties are honest
and as such cannot be applied to the case of two-party protocols. The above addresses
the issue of the round complexity of protocols. Another important question relates to the
communication complexity (in terms of the bandwidth) of secure protocols. See [29] for
a recent work in this direction.

As we have described, in this paper we establish the analogous result of [5] for the
setting of two-party computation.

1.4. Organization

In Sections 2 and 3, definitions and the cryptographic tools used in our protocols are
presented (most of these are standard, although Section 3.2 contains some important
discussions and Section 3.3 contains a new technical lemma, see below). Then, in Sec-
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tion 4, we discuss the protocol compiler of Goldreich et al. and observe that in order to
achieve “round-preserving” compilation, one needs only to construct a constant-round
coin-tossing protocol. Our technical contribution in this paper thus begins in Section 5
where we present such a constant-round coin-tossing protocol. Then, in Section 6, we
present a secure protocol for “almost perfect” coin-tossing, for which the output is guar-
anteed to be statistically close to uniform (and not just pseudorandom).

In addition, we provide two useful technical results. In Section 3.3 we present a
general lemma that can be used to simplify the analysis of protocols that use zero-
knowledge proofs of knowledge as sub-protocols (as indeed we do in our coin-tossing
protocols). Also, in the Appendix we consider zero-knowledge arguments and arguments
of knowledge in a setting where the adversarial party may run in expected polynomial-
time (rather than being limited to strict polynomial-time). In particular, we show that the
zero-knowledge arguments of knowledge of [17] remain zero-knowledge in this setting,
whereas the zero-knowledge proof system of [20] seems not to.

2. Definitions

Most of the definitions presented below are standard. The only difference is that in the
setting of secure computation, we allow the adversary to run in expected polynomial-time
(rather than strict polynomial-time).

2.1. Preliminaries

In this section we present some basic definitions and notations. We begin by recalling
the definitions of statistical closeness and computational indistinguishability.

Definition 4 (Statistical Closeness). Let S ⊆ {0, 1}∗ be a set of strings (S is called the
index set). Let {Xs}s∈S and {Ys}s∈S be probability ensembles, so that for any s ∈ S the
distribution Xs (resp., Ys) ranges over strings of length polynomial in |s|. We say that
the ensembles are statistically close, denoted {Xs} s≡ {Ys}, if for every polynomial p(·)
and all sufficiently long s ∈ S,

∑
α

|Pr[Xs = α]− Pr[Ys = α]| < 1

p(|s|) .

Definition 5 (Computational Indistinguishability). Let S, {Xs}s∈S and {Ys}s∈S be as
above. We say that the ensembles are computationally indistinguishable, denoted {Xs} c≡
{Ys}, if for every probabilistic polynomial-time distinguisher D, every polynomial p(·),
all sufficiently long s ∈ S and all auxiliary information z ∈ {0, 1}poly(n),

|Pr[D(Xs, s, z) = 1]− Pr[D(Ys, s, z) = 1]| < 1

p(|s|) .

We denote the uniform distribution over strings of length m by Um . Thus a distribution
ensemble {Xn} ranging over strings of length m is said to be pseudorandom if it is
computationally indistinguishable from {Um}. (When considering ensembles indexed
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by N, we associate N and {1n: n ∈ N}.) For a set S, we denote s ∈R S when s is chosen
uniformly from S. Finally, the security parameter is denoted by n.

Uniform versus non-uniform presentation. For the sake of simplicity, the definition
of secure computation is presented in the non-uniform model of computation (in line
with the presentation of [18]). However, the proof of the coin-tossing protocol itself is
in the uniform model of computation. That is, the protocol is shown to be secure when
the adversary is any probabilistic (expected) polynomial-time machine. This enables
us to assume a weaker assumption; namely, that of one-way functions that are hard to
invert for uniform machines. However, in such a case, security is only obtained for a
weaker, uniform adversary. Nevertheless, our proof also implies security in the non-
uniform model, and thus security can be formulated against non-uniform adversaries
and assuming one-way functions that are hard to invert for non-uniform machines.

Expected polynomial-time machines. In this work we consider adversaries that are
modeled by expected polynomial-time interactive machines. An interactive machine M1

is expected polynomial-time if there exists a (single) polynomial p(·) such that for every
(possibly unbounded) machine M2, the expected running time of M1 (upon input of
length n) when interacting with M2 is bounded by p(n).

Discussion—expected polynomial-time. An alternative definition to the above one
would be to say that the adversary must run in expected polynomial-time when in-
teracting with an honest party only, but is not restricted in the case that it interacts with
any other machine. This is the definition of expected polynomial-time suggested by
Feige [16, Section 3.3]. However, Feige shows that obtaining zero-knowledge against
such expected polynomial-time verifiers is problematic. We therefore adopt the above
definition, for which we can obtain zero-knowledge, as is shown in the Appendix.

We stress that we do not claim that a definition allowing for expected polynomial-
time adversaries is “superior” to an analogous definition that restricts adversaries to strict
polynomial-time. In fact, we personally adopt the view that expected polynomial-time is
very problematic and it is far preferable to stay within the realms of strict polynomial-time
(without adopting either of the above definitions). Nevertheless, we consider expected
polynomial-time here for the following reasons:

1. At the time that this work was conducted, no constant-round zero-knowledge pro-
tocols with strict polynomial-time simulators were known to exist. Likewise, all
extractors for constant-round zero-knowledge proofs of knowledge ran in expected
polynomial-time. Subsequent to this work, constant-round protocols with strict
polynomial-time simulators and extractors were demonstrated [1], [2]. Thus, re-
lying on that work, the results of this paper can be modified to consider strict
polynomial-time adversaries only. We note, however, that [1] and [2] assume the
existence of trapdoor clawfree permutations, whereas the protocols we use (with
expected polynomial-time simulators and extractors) assume only the existence of
one-way functions.

2. Despite the problematic nature of equating efficient computation with expected
polynomial-time, we believe that it is important to have rigorous proofs of security
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also in this model. We feel that the results presented in the Appendix justify this
view.

We conclude by noting that the standard way of bypassing this issue is to restrict the adver-
sary to strict polynomial-time, and allow for its simulation to take expected polynomial-
time. Thus, the security provided states that anything the adversary could see in a strict
polynomial-time attack on the protocol, it could generate in expected polynomial-time.
On the other hand, in this work we prove that anything that the adversary could see in
an expected polynomial-time attack, it could generate in that same time. This seems to
be a preferable security claim.

2.2. Secure Computation

In this section we present the definition for secure two-party computation. The following
description and definition is based on [18], which in turn follows [22], [27], [3], and [11].

Two-party computation. A two-party protocol problem is cast by specifying a random
process that maps pairs of inputs to pairs of outputs (one for each party). We refer to such
a process as a functionality and denote it f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗, where
f = ( f1, f2). That is, for every pair of inputs (x, y), the output-pair is a random variable
( f1(x, y), f2(x, y)) ranging over pairs of strings. The first party (with input x) wishes
to obtain f1(x, y) and the second party (with input y) wishes to obtain f2(x, y).1 We
often denote such a functionality by (x, y) �→ ( f1(x, y), f2(x, y)). Thus, for example,
the basic coin-tossing functionality is denoted by (1n, 1n) �→ (Un,Un).

Adversarial behavior. Loosely speaking, the aim of a secure two-party protocol is to
protect an honest party against dishonest behavior by the other party. This “dishonest
behavior” can manifest itself in a number of ways; in particular, we focus on what
are known as semi-honest and malicious adversaries. A semi-honest adversary follows
the prescribed protocol, yet attempts to learn more information than “allowed” from
the execution. Specifically, the adversary may record the entire message transcript of
the execution and attempt to learn something beyond the protocol output. On the other
hand, a malicious adversary may arbitrarily deviate from the specified protocol. When
considering malicious adversaries, there are certain undesirable actions that cannot be
prevented. Specifically, a party may refuse to participate in the protocol, may substitute
its local input (and enter with a different input) and may abort the protocol prematurely.
One ramification of the adversary’s ability to abort, is that it is impossible to achieve
“fairness”. That is, the adversary may obtain its output while the honest party does not.2

As is standard for two-party computation, in this work we consider a static corruption
model, where one of the parties is adversarial and the other is honest, and this is fixed
before the execution begins. (This is in contrast to an adaptive corruption model where

1 Another way of defining f is as a deterministic function f : {0, 1}∗×{0, 1}∗×{0, 1}∗ → {0, 1}∗×{0, 1}∗,
where the third input is uniformly chosen. That is, first a uniformly distributed string r is chosen, and then the
first and second parties receive f1(x, y, r) and f2(x, y, r), respectively.

2 We note that although complete fairness is not possible to achieve, there are protocols that obtain “approx-
imate” fairness [22], [4]. In this work we adopt the definition where fairness is not required.
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an adversary can corrupt one or both of the parties during the execution, based on what
it sees. Such a model makes sense for two-party computation when one considers a large
network of users in which pairs of parties run two-party protocols.)

Security of protocols (informal). The security of a protocol is analyzed by comparing
what an adversary can do in the protocol to what it can do in an ideal scenario that is
secure by definition. This is formalized by considering an ideal computation involving
an incorruptible trusted third party to whom the parties send their inputs. The trusted
party computes the functionality on the inputs and returns to each party its respective
output. Loosely speaking, a protocol is secure if any adversary interacting in the real
protocol (where no trusted third party exists) can do no more harm than if it was involved
in the above-described ideal computation.

Execution in the ideal model. The ideal model differs for semi-honest and malicious
parties. First, for semi-honest parties, an ideal execution involves each party sending
their respective input to the trusted party and receiving back their prescribed output.
An honest party then outputs this output, whereas a semi-honest party may output an
arbitrary (probabilistic polynomial-time computable) function of its initial input and the
message it obtained from the trusted party. (See [18] for a formal definition of the ideal
and real models for the case of semi-honest adversaries.)

We now turn to the ideal model for malicious parties. Since some malicious behavior
cannot be prevented (for example, early aborting), the definition of the ideal model in
this case is somewhat more involved. An ideal execution proceeds as follows:

Inputs: Each party obtains an input, denoted z.
Send inputs to trusted party: An honest party always sends z to the trusted party. A

malicious party may, depending on z, either abort or sends some z′ ∈ {0, 1}|z| to the
trusted party.

Trusted party answers first party: In case it has obtained an input pair, (x, y), the
trusted party (for computing f ), first replies to the first party with f1(x, y). Otherwise
(i.e., in case it receives only one valid input), the trusted party replies to both parties
with a special symbol ⊥.

Trusted party answers second party: In case the first party is malicious it may, de-
pending on its input and the trusted party’s answer, decide to stop the trusted party. In
this case the trusted party sends⊥ to the second party. Otherwise (i.e., if not stopped),
the trusted party sends f2(x, y) to the second party.

Outputs: An honest party always outputs the message it has obtained from the trusted
party. A malicious party may output an arbitrary (probabilistic polynomial-time com-
putable) function of its initial input and the message obtained from the trusted party.

Let f : {0, 1}∗ × {0, 1}∗ �→ {0, 1}∗ × {0, 1}∗ be a functionality, where f = ( f1, f2),
and let M̄ = (M1,M2) be a pair of non-uniform probabilistic expected polynomial-
time machines (representing parties in the ideal model). Such a pair is admissible if
for at least one i ∈ {1, 2} we have that Mi is honest (i.e., follows the honest party
instructions in the above-described ideal execution). Then the joint execution of f under
M̄ in the ideal model (on input pair (x, y)), denoted IDEAL f,M̄(x, y), is defined as the
output pair of M1 and M2 from the above ideal execution. For example, in the case
that M1 is malicious and always aborts at the outset, the joint execution is defined as
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(M1(x,⊥),⊥). Whereas, in case M1 never aborts, the joint execution is defined as
(M1(x, f1(x ′, y)), f2(x ′, y)) where x ′ = M1(x) is the input that M1 gives to the trusted
party.

Execution in the real model. We next consider the real model in which a real (two-party)
protocol is executed (and there exists no trusted third party). In this case a malicious
party may follow an arbitrary feasible strategy; that is, any strategy implementable by
non-uniform expected polynomial-time machines. In particular, the malicious party may
abort the execution at any point in time (and when this happens prematurely, the other
party is left with no output).

Let f be as above and let � be a two-party protocol for computing f . Furthermore,
let M̄ = (M1,M2) be a pair of non-uniform probabilistic expected polynomial-time
machines (representing parties in the real model). Such a pair is admissible if for at least
one i ∈ {1, 2} we have that Mi is honest (i.e., follows the strategy specified by �).
Then the joint execution of � under M̄ in the real model (on input pair (x, y)), denoted
REAL�,M̄(x, y), is defined as the output pair of M1 and M2 resulting from the protocol
interaction.

Security as emulation of a real execution in the ideal model. Having defined the ideal
and real models, we can now define security of protocols. Loosely speaking, the definition
asserts that a secure two-party protocol (in the real model) emulates the ideal model (in
which a trusted party exists). This is formulated by saying that admissible pairs in the
ideal model are able to simulate admissible pairs in an execution of a secure real-model
protocol.

Definition 6 (Security in the Malicious Model). Let f and� be as above. Protocol�
is said to securely compute f (in the malicious model) if for every pair of admissible
non-uniform probabilistic expected polynomial-time machines Ā = (A1, A2) for the real
model, there exists a pair of admissible non-uniform probabilistic expected polynomial-
time machines B̄ = (B1, B2) for the ideal model, such that

{IDEAL f,B̄(x, y)}x,y s.t. |x |=|y|
c≡ {REAL�, Ā(x, y)}x,y s.t. |x |=|y|.

We note that the above definition assumes that the parties know the input lengths (this
can be seen from the requirement that |x | = |y|). Some restriction on the input lengths
is unavoidable, see Section 2.1 of [18] for discussion.

Remark. The above definition is different from the standard definition in that the ad-
versary (in both the ideal and real models) is allowed to run in expected polynomial-
time (rather than strict polynomial-time). This seems to be inevitable given that cur-
rently known constant-round zero-knowledge proofs require expected polynomial-time
simulation.3 We note that the honest party strategies in our protocols run in strict
polynomial-time only.

3 As we have mentioned, subsequent to this work constant-round zero-knowledge arguments and arguments
of knowledge with strict polynomial-time simulation and extraction were presented in [1] and [2].
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3. Cryptographic Tools

In this section we provide (informal) definitions of perfectly binding and perfectly hiding
commitment schemes, and present the definition of zero-knowledge arguments of knowl-
edge. All the above is standard. However, Section 3.2 also contains important discussions
that we recommend not skipping (even for the familiar reader), and Section 3.3 contains a
new technical lemma that we rely on in proving the security of our coin-tossing protocol.

3.1. String Commitment

3.1.1. Perfectly Binding Commitment Schemes

Commitment schemes are a basic ingredient in many cryptographic protocols. They are
used to enable a party, known as the sender, to commit itself to a value while keeping it
secret from the receiver (this property is called hiding). Furthermore, the commitment is
binding, and thus in a later stage when the commitment is opened, it is guaranteed that the
“opening” can yield only a single value determined in the committing phase. In a perfectly
binding commitment scheme, the binding property holds even for an all-powerful sender,
while the hiding property is only guaranteed with respect to a polynomial-time bounded
receiver.

For simplicity, we present the definition for a non-interactive commitment scheme for
a single bit. String commitment can be obtained by separately committing to each bit in
the string. We denote by C(b; r) the output of the commitment scheme C upon input
b ∈ {0, 1} and using the random string r ∈R {0, 1}n (for simplicity, we assume that C
uses n random bits where n is the security parameter).

Definition 7 (Perfectly Binding Bit Commitment). A perfectly binding commitment
scheme is a probabilistic algorithm C satisfying the following two conditions:

1. Perfect Binding: C(0; r) �= C(1; s) for every r, s ∈ {0, 1}n and n ∈ N.
2. Computational Hiding: The probability ensembles {C(0;Un)}n∈N and
{C(1;Un)}n∈N are computationally indistinguishable.

Non-interactive perfectly binding commitment schemes can be constructed using any
1–1 one-way function (see Section 4.4.1 of [19]). Allowing some minimal interaction (in
which the receiver first sends a single message), almost perfectly binding commitment
schemes can be obtained from any one-way function [28].

3.1.2. Perfectly Hiding Commitment Schemes

We now informally describe the requirements for a perfectly hiding commitment scheme.
In such a scheme the binding property is guaranteed to hold only with respect to a
polynomial-time sender. On the other hand, the hiding property is unconditional. That
is, the distributions of commitments to 0 and commitments to 1 are identical, and thus
even an all-powerful receiver cannot know the value committed to by the sender. We
stress that the binding property guarantees that a cheating probabilistic polynomial-time
sender can find only one decommitment, even though decommitments to both 0 and 1
exist. See Section 4.8.2 of [19] for a full definition.
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Perfectly hiding commitment schemes can be constructed from any one-way permu-
tation [30]. However, constant-round schemes are only known to exist under seemingly
stronger assumptions; specifically that of collision-resistant hash functions [32], [13]
or families of certified clawfree functions (see Section 4.8.2.3 of [19]). (We note that
certified clawfree functions exist under the discrete-log assumption.)

3.2. Constant Round Zero-Knowledge Arguments of Knowledge

Feige and Shamir [17] show that there exist constant-round zero-knowledge arguments
(with negligible error probability) for membership in any NP-language, assuming that
there exist one-way functions. Furthermore, their argument system is actually a system
of arguments of knowledge.

We first recall the definition of zero-knowledge proof systems [23]. Below, we denote
by 〈P, V ∗〉(x) the output of V ∗ after interacting with P on common input x .

Definition 8 (Auxiliary-Input Zero-Knowledge). Let (P, V ) be an interactive proof
for a language L; denote by PL(x) the set of strings y satisfying the completeness
condition with respect to x ∈ L (i.e., Pr[〈P(yx ), V (z)〉(x) = 1] = 1 for every z ∈
{0, 1}∗). We say that (P, V ) is auxiliary-input zero-knowledge if for every probabilistic
expected polynomial-time machine V ∗, there exists a probabilistic algorithm M∗, running
in expected-time that is polynomial in its first input, so that the following two probability
ensembles are computationally indistinguishable:

1. {〈P(yx ), V ∗(z)〉(x)}x∈L ,z∈{0,1}∗ for an arbitrary yx ∈ PL(x).
2. {M∗(x, z)}x∈L ,z∈{0,1}∗

In the above definition, z represents the auxiliary information given to the verifier. Note
that whereas P and V ∗ above are interactive strategies, M∗ is a non-interactive ma-
chine. We now present the definition for arguments of knowledge (as defined in [7]
and [19]):

Definition 9 (System of Arguments of Knowledge). Let R be a binary relation and
κ: N �→ [0, 1]. We say that a probabilistic polynomial-time V is a knowledge verifier for
the relation R with knowledge error κ if the following two conditions hold:

• Non-triviality: There exists a probabilistic polynomial-time interactive machine P
so that for every (x, y) ∈ R, all possible interactions of V with P(y) on common-
input x are accepting.
• Validity (or knowledge soundness) with error κ(·): There exists a polynomial q(·)

and a probabilistic oracle machine K , called a knowledge extractor, such that for ev-
ery probabilistic expected polynomial-time machine P∗ and every x, y, r ∈ {0, 1}∗,
machine K satisfies the following condition:

Denote by p(x, y, r) the probability that V accepts, on input x , when inter-
acting with the prover specified by P∗x,y,r (where P∗x,y,r denotes the strategy
of P∗ on common-input x , auxiliary-input y and random-tape r ). Then if
p(x, y, r) > κ(|x |), then (x, K P∗x,y,r (x)) ∈ R, where K P∗x,y,r runs within an



154 Y. Lindell

expected number of steps bounded by

q(|x |)
p(x, y, r)− κ(|x |) .

The oracle machine K is called a knowledge extractor.

An interactive pair (P, V ) so that V is a knowledge verifier for a relation R and P is
a machine satisfying the non-triviality condition (with respect to V and R) is called a
system of arguments of knowledge for the relation R. The argument system (P, V ) is a
system of zero-knowledge arguments of knowledge if it is also zero-knowledge.

A remark on alternative definitions of proofs of knowledge. The definition of a proof of
knowledge used by Feige and Shamir in [17] is different from the above (specifically, it
states that the extractor runs in expected polynomial-time and the probability of success-
ful extraction is at most negligibly smaller than the probability that the verifier accepts).
However, as shown in [7], these definitions are equivalent for NP relations.

Soundness. We note that the above validity requirement implies soundness with error
of at most κ . That is, if there does not exist a y such that (x, y) ∈ R, then the probability
that the verifier accepts is at most κ . This is because no witness can be extracted (as none
exists), yet the validity requirement demands that extraction succeeds in the case that
p(x) > κ(|x |). As mentioned above, the system of arguments of Feige and Shamir [17]
is such that the error function κ is negligible.

Formally, the soundness property of interactive proofs is stated as follows: there
exists a single negligible function κ(·), such that for every probabilistic polynomial-time
(malicious) prover P∗, the probability that V accepts after interacting with P∗ upon
input x and x /∈ L , is at most κ(|x |). However, the definition of soundness used in [17]
states that for every prover P∗ there exists a (possibly different) negligible function κP∗ ,
such that the probability that the verifier accepts upon common input x /∈ L is at most
κP∗(|x |). The fact that these soundness requirements are equivalent was shown in [6].

On expected polynomial-time adversaries. The standard definition of zero-knowledge
arguments refers to strict polynomial-time verifiers. Thus, a simulator is required to
generate a transcript that is indistinguishable to a real transcript for such a verifier.
On the other hand, our definition above refers to expected polynomial-time verifiers.
This extension is needed since in our definition of secure computation, the real-model
adversary in a two-party protocol is allowed to run in expected polynomial-time. In the
protocol simulation, this adversary plays the verifier and we must therefore be able to
simulate the zero-knowledge protocol when the verifier runs in expected (rather than
strict) polynomial-time. This is not immediate. In fact, in the Appendix we show that
there exist expected polynomial-time verifiers for which the simulator for the protocol
of [20] runs for an exponential number of steps. Thus, the zero-knowledge property of
the protocol of [20] seems not to hold for expected polynomial-time verifiers (we do not
know how to “fix” the simulator of [20] so that it does succeed for such verifiers). A
similar issue arises with respect to extraction from an expected polynomial-time prover.
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In the Appendix we show that the simulator (resp., extractor) of the zero-knowledge
arguments of knowledge of [17] does run in expected polynomial-time for any expected
polynomial-time verifier (resp., prover). Thus, we can use the argument system of [17]
in our protocols, where security must be guaranteed against expected polynomial-time
adversaries. See the Appendix for a detailed treatment of this issue.

Perfect zero-knowledge arguments. A perfect zero-knowledge argument is one for
which there exists a simulator that generates a transcript that is identically distributed to
the transcript of a real proof (and not just computationally indistinguishable). Constant-
round perfect zero-knowledge arguments and arguments of knowledge can be constructed
using families of clawfree functions or any perfectly hiding string commitment [10], [17].

3.3. Proofs of Knowledge as Sub-Protocols: a Useful Lemma

Zero-knowledge proofs (or arguments) of knowledge are often used as sub-protocols
within larger protocols. The property desired by the use of a proof of knowledge in such
a scenario is that a simulator can run the extractor for the proof of knowledge and thus
obtain some secret information. This secret information is then used in order to simulate
the rest of the larger protocol.

However, a technical problem arises when using a proof of knowledge in such a way.
In order to illustrate this problem, consider a two-party protocol consisting of a number
of stages. In one of the stages, party A provides a proof of knowledge of some witnessw
to party B. Then, in the proof of security, a simulator S needs to simulate A’s view and as
part of this simulation, it must extract the witnessw. The natural way to construct such a
simulator is to simply have it run the knowledge extractor at the appropriate point, thus
obtaining w. However, S needs to simulate A’s entire view and this includes A’s view
within the proof of knowledge. (Recall that by the definition of proofs of knowledge,
the extractor only outputs a witness and not a view of the execution.4) Therefore, in
order to obtain both A’s view within the proof of knowledge and the witness, S works
as follows.

First, S verifies the proof given by A, by playing the honest verifier. Then, if the proof is
rejected, S halts (exactly as party B in a real interaction with A would). On the other hand,
if S accepts the proof, it proceeds by running the extractor for the proof of knowledge
in order to obtain w. In this way, S obtains both A’s view in the proof (from the initial
verification) and the witness (from the extraction). Now, let p denote the probability that
A convinces the verifier in the proof of knowledge. Then, by the definition of proofs of
knowledge (Definition 9), there exists an extractor K and a negligible function κ (this
is the knowledge-error function) such that if p > κ , then K successfully obtains the
witness w within an expected number of steps bounded by poly/(p − κ). Since the
simulator runs the extractor with probability p (i.e., only when the proof is accepted),
we have that the overall expected running-time of the simulator is poly · p/(p− κ). This
brings us to the problem: the function p/(p − κ) may not be polynomial (for example,
if κ = 2−n/2 and p = 2−n/2 + 2−n , then p/(p − κ) ≈ 2n/2).

4 This technicality is especially annoying since all known extraction procedures do indeed generate such a
view. However, since it is not required by the definition, they do not output it.
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This technical difficulty was solved by Goldreich and Kahan in [20] and therefore there
is no inherent problem here. However, their techniques are complex and thus applying
them every time we wish to use a proof of knowledge as a sub-protocol is cumbersome.
Our goal here is therefore to present a general lemma that will enable the use of proofs
of knowledge as sub-protocols without requiring any complicated analysis. Rather, the
analysis (indeed using the techniques of [20]) is needed only once in proving the lemma
(established below).

Witness-extended emulation. Loosely speaking, the lemma below states that if there
exists a proof of knowledge with a knowledge extractor K (by Definition 9), then there
exists an expected polynomial-time witness-extended emulator5 E who outputs the in-
formation required by the simulator to continue the simulation of the larger protocol.
That is, E outputs the following two items:

1. The honest verifier’s view of an execution of the proof of knowledge with the
specified prover. (Recall that a party’s view contains the contents of its input,
auxiliary input and random tape, along with the transcript of messages that it sees
during the execution.)

2. The witness for the statement being proved in the proof of knowledge (in the case
that the above verifier view is accepting).

We note that given such a lemma, simulation in the context of secure computation as
described above is simple. The simulator S runs the witness-extended emulator E at the
appropriate point and obtains the verifier’s view v and (possibly) the secret witness w.
Simulator S can then compute from v whether or not the proof was accepting: if not,
then S halts. Otherwise, S has the witnessw and can continue the simulation. In order to
do this, it computes the transcript of messages tpok that the prover would receive in this
execution (such a transcript can easily be computed from v). Then it feeds the prover
with these messages and continues the simulation of the rest of the protocol, as required.
We note that since E runs in expected polynomial-time, the overall running-time of S is
also expected polynomial-time.

Notation. Recall that P∗x,y,r denotes the strategy of P∗ upon common-input x , auxiliary-

input y and random-tape r . We denote by view
P∗x,y,r
V (x) a random variable describing the

view of the honest verifier V in an execution of the proof of knowledge with P∗x,y,r
(this random variable depends only on the coins of V ). Furthermore, let acceptV (·) be a
(deterministic) function that takes a specific verifier view, and outputs 1 if and only if V
accepts in the proof execution in which this is its view.

We are now ready to present the definition:

Definition 10 (Witness-Extended Emulator). Let R be a binary relation and let (P, V )
be an interactive proof system. Consider a probabilistic expected polynomial-time ma-

5 We chose to call this machine a “witness-extended emulator” due to the fact that the main goal is emulation
and the witness extraction is a tool used to accomplish this goal.
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chine E that is given input x and access to the oracle P∗x,y,r . Let E
P∗x,y,r
1 (x) and E

P∗x,y,r
2 (x)

denote the random variables representing the first and second elements of the output
of E , respectively. We say that E is a witness-extended emulator for (P, V ) and R if
for every interactive function P∗, every x, y, r ∈ {0, 1}∗, every polynomial p(·) and all
sufficiently large x’s:

1. E1 outputs the distribution of V ’s view in a real execution with P∗x,y,r . That is,

{
E

P∗x,y,r
1 (x)

}
x,y,r
≡ {

view
P∗x,y,r
V (x)

}
x,y,r

.

2. The probability that V ’s view (as output by E1) is accepting, and yet E2 does not
output a correct witness, is negligible. That is,

Pr[acceptV (E
P∗x,y,r
1 (x)) = 1 & (x, E

P∗x,y,r
2 (x)) /∈ R] <

1

p(|x |) .

As we have mentioned above, the aim of this section is to prove the existence of a
witness-extended emulator for any proof of knowledge. That is,

Lemma 3.1 (Witness-Extended Emulation Lemma). Let R be a binary relation and
let (P, V ) be a proof of knowledge for R with negligible knowledge error. Then there
exists a witness-extended emulator E for (P, V ) and R.

Proof. Let P∗x,y,r be an arbitrary prover strategy and let x be the common-input (i.e.,
P∗ is proving that it knows w such that (x, w) ∈ R). We construct a witness-extended
emulator E as follows: E works in a similar manner as described in the motivating
discussion above. That is, E first verifies the proof from P∗x,y,r by playing the role of
the honest verifier. Following this step, E can already define its first output. That is, let
rV be the coins used by E in the verification of the proof from P∗x,y,r . Furthermore, let
t equal the transcript of messages received by V in the proof execution between P∗x,y,r
and V (who has random-tape rV ). Then E defines V ’s view as E1 = (x, rV , t). It is clear
that the output of E1 is distributed exactly like that of the honest verifier’s view (when
interacting with P∗x,y,r ). Therefore, at this point, item 1 of Definition 10 is fulfilled.

Now, if the above proof is rejected by E (i.e., if acceptV (E1) = 0), then E outputs the
pair (E1,⊥) and halts. In this case there is no requirement that E outputs a witness and
this is therefore sufficient. Otherwise, if the proof is accepting (i.e., if acceptV (E1) = 1),
then E proceeds to attempt extraction of the witness. However, as described above, the
naive approach of simply running the extractor K for the proof of knowledge (P, V )
may result in E not being expected polynomial-time.

This problem is solved by ensuring that the extractor never runs “too long”. Specifi-
cally, as in [20], E first estimates the value of p(x, y, r), where p(x, y, r) denotes the
probability that P∗x,y,r successfully proves that it knows a witnessw such that (x, w) ∈ R.
This is done by repeating the verification until a fixed polynomial number, denoted
q ′(|x |), of successful verifications occur. By choosing q ′(·) to be large enough, it is
possible to obtain an estimate p̃ such that with overwhelming probability p̃ is within
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a constant factor of p(x, y, r). We set q ′ so that the probability that p̃ is not within a
constant factor of p is at most 2−n2

.
Next, E runs the extractor K and answers all of K ’s oracle queries with the oracle

P∗x,y,r . However, E limits the number of steps taken by K to q ′′(|x |)/ p̃ steps, for some
fixed polynomial q ′′(·) (note that a call to the oracle P∗x,y,r is counted as a single step).
If within this time K outputs a witness w, then E outputs the pair (E1, w) (where E1

is the value generated above). (We note that E does not need to check if w is a valid
witness because by the definition of K , it only outputs valid witnesses.) However, if
after this time, the extractor has not output a witness, then E halts and outputs the pair
(E1, time-out). Once again, by choosing q ′′(·) to be large enough, we can ensure that the
probability that E outputs time-out is negligible and thus the probability that the initial
verification of the proof succeeded, yet E does not output a valid witness, is negligible.

In addition to the above, E keeps a count of the overall running time of K and if it
reaches 2n steps, then it halts outputting the pair (E1, time-out). (This additional time-out
is needed to ensure that E does not run too long in the case that the estimate p̃ is not
within a constant factor of p(x, y, r). Recall that this “bad event” can only happen with
probability 2−n2

.)
We first claim that E runs in expected polynomial-time.

Claim 3.2. The emulator E runs in expected-time that is polynomial in |x |.

Proof. Recall that E initially verifies the proof provided by P∗x,y,r . Since E merely plays
an honest verifier, this takes a strict polynomial number of steps. Next, E obtains an es-
timate p̃ of p(x, y, r). This involves repeating the verification until q ′(|x |) successes are
obtained. Therefore, the expected number of repetitions equals exactly q ′(|x |)/p(x, y, r)
(since the expected number of trials for a single success is 1/p(x, y, r)). After the es-
timation p̃ has been obtained, E runs the extractor K for a maximum of q ′′(|x |)/ p̃
steps.

Given the above, we are ready to compute the expected running-time of E . In order to
do this, we differentiate between two cases. In the first case we consider what happens
if p̃ is not within a constant factor of p(x, y, r). The only thing we can say about E’s
running-time in this case is that it is bound by 2n (since this is an overall bound on its
running-time). However, since this event happens with probability at most 2−n2

, this case
adds only a negligible factor to the overall expected running-time. We now consider the
second case, where p̃ is within a constant factor of p(x, y, r). In this case we can bound
the expected running-time of E by

p(x, y, r) ·
(

q ′(|x |)
p(x, y, r)

+ q ′′(|x |)
p̃

)
= poly(|x |) · p(x, y, r)

p̃
= poly(|x |)

and this concludes the analysis.

As we have mentioned above, E’s first output E1 is distributed exactly as required
by Definition 10. Therefore, it remains to show that the probability that P∗’s proof is
accepting and yet E does not output a valid witness, is negligible. Notice that whenever
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P∗’s proof is accepting, E runs the extractor K and either obtains a proper witness w or
it outputs time-out. That is, in the case of accepting proofs, if E does not output time-out,
then it outputs a proper witness. Therefore, it suffices to show that the probability that
E outputs time-out is negligible.

Claim 3.3. The probability that E outputs the time-out symbol is a negligible function
in |x |.

Proof. Notice that the probability that E outputs time-out is less than or equal to
the probability that the extractor K does not succeed in outputting a witness w within
q ′′(|x |)/ p̃ steps plus the probability that E runs for 2n steps.

We first claim that the probability that E runs for 2n steps is negligible. We have
already shown in Claim 3.2, that E runs in expected polynomial-time. Therefore, the
probability that an execution will deviate so far from its expectation and run for 2n steps
is negligible. (It is enough to use Markov’s inequality to establish this fact.)

We now continue by considering the probability that the extractor K does not output
a witness within q ′′(|x |)/ p̃ steps. Consider the following two possible cases (recall that
p(x, y, r) equals the probability that P∗x,y,r succeeds in proving the proof, and that κ is
the negligible knowledge-error function of the proof system):

1. Case 1: p(x, y, r) ≤ 2κ(|x |): In this case, P∗ succeeds in proving the proof with
only negligible probability. This means that the probability that E even reaches
the stage that it runs K is negligible (and thus E outputs time-out with negligible
probability only).

2. Case 2: p(x, y, r) > 2κ(|x |): In this case, by the definition of proofs of knowledge,
there exists a fixed polynomial q such that K outputs a witness within an expected
number of steps bounded by q(|x |)/(p(x, y, r)−κ(|x |)). Then, since p(x, y, r) >
2κ(|x |), it holds that the expected number of steps required by K is less than
2q(|x |)/p(x, y, r). Now, assuming that p̃ is within a constant factor of p(x, y, r),
we have that for an appropriate choice of the polynomial q ′′, the probability that
K does not output a witness within q ′′(|x |)/ p̃ = O(q ′′(|x |))/p(x, y, r) steps is
negligible. On the other hand, the probability that p̃ is not within a constant factor of
p(x, y, r) is also negligible. Putting this together, we have that E outputs time-out
with negligible probability only.

This completes the proof of the lemma.

3.3.1. On Expected Polynomial-Time Provers

We proved the witness-extended emulation lemma for E who is given oracle access to an
arbitrary prover strategy P∗. However, in some contexts (like in secure computation), P∗

runs in polynomial-time (or expected polynomial-time) and the running-time of P∗ must
be included in the analysis of the overall running-time of E . This is a non-issue in the case
that P∗ runs in strict polynomial-time, because we can simply multiply E’s running-time
by a single polynomial. However, in the case that P∗ runs in expected polynomial-time,
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we must ensure that E remains expected polynomial-time. This extension must therefore
be dealt with when considering expected polynomial-time adversaries (as is the case in
this work). The only place that this arises in the proof of Lemma 3.1 is in Claim 3.2 (i.e.,
when analyzing the running-time of E).

We therefore reprove Claim 3.2 here for the case that P∗ is an expected polynomial-
time machine. Before proceeding, we note that in this context, it does not make sense
to consider a prover P∗x,y,r with fixed randomness. This is because the expectation with
respect to P∗’s running-time is taken over its random-tape r as well.6 Thus, we modify
E so that it first chooses a random-tape r for P∗x,y . This then defines the prover P∗x,y,r , and
E continues as described above. We consider extractors who receive P∗x,y,r and whose
expected running-time is polynomial, when the expectation is both over its own coins
and the choice of r . Furthermore, we include the running-time of P∗x,y,r in the running-
time of the extractor. We say that such an extractor “remains expected polynomial-time
when including the running-time of an expected polynomial-time prover P∗”. We note
that in the Appendix, we show that such extractors exist (in particular, the extractor of
the zero-knowledge arguments of knowledge of [17]).

Claim 3.4 (Claim 3.2—restated). If K remains expected polynomial-time when in-
cluding the running-time of an expected polynomial-time prover P∗, then E also remains
expected polynomial-time when including the running-time of an expected polynomial-
time prover P∗.

Proof. Recall that E first verifies the proof from P∗x,y,r and if it is accepting then
repeats the verification until q ′(|x |) successes (i.e., accepting executions) are obtained.
Following this, E runs the knowledge extractor K (while limiting its running-time). By
the assumption that K remains expected polynomial-time in this setting, it is enough
to analyze the running-time of the first stage of E . We stress that in each verification
of the first stage of the emulation, the emulator E (playing the verifier) uses new and
independent randomness, whereas P∗x,y’s randomness is fixed to r . In Claim A.1, we
show that the expected running-time for obtaining a single success in such a scenario, is
1/p(x, y, r) times the expected running-time of P∗x,y,r (where the expectation is taken
over K ’s coins). Therefore, by the linearity of expectations, the expected running-time
for obtaining q ′(|x |) successes equals q ′(|x |)/p(x, y, r) times the expected running-
time of P∗x,y,r . By continuing as in the analysis of Claim 3.2, we obtain that E concludes
the first stage in an expected number of steps bounded by poly(|x |) times the expected
running-time of P∗x,y,r . We conclude by noticing that since P∗x,y’s random-tape r is chosen
uniformly, the overall expected running-time of E (where the expectation is also over
the choice of r ) is bounded by poly(|x |) times the expected running-time of P∗x,y , as
required.

6 We stress that for a fixed r , the machine P∗x,y,r may not be polynomial-time. For example, consider a
prover which runs in strict polynomial-time except when its random-tape equals a single random string r , in
which case it runs for 2|r | steps. Clearly, P∗x,y runs in expected polynomial-time. However, the machine P∗x,y,r
with fixed random-tape r , runs for an exponential number of steps.



Parallel Coin-Tossing and Constant-Round Secure Two-Party Computation 161

4. Two-Party Computation Secure against Malicious Adversaries

4.1. The Compiler of Goldreich et al. [24]

Goldreich et al. [24] showed that, assuming the existence of trapdoor permutations, there
are secure protocols (in the malicious model) for any multi-party functionality. Their
methodology works by first presenting a protocol secure against semi-honest adversaries.
Next, a compiler is applied that transforms any protocol secure against semi-honest
adversaries into a protocol secure against malicious adversaries. Thus, their compiler
can also be applied to the constant-round two-party protocol of Yao [33] (as it is secure
against semi-honest adversaries). However, as we shall see, the output protocol has a
polynomial number of rounds, and in particular is not constant-round. In this section we
describe the compiler of [24] and show what should be modified in order to obtain a
constant-round compiler instead.

Enforcing semi-honest behavior. The GMW compiler takes for input a protocol secure
against semi-honest adversaries; from here on we refer to this as the “basic protocol”.
Recall that this protocol is secure in the case that each party follows the protocol specifi-
cation exactly, using its input and uniformly chosen random tape. Thus, in order to obtain
a protocol secure against malicious adversaries, we need to enforce potentially malicious
parties to behave in a semi-honest manner. First and foremost, this involves forcing the
parties to follow the prescribed protocol. However, this only makes sense relative to a
given input and random tape. Furthermore, a malicious party must be forced into using
a uniformly chosen random tape. This is because the security of the basic protocol may
depend on the fact that the party has no freedom in setting its own randomness.7

An informal description of the GMW compiler. In light of the above discussion, the
compiler begins by having each party commit to its input. Next, the parties run a coin-
tossing protocol in order to fix their random tapes (clearly, this protocol must be secure
against malicious adversaries). A regular coin-tossing protocol in which both parties
receive the same uniformly distributed string is not sufficient here. This is because the

7 A clear example of this is the semi-honest 1-out-of-k Oblivious Transfer protocol of [14] (see Construc-
tion 2.2.5 in [18]). The oblivious transfer functionality is defined by ((b1, . . . , bk), i) �→ (λ, bi ). In the [14]
protocol, the receiver gives the sender k images of a trapdoor permutation, where the receiver knows only the
i th pre-image. The protocol works so that the receiver obtains bj if it knows the j th pre-image (and otherwise
he learns nothing of the value of bj ). Thus, were the receiver to know more than one of the k pre-images, it
would learn more than a single bi , in contradiction to the security of the protocol. Now, if the receiver can
“alter” its random tape, then it can influence the choice of the images of the permutation so that it knows more
than one pre-image. Thus, the fact that the receiver uses a truly random tape is crucial to the security.

We mention that the above weakness is not a peculiarity of the above specific protocol, and, in fact, any
protocol secure in the face of semi-honest adversaries can be modified so that it is still “semi-honest” secure,
yet is completely breakable in the case that the adversary can fix its own randomness. In order to see this,
consider the following addition to the beginning of some semi-honest protocol. One of the parties (say Party 1)
randomly chooses an n-bit string. Then, if the string is all zeros, it asks Party 2 for its input (and Party 2
complies). Otherwise, the parties continue with the original protocol. Since a semi-honest adversary cannot
fix its own randomness (and cannot request Party 2’s input if the random string is not all zeros), the modified
protocol is still secure. On the other hand, if Party 1 is adversarial and can fix its own randomness, then it can
obtain Party 2’s input, in contradiction to the security requirements.
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parties’ random tapes must remain secret. This is solved by augmenting the coin-tossing
protocol so that one party receives a uniformly distributed string (to be used as its random
tape) and the other party receives a commitment to that string. Now, following these two
steps, each party holds its own uniformly distributed random-tape and a commitment
to the other party’s input and random-tape. Therefore, each party can be “forced” into
working consistently with the committed input and random-tape.

We now describe how this behavior is enforced. A protocol specification is a deter-
ministic function of a party’s view consisting of its input, random tape and messages
received so far. As we have seen, each party holds a commitment to the input and ran-
dom tape of the other party. Furthermore, the messages sent so far are public. Therefore,
the assertion that a new message is computed according to the protocol is of the NP
type (and the party sending the message knows an adequate NP-witness to it). Thus,
the parties can use zero-knowledge proofs to show that their steps are indeed according
to the protocol specification. As the proofs used are zero-knowledge, they reveal noth-
ing. On the other hand, due to the soundness of the proofs, even a malicious adversary
cannot deviate from the protocol specification without being detected. We thus obtain a
reduction of the security in the malicious case to the given security of the basic protocol
against semi-honest adversaries.

In summary, the components of the compiler are as follows (from here on “secure”
refers to security against malicious adversaries):

1. Input Commitment: In this phase the parties execute a secure protocol for the
following functionality:

((x, r), 1n) �→ (λ,C(x; r)),

where x is the party’s input string (and r is the randomness chosen by the commit-
ting party).

A secure protocol for this functionality involves the committing party sending
C(x; r) to the other party followed by a zero-knowledge proof of knowledge of
(x, r). Informally, this functionality ensures that the committing party “knows” the
value being committed to.

2. Coin Generation: The parties generate t-bit long random tapes (and correspond-
ing commitments) by executing a secure protocol in which one party receives a
commitment to a uniform string of length t and the other party receives the string
itself (to be used as its random tape) and the decommitment (to be used later for
proving “proper behavior”). That is, the parties compute the functionality:

(1n, 1n) �→ ((Ut ,Ut ·n),C(Ut ;Ut ·n))

(where we assume that to commit to a t-bit string, C requires t · n random bits).
3. Protocol Emulation: In this phase the parties run the basic protocol whilst proving

(in zero-knowledge) that their steps are consistent with their input string, random
tape and prior messages received.

A detailed description of each phase of the compiler and a full proof that the resulting
protocol is indeed secure against malicious adversaries can be found in [18].
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4.2. Achieving Round-Preserving Compilation

As we have mentioned, our aim in this work is to show that the GMW compiler can be
implemented so that the number of rounds in the resulting compiled protocol is within a
constant factor of the number of rounds in the original semi-honest protocol. We begin
by noting that using currently known constructions, Phases 1 and 3 of the GMW compiler
can be implemented in a constant number of rounds. That is,

Proposition 4.1. Assuming the existence of one-way functions, both the input-commit-
ment and protocol-emulation phases can be securely implemented in a constant number
of rounds.

First consider the input-commitment phase. As mentioned above, this phase can be
securely implemented by having the committing party send a perfectly binding commit-
ment of its input to the other party, followed by a zero-knowledge proof of knowledge
of the committed value. Both constant-round commitment schemes and constant-round
zero-knowledge arguments of knowledge are known to exist by the works of Naor [28]
and Feige and Shamir [17], respectively (these constructions can also be based on any
one-way function). Thus the input-commitment phase can be implemented as required
for Proposition 4.1.8 Next, we recall that a secure implementation of the protocol emu-
lation phase requires zero-knowledge proofs for NP only. Thus, once again, using the
argument system of [17], this can be implemented in a constant number of rounds (using
any one-way function).

Constant-round coin tossing. In contrast to the input-commitment and protocol-emula-
tion phases of the GMW compiler, known protocols for tossing polynomially many coins
do not run in a constant number of rounds. Rather, single coins are tossed sequentially
(and thus poly(n) rounds are needed). In particular, the proof of [18] does not extend to
the case that many coins are tossed in parallel. Thus, in order to obtain a round-preserving
compiler, it remains to present a secure protocol for the coin-generation functionality
that works in a constant number of rounds. Furthermore, it is preferable to base this
protocol on the existence of one-way functions only (so that this seemingly minimal
assumption is all that is needed for the entire compiler). In the next section we present
such a coin-tossing protocol, thereby obtaining Theorem 2 (as stated in the Introduction).

4.3. Constant-Round Secure Computation

Recall that according to Yao [33], assuming the existence of trapdoor permutations, any
two-party functionality can be securely computed in the semi-honest model in a constant-
number of rounds. Thus, applying the constant-round compiler of Theorem 2 to Yao’s
protocol, we obtain a constant-round protocol that is secure in the malicious model, and

8 We note that the protocol for the commit-functionality, as described in [18], is for a single-bit only (and
thus the compiler there runs this protocol sequentially for each bit of the input). However, the proof for the
commit-functionality remains almost identical when the functionality is extended to commitments of poly(n)-
bit strings (rather than for just a single-bit). Alternatively, using the witness-extended emulation lemma of
Section 3.3, a simple proof of the security of this protocol can be obtained.
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prove Theorem 3. That is, assuming the existence of trapdoor permutations, any two-party
functionality can be securely computed in the malicious model in a constant-number of
rounds.

5. The Augmented Coin-Tossing Protocol

In this section we present our coin-tossing protocol, thus proving Theorem 1.

5.1. The Augmented Coin-Tossing Functionality

In a basic coin-tossing functionality, both parties receive identical uniformly distributed
strings. That is, the functionality is defined as: (1n, 1n) �→ (Um,Um) for some m =
poly(n). This basic coin-tossing is augmented as follows. Let F be any deterministic
function. Then define the augmented coin-tossing functionality by

(1n, 1n) �→ (Um, F(Um)).

That is, the first party indeed receives a uniformly distributed string. However, the second
party receives F applied to that string (rather than the string itself). Setting F to the
identity function, we obtain basic coin-tossing. However, recall that the coin-generation
component of the GMW compiler requires the following functionality:

(1n, 1n) �→ ((Ut ,Ut ·n),C(Ut ;Ut ·n)),

where C is a commitment scheme (and we assume that C requires n random bits for
every bit committed to).9 Then this functionality can be realized with our augmentation
by setting m = t + t · n and F(Um) = C(Ut ;Ut ·n). Thus, the second party receives a
commitment to a uniformly distributed string of length t and the first party receives the
string and its decommitment. Recall that in the compiler, the party uses the t-bit string
as its random tape and the decommitment in order to prove in zero-knowledge that it is
acting consistently with this random tape (and its input).

5.2. Motivating Discussion

In order to motivate our construction of a constant-round coin-tossing protocol, we
consider the special case of basic coin-tossing (i.e., where F is the identity function). A
natural attempt at a coin-tossing protocol follows:

Protocol 1 (Attempt at Basic Coin-Tossing).

1. Party 1 chooses a random string s1 ∈R {0, 1}m and sends c = Commit(s1) =
C(s1; r) for a random r .

2. Party 2 chooses a random string s2 ∈R {0, 1}m and sends it to Party 1.
3. Party 1 decommits to s1 sending the pair (s1, r).

9 There are other ways of defining this functionality that suffice for the GMW compiler. However, we chose
the exact functionality defined by Goldreich in [18] because we rely on his proof of security of the GMW
protocol.
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4. Party 1 always outputs s
def= s1 ⊕ s2, whereas Party 2 outputs s1 ⊕ s2 if Party 1’s

decommitment is correct and ⊥ otherwise.

We note that when m = 1 (i.e., a single bit), the above protocol is the basic coin-tossing
protocol of Blum [8] (a rigorous proof of the security of this protocol can be found in [18]).
However, here we are interested in a parallelized version where the parties attempt to
generate simultaneously an m-bit random string (for any m = poly(n)). Intuitively, due
to the secrecy of the commitment scheme, the string s2 chosen by (a possibly malicious)
Party 2 cannot be dependent on the value of s1. Thus if s1 is chosen uniformly, the
resulting string s = s1 ⊕ s2 is close to uniform. On the other hand, consider the case
that Party 1 may be malicious. Then, by the protocol, Party 1 is committed to s1 before
Party 2 sends s2. Thus, if s2 is chosen uniformly, the string s = s1 ⊕ s2 is uniformly
distributed. We note that due to the binding property of the commitment scheme, Party 1
cannot alter the initial string committed to. We conclude that neither party is able to bias
the output string.

However, the infeasibility of either side to bias the resulting string is not enough to
show that the protocol is secure. This is because the definition of secure computation
requires that the protocol simulates an ideal execution in which a trusted third party
chooses a random string s and gives it to both parties. Loosely speaking, this means that
there exists a simulator that works in the ideal model and simulates an execution with a
(possibly malicious) party such that the joint output distribution (in this ideal scenario)
is indistinguishable from when the parties execute the real protocol.

Protocol 4 seems not to fulfill this more stringent requirement. That is, our problem in
proving the security of Protocol 4 is with constructing the required simulator. The main
problem that occurs is regarding the simulation of Party 2.

Simulating a malicious Party 2. The simulator receives a uniformly distributed string
s from the trusted party and must generate an execution consistent with s. That is, the
commitment c = C(s1) given by the simulator to Party 2 must be such that s1 ⊕ s2 = s
(where s2 is the string sent by Party 2 in Step 2 of the protocol). However, s1 is chosen
and fixed (via a perfectly binding commitment) before s2 is chosen by Party 2. Since
the commitment is perfectly binding, even an all-powerful simulator cannot “cheat” and
decommit to a different value. This problem is compounded by the fact that Party 2 may
choose s2 based on the commitment received to s1 (by say invoking a pseudorandom
function on c). Therefore, rewinding Party 2 and setting s1 to equal s⊕s2 will not help (as
s2 will change and thus once again s1⊕ s2 will equal s with only negligible probability).
We note that this problem does not arise in the single-bit case as there are only two
possible values for s2 and thus the simulator succeeds with probability 1/2 each time.

A problem relating to abort. The above problem arises even when the parties never
abort. However, another problem in simulation arises due to the ability of the parties to
abort. In particular, simulation of Party 1 in Protocol 4 is easy assuming that Party 1 never
aborts. On the other hand, when Party 1’s abort probability is unknown (and specifically
when it is neither negligible nor noticeable), we do not know how to construct a simulator
that does not skew the real probability of abort in the simulated execution. Once again,
this problem is considerably easier in the single-bit case since Party 1’s decision of
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whether or not to abort is based on only a single bit sent by Party 2 in Step 2 of the
protocol.

We note that basic coin-tossing is a special case of the augmented coin-tossing func-
tionality. Thus, the same problems (and possibly others) must be solved in order to obtain
an augmented coin-tossing protocol. As we will show, our solutions for these problems
are enough for the augmented case as well.

5.3. The Actual Protocol

Before presenting the protocol itself, we discuss how we solve the problems described
in the above motivating discussion.

• Party 1 is malicious: As described, when Party 1 is malicious, the problem that
arises is that of aborting. In particular, Party 1 may decide to abort depending
on the string s2 sent to it by Party 2. This causes a problem in ensuring that the
probability of abort in the simulation is negligibly close to that in a real execution.
This is solved by having Party 1 send a proof of knowledge of s1 after sending the
commitment. Then the simulator can extract s1 from the proof of knowledge and
can send s2 = s1 ⊕ s (where s is the string chosen by the trusted party) without
waiting for Party 1 to decommit in a later step.
• Party 2 is malicious: As described, the central problem here is that Party 1 must

commit itself to s1 before s2 is known (yet s1 ⊕ s2 must equal s). This cannot
be solved by rewinding because Party 2 may choose s2 based on the commitment
to s1 that it receives (and thus changing the commitment changes the value of
s2). We solve this problem by not having Party 1 decommit at all; rather, it sends
s = s1 ⊕ s2 (or F(s1 ⊕ s2) in the augmented case) and proves in zero-knowledge
that the value sent is consistent with its commitment and s2. Thus, the simulator
(who can generate proofs to false statements of this type) is able to “cheat” and
send s (or F(s)) irrespective of the real value committed to in Step 1.10

This technique of not decommitting, but rather revealing the committed value and
proving (in zero-knowledge) that this value is correct, is central to our simulation
strategy. Specifically, it enables us to “decommit” to a value that is unknown at the
time of the commitment. (As we have mentioned, in order for the simulation to
succeed, Party 2 must be convinced that the commitment of Step 1 is to s1, where
s1 ⊕ s2 = s. However, the correct value of s1 is only known to the simulator after
Step 2.)

We now present our constant-round protocol for the augmented secure coin-tossing
functionality: (1n, 1n) �→ (Um, F(Um)), for m = poly(n). For the sake of simplicity,
our presentation uses a non-interactive commitment scheme (which is easily constructed
given any 1–1 one-way function). However, the protocol can easily be modified so that
an interactive commitment scheme is used instead (in particular, the two-round scheme
of Naor [28], which is based on any one-way function).

10 In general, nothing can be said about a simulated proof of a false statement. However, in the specific case
of statements regarding commitment values, proofs of false statements are indistinguishable from proofs of
valid statements. This is due to the hiding property of the commitment scheme.
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Protocol 2 (Augmented Parallel Coin-Tossing).

1. Party 1 chooses s1 ∈R {0, 1}m and sends c = C(s1; r) for a random r to Party 2
(using a perfectly binding commitment scheme).

2. Party 1 proves knowledge of (s1, r) with a (constant round) zero-knowledge argu-
ment of knowledge with negligible error. If the proof fails, then Party 2 aborts with
output ⊥.

3. Party 2 chooses s2 ∈R {0, 1}m and sends s2 to Party 1.
4. If until this point Party 1 received an invalid message from Party 2, then Party 1

aborts, outputting ⊥.
Otherwise, Party 1 sends y = F(s1 ⊕ s2).

5. Party 1 proves to Party 2 using a (constant round) zero-knowledge argument that
there exists a pair (s1, r) such that c = C(s1; r) and y = F(s1⊕s2) (that is, Party 1
proves that y is consistent with c and s2).11 If the proof fails, then Party 2 aborts
with output ⊥.

6. Output:
• Party 1 outputs s1 ⊕ s2 (even if Party 2 fails to complete the verification of the

proof in Step 5 correctly).12

• Party 2 outputs y.

Round complexity. Using the constant-round zero-knowledge argument system of Feige
and Shamir [17] and the constant-round commitment scheme of Naor [28], Protocol 2
requires a constant number of rounds only. We stress that the argument system of [17]
is also an argument of knowledge.

Sufficient assumptions. All the components of Protocol 2 can be implemented using
one-way functions. In particular, the string commitment of Naor [28] can be used (this
requires an additional pre-step in which Party 2 sends a random string to Party 1; however,
this step is of no consequence to the proof). Furthermore, the zero-knowledge argument
of knowledge of [17] can be used in both Steps 2 and 5. Since both the [28] and [17]
protocols only assume the existence of one-way functions, this is the only assumption
required for the protocol.

Theorem 11. Assuming the existence of one-way functions, Protocol 2 is a secure
protocol for augmented parallel coin-tossing.

11 It may appear that the reason that Party 1 does not decommit to c is due to the fact that Party 2 should only
learn F(s), and not s itself (if Party 1 decommits, then s is clearly revealed). Following this line of thinking, if
F was the identity function, then Steps 4 and 5 could be replaced by Party 1 sending the actual decommitment.
However, we stress that we do not know how to prove the security of such a modified protocol. The fact that
Party 1 does not decommit, even when F is the identity function, is crucial to our proof of security.

12 Recall that the definition of secure computation enables either party to abort before any output is received.
However, only Party 1 is able to abort once it receives its output. We therefore prevent Party 2 from aborting
after Step 4 (where it receives its output) by instructing Party 1 to output s1 ⊕ s2 irrespective of Party 2’s
actions from this point on.
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Proof. We need to show how to transform efficiently any admissible pair of machines
(A1, A2) for the real model into an admissible pair of machines (B1, B2) for the ideal
model. We denote the trusted third party by T , the coin-tossing functionality by f and
Protocol 2 by �. We first consider the case that A1 is adversarial.

Lemma 5.1. Let (A1, A2) be a pair of probabilistic expected polynomial-time ma-
chines for the real model in which A2 is honest. Then there exists a pair of probabilistic
expected polynomial-time machines (B1, B2) for the ideal model in which B2 is honest,
such that

{IDEAL f,B̄(1
n, 1n)}n∈N

c≡ {REAL�, Ā(1
n, 1n)}n∈N.

Proof. In this case the second party is honest and thus B2 is determined. We now
transform the real-model adversary A1 into an ideal-model adversary B1, where the
transformation is such that B1 uses black-box access to A1. Specifically, B1 chooses a
uniform random tape, denoted R, for A1 and invokes A1 on input 1n and random tape
R. Once the input and random tape are fixed, A1 is a deterministic function of messages
received during a protocol execution. Thus A1(1n, R, m̄) denotes the message sent by
A1 with input 1n , random-tape R and sequence m̄ of incoming messages to A1.

The transformation works by having B1 emulate an execution of A1, while playing
A2’s role. Machine B1 does this when interacting with the trusted third party T and
its aim is to obtain an execution with A1 that is consistent with the output received
from T . Therefore, B1 has both external communication with T and “internal” emulated
communication with A1. Machine B1 works as follows:

1. The ideal adversary B1 chooses a uniformly distributed random tape R for the real
adversary A1, invokes the function A1(1n, R) and obtains c (where c is supposed to
equal C(s1; r) for some s1 ∈ {0, 1}m , and C is the perfectly binding commitment
scheme specified in the protocol).

2. B1 runs the witness-extended emulator E guaranteed by Lemma 3.1 for the proof
of knowledge of Step 2, with the prover function determined by A1(1n, R). See
Section 3.3 for the definition of a witness-extended emulator and its proof of exis-
tence for every proof of knowledge. Loosely speaking, such an emulator receives
for input the prover strategy and statement being proved, and outputs (in expected
polynomial-time) the verifier’s view of a proof system execution along with a wit-
ness in the case that the proof is “accepting”. That is, the emulator E outputs a
pair (v,w), where v denotes the verifier’s view of a proof given by A1 to an honest
verifier, and w is (possibly) a witness for the statement being proved (in this case,
the witness is the decommitment of c).

B1 derives from v the series of incoming messages to A1 in the proof, denote this
series by tpok. Then B1 checks whether or not acceptV (v) = 1 (where acceptV (v) =
1 if and only if the verifier would accept the proof associated with the view v).
(a) If acceptV (v) = 0, then B1 aborts and outputs A1(1n, R, tpok).
(b) If acceptV (v) = 1, then B1 checks thatw is a correct witness; that is, B1 checks

that w = (s1, r) and c = C(s1; r). If this is not the case, then B1 outputs a
special failure symbol.



Parallel Coin-Tossing and Constant-Round Secure Two-Party Computation 169

3. Otherwise (if the proof from A1 is accepting and w is a proper decommitment to
c), B1 sends 1n to the (external) trusted third party T and receives the output s.
(Note that B2 does not as of yet receive F(s).)

4. B1 sets s2 = s⊕s1, passes s2 to A1, and receives some string y from A1 (y “should”
equal F(s) by the protocol, but this may not be the case). Formally, B1 obtains y
by computing the function A1(1n, R, tpok, s2).

5. B1 (internally) interacts with A1(1n, R, tpok, s2) in the (zero-knowledge) argument
of Step 5 of the protocol, in which A1 plays the prover and B1 plays the part of the
verifier. (Denote the incoming messages to A1 from the zero-knowledge argument
by tpf.)
(a) If the verification fails, then B1 instructs T to send ⊥ (abort) to B2.
(b) If the verification succeeds, then B1 instructs T to send F(s) to B2.

6. B1 outputs A1(1n, R, tpok, s2, tpf).

We need to show that

{IDEAL f,B̄(1
n, 1n)}n∈N

c≡ {REAL�, Ā(1
n, 1n)}n∈N.

Clearly, if A1 follows the instructions of Protocol 2, then the output distributions in the
ideal and real models are identical. This is because A1’s view in the ideal-model emulation
with B1 is identical to that of a real execution with A2. Furthermore, A2 would output
F(s1 ⊕ s2) in such a real execution and this equals F(s), exactly as output by B2 in
the ideal model. However, A1 may not follow the instructions of the protocol and we
must show that, nevertheless, the real and ideal output distributions are computationally
indistinguishable (in fact, we will show that they are statistically close).

Loosely speaking, differences between the ideal and real distributions can occur ei-
ther if B1 outputs failure (which occurs when acceptV (v) = 1 and w is not a proper
decommitment), or if y �= F(s) and yet the verification of the second proof succeeds.

In the proof we separate A1’s actions into two distinct stages. In the first stage A1

sends c and proves knowledge of the decommitment. In the second stage A1 sends y
and proves that it is the “correct” value (i.e., it is consistent with c and s2). The proof
proceeds by analyzing all possible scenarios for these stages.

Stage 1—the commitment and proof of knowledge: By the witness-extended emulation
lemma (Lemma 3.1), the verifier view output by E is identically distributed to A2’s view
of a real execution of this proof provided by A1 (and verified by A2). Therefore, the
series of messages tpok received by A1 from B1 is identically distributed to the messages
it would receive from A2 in a real execution. This means that the view (in Stage 1) of A1

in a real execution is identical to its view in the emulation from B1. Thus, this stage can
contribute a difference between the distributions only in the case that B1 outputs failure.
However, by Lemma 3.1, the probability that acceptV (v) = 1 and yetw �= (s1, r), where
c = C(s1; r), is negligible. Thus, the probability that B1 outputs failure is negligible and
the real and ideal executions (until this point) are statistically close.

By the above analysis, we have that if B1 reaches Step 3 of its specification, then
B1 has obtained the (unique) pair (s1, r) such that c = C(s1; r). Recall that in Step 4,
B1 passes s2 = s ⊕ s1 to A1, where s is the output received from T . We continue by
analyzing the emulation of the second stage.
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Stage 2—y and the proof of consistency: First consider the case that A1 sends y = F(s)
in Step 4 of the emulation (i.e., A1 sends the “correct” value). There are two possible
sub-cases here—either B1 accepts the proof from A1 in Step 5 or it rejects the proof.
If the proof is accepted, then B2 outputs F(s) (as B1 instructs T to give F(s) to B2),
otherwise B2 outputs ⊥ (again, as instructed by B1). In a real execution, A2 would also
output y = F(s) in the case that the proof is accepted and⊥ otherwise. The fact that the
resulting distributions are identical is derived from the fact that the probability that B1

accepts the (internally generated) proof from A1 in the emulation, equals the probability
that A2 accepts the proof in a real execution (with A1).

Finally, we consider the case that A1 sends y �= F(s) in Step 4 of the emulation
(i.e., A1 attempts to “cheat”). If the verification of the proof in Step 5 fails, then both
A2 and B2 output ⊥ (as in the previous case). On the other hand, if the verification
succeeds, then the real-party A2 outputs y �= F(s1 ⊕ s2), whereas the ideal-party B2

outputs F(s1 ⊕ s2) (and thus the real and ideal output distributions differ). However,
by the soundness property of the proof system, a verifier can be convinced of a false
assertion with at most negligible probability.

We thus conclude that unless the extraction fails or A1 successfully “cheats” in the last
proof, the output distributions are identical. Since these events can occur with at most
negligible probability, we have that the distributions are statistically close. That is,

{IDEAL f,B̄(1
n, 1n)}n∈N

s≡ {REAL�, Ā(1
n, 1n)}n∈N.

We conclude by noting that B1 runs in expected polynomial-time (the “expected” part
coming from the execution of the witness-extended emulator E that runs in expected
polynomial-time).

We now consider the case that A2 is adversarial.

Lemma 5.2. Let (A1, A2) be a pair of probabilistic expected polynomial-time ma-
chines for the real model in which A1 is honest. Then there exists a pair of probabilistic
expected polynomial-time machines (B1, B2) for the ideal model in which B1 is honest,
such that

{IDEAL f,B̄(1
n, 1n)}n∈N

c≡ {REAL�, Ā(1
n, 1n)}n∈N.

Proof. In this case the first party is honest and thus B1 is determined. We now transform
the real-model adversary A2 into an ideal-model adversary B2. As before, B2 works by
using black-box access to A2. The notation used here is the same as in the previous
lemma. Machine B2 works as follows:

1. The ideal adversary B2 chooses a uniformly distributed random tape R for the real
adversary A2, invokes A2(1n, R) and (internally) passes to A2 the commitment
c = C(0m; r) for a random r (recall that in a real execution, A2 expects to receive
C(s1; r) for s1 ∈R {0, 1}m).
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2. B2 invokes the simulator for the zero-knowledge argument of knowledge of the
decommitment of c, using A2(1n, R, c) as the verifier.13 (That is, this is a simulation
of the proof of knowledge that A1 is supposed to prove to A2 in a real execution.)

3. B2 obtains s2 from A2. (Recall that this is formally stated by having B2 compute the
function A2(1n, R, c, tpok), where tpok is the resulting transcript from the simulation
of the zero-knowledge proof of knowledge in the previous step).

If at any point until here A2 sent an invalid message, then B2 aborts and outputs
A2(1n, R, c, tpok).

4. The ideal adversary B2 sends 1n to the (external) trusted third party T and receives
the output F(s). (Note that this means that B1 also receives its output s from T at
this point.)

Next, B2 (internally) passes to A2 the string y = F(s).
5. B2 invokes the simulator for the zero-knowledge proof of Step 5 of the protocol

with the verifier role being played by A2(1n, R, c, tpok, y). Denote the transcript
from the simulation of the zero-knowledge proof by tpf.

(Recall that the statement being proved is that there exists a pair (s1, r) such that
c = C(s1; r) and y = F(s1⊕s2), where s2 is the string obtained from A2 in Step 3.
Note that with overwhelming probability this statement is false; nevertheless as we
shall see the simulation generated is still indistinguishable from a real proof.)

6. B2 outputs A2(1n, R, c, tpok, y, tpf).

We need to show that

{IDEAL f,B̄(1
n, 1n)}n∈N

c≡ {REAL�, Ā(1
n, 1n)}n∈N. (1)

The following differences are evident between the ideal and real executions:

• The commitment received by A2 (in the internal emulation by B2) is to 0m , rather
than to a random string consistent with y = F(s) and s2 (as is the case in a real
execution). However, by the indistinguishability of commitments, this should not
make a difference.
• In the internal emulation by B2, the zero-knowledge proofs are simulated and

not real proofs. However, by the indistinguishability of simulated proofs, this
should also not make a difference. As mentioned above, this holds even though
one of the statements is false with overwhelming probability; details follow in the
proof.

The natural way to proceed at this point would be to define a hybrid experiment in
which the commitment given by B2 to A2 is to s1 and yet the zero-knowledge proofs are
simulated. (In this hybrid experiment, s1 must be such that y = F(s1 ⊕ s2).) However,
such a hybrid experiment is problematic because the value of s1 that is consistent with
both y (from T ) and s2 is unknown at the point that B2 generates the commitment. We
must therefore bypass this problem before defining the hybrid experiment. We do this

13 There is a significant difference between the transformation (of A2) here and the transformation (of A1)
described in Lemma 5.1. There, B1 emulated a true execution of the zero-knowledge proofs between A1 and
A2 by playing A2’s role as an honest verifier. However, here B2 runs the zero-knowledge simulator and does
not really attempt to prove the statement.
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by defining the following mental experiment with a modified party B ′2 (replacing Step 4
only of B2 above):

4′. B ′2 chooses s1 ∈R {0, 1}m (independently of what it has previously seen) and
computes y = F(s1 ⊕ s2) (rather than obtaining y = F(s) from T ).

Next, B ′2 (internally) passes A2 the string y.

We also modify the output of the honest party so that the output of (a virtual party) B ′1
is defined as follows: if the execution of B ′2 halts at Step 3 (i.e., if A2 sent an invalid
message), then output(B ′1) = ⊥, otherwise output(B ′1) = s1 ⊕ s2 (rather than the value
s handed by T to B1).

Notice that B ′2 does not interact with any trusted third party at all. Rather, it chooses
a uniformly distributed s, and computes F(s) itself (choosing s1 uniformly and setting
s = s1⊕s2 is equivalent to uniformly choosing s). We stress that B ′2 does not work in the
ideal model, but is rather a mental experiment. Despite this, we will show that (in some
sense) B ′2 simulates the ideal model perfectly. To this end, define a mental experiment
MENTAL with parties B ′1 and B ′2 by

MENTALB ′(1
n, 1n)

def= (output(B ′1), output(B ′2)).

We first claim that for the above B̄ and B̄ ′, we have that

{IDEAL f,B̄(1
n, 1n)}n∈N ≡ {MENTALB̄ ′(1

n, 1n)}n∈N. (2)

This can be seen as follows. Since B ′2 chooses s1 uniformly and independently of s2,
we have that s = s1 ⊕ s2 is uniformly distributed. Therefore, this is exactly the same as
when the trusted third party T uniformly chooses s and gives it to B2. This means that
the outputs of B2 and B ′2 are identically distributed. Now, in a non-aborting execution,
the outputs of B1 and B ′1 are defined to be s and s1⊕ s2, respectively. Since s = s1⊕ s2,
and these are the same strings viewed by B2 and B ′2, we have that in such a case, the
joint distributions of {B1, B2} and {B ′1, B ′2} are identical. On the other hand, in aborting
executions, B1 and B ′1 both output ⊥. Therefore, this case does not change the above
joint distributions. We conclude that {B1, B2} and {B ′1, B ′2} are identically distributed.

In essence, the above states that the mental experiment is exactly the same as the
ideal model (with B2). However, as we have mentioned, this transition to the mental
experiment is needed before defining an appropriate hybrid experiment.

By the above, it is enough to show that

{MENTALB̄ ′(1
n, 1n)}n∈N

c≡ {REAL�, Ā(1
n, 1n)}n∈N. (3)

We begin by defining a hybrid setting (with a party B ′′2 ) in which the initial commitment
is to s1 (rather than to 0m as in the mental experiment), yet the zero-knowledge proofs
are simulated (rather than being actual proofs as in the real model). First, define B ′′2 as
follows:

0. B ′′2 chooses s1 ∈R {0, 1}m .
1. B ′′2 invokes A2(1n, R) for a uniformly chosen R and (internally) passes A2 the

commitment c = C(s1; r) for a random r . (Recall that in contrast, in Step 1 of B ′2,
the commitment was to 0m .)
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2. B ′′2 invokes the simulator for the zero-knowledge argument of knowledge of the
decommitment of c, using A2(1n, R, c) as the verifier.

This is like Step 2 of B2 (and B ′2) except that here the commitment has a different
distribution.

3. B ′′2 obtains s2 from A2. (This, as well as the rest of this step, is like in B2.)
4. B ′′2 computes y = F(s1 ⊕ s2).

Next, B ′′2 (internally) passes A2 the string y.
(This is like Step 4′ in the mental experiment, except that the first part of the step
involving choosing s1 has been moved to Step 0.)

The remaining steps (5 and 6) are exactly the same as in the specification of B2 and B ′2.
Finally, the output of (a virtual party) B ′′1 is defined as for B ′1. Now define

HYBRIDB̄ ′′(1
n, 1n)

def= (output(B ′′1 ), output(B ′′2 )).

Note that in HYBRID, B ′′2 chooses s1 at the outset rather than after receiving s2. However,
this makes no difference to the distribution of s1 because in the mental experiment
B ′2 chooses s1 independently of any messages seen. Thus, the only difference between
the MENTAL and HYBRID settings is with respect to the initial commitment (which in
HYBRID is to s1 and in MENTAL is to 0m). On the other hand, the only difference between
the HYBRID and REAL settings is with respect to the zero-knowledge proofs that are
simulated in HYBRID rather than being actual proofs as in REAL. Below we shall show
that both differences are indistinguishable and thus (3) follows.

We first show that

{MENTALB̄ ′(1
n, 1n)}n∈N

c≡ {HYBRIDB̄ ′′(1
n, 1n)}n∈N. (4)

As we have mentioned, the only difference between these two settings is with respect to
the initial commitment (i.e., the commitment given to B ′′2 is either to 0m or to a uniformly
chosen string s1). Any distinguishable difference in the above two distributions can
thus be used to distinguish such commitments. In particular, let D′ be a probabilistic
polynomial-time distinguisher that attempts to distinguish between the MENTAL and
HYBRID experiments. We now construct a probabilistic polynomial-time machine D
that uses D′ in order to “break” the commitment scheme, specifically by distinguishing
a commitment to 0m from a commitment to s1 ∈R {0, 1}m . Given c (that is either a
commitment to 0m or s1), D internally invokes A2(1n, R) and gives A2 the commitment
c. Next, D continues by simulating the rest of the MENTAL experiment, which is identical
to the rest of HYBRID (i.e., D follows the specification of B ′2 or equivalently B ′′2 for Steps
2–6 of these experiments). The key point is that D need not know the value committed to
in c in order to carry out this simulation. That is, D runs the zero-knowledge simulators
and computes y = F(s1 ⊕ s2) exactly as defined for B ′2 and B ′′2 . Then, upon concluding
the simulation, D generates the pair (output(B ′1), A2(1n, R, c, tpok, y, tpf)) and outputs
D′(output(B ′1), A2(1n, R, c, tpok, y, tpf)).

Now, if c is a commitment to 0m , then the pair generated by D is distributed ex-
actly according to MENTALB̄ ′(1

n, 1n). On the other hand, if c is a commitment to s1,
then the pair is distributed exactly according to HYBRIDB̄ ′′(1

n, 1n). Thus, D can distin-
guish commitments to 0m from commitments to s1 with the same success as D′ can
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distinguish the MENTAL and HYBRID distributions. By the indistinguishability of com-
mitments, (4) follows.14

We now prove that

{HYBRIDB̄ ′′(1
n, 1n)}n∈N

c≡ {REAL�, Ā(1
n, 1n)}n∈N. (5)

The only difference between the two settings is with respect to the zero-knowledge proofs
(in HYBRID the proofs are simulated and in REAL they are actual proofs). The fact that
the experiments are indistinguishable is due to the formulation of zero-knowledge with
respect to auxiliary inputs. In particular, it follows that for every s1 and r , the transcript
generated by the simulator for the proof of knowledge is indistinguishable from a real
proof. Furthermore, for every s1, r, tpok and s2 (where tpok represents a transcript from the
proof of knowledge), the transcript for the second proof is indistinguishable from a real
proof. We therefore have that the output of B ′′2 (in the hybrid model) is indistinguishable
from the output of A2 (in the real model).15

On the other hand, the probability that the (hybrid model) party B ′′1 outputs ⊥ is
negligibly close to the probability that the real party A1, in a real execution with A2,
aborts and outputs ⊥. (This is because B ′′1 and A1 output ⊥ only if A2 sends an invalid
message before Step 4. Since the only difference with respect to A2’s view in the settings
is whether the proof is simulated or real, the probability that it sends an invalid message
in both cases must be negligibly close.) Furthermore, in non-aborting executions, both
B ′′1 and A1 output s1 ⊕ s2. Thus, (5) holds.

Combining (4) and (5) we obtain (3). Finally, (1) follows from (2) and (3), completing
the proof of Lemma 5.2.

This completes the proof of Theorem 11.

5.4. Comparing Protocol 2 with the Protocol of [18]

The protocol for augmented coin-tossing presented by Goldreich [18] is for tossing a
single bit only (i.e., where m = 1). Thus, in order to toss polynomially many coins,
Goldreich suggests running the single-bit protocol many times sequentially. However,
the only difference between Protocol 2 and the protocol of [18] is that here m can be any
value polynomial in n and there m is fixed at 1 (i.e., by setting m = 1 in our protocol,
we obtain the exact protocol of [18]). Despite this, our proof is different and works for
any m = poly(n) whereas the proof of [18] relies heavily on m = 1 (or at the most
m = O(log n)).16 Furthermore, there is a conceptual difference in the role of the two
zero-knowledge proofs in the protocol. In [18] these proofs are used in order to obtain
augmented coin-tossing (and are not needed for the case that F is the identity function).
However, here these proofs are used for obtaining coin-tossing of m = poly(n) coins in
parallel, even when F is the identity function.

14 We note that this proof shows that the simulator generates an indistinguishable proof even for a false state-
ment regarding the value committed to in c. Otherwise, the simulator could be used to distinguish commitments.

15 Formally, one should consider a hybrid argument in which the first proof is real and the second is simulated.
Then, by considering the indistinguishability of each simulated proof separately, the overall claim is obtained.

16 In private communication, Goldreich stated that he did not know whether or not his protocol [18] can be
parallelized.
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6. Almost Perfect Coin-Tossing

In this section we present a constant-round protocol for almost perfect coin-tossing. In
such a protocol, the output distribution of a real execution is guaranteed to be statistically
close to the output distribution of the ideal process (rather than the distributions being only
computationally indistinguishable as required by secure computation); see Theorem 12.
As in the previous section, the functionality we consider is that of augmented coin-
tossing:

(1n, 1n) �→ (Um, F(Um)).

The protocol is almost identical to Protocol 2 except that the commitment scheme used
is perfectly hiding and the zero-knowledge arguments are perfect.17 These primitives
are known to exist assuming the existence of families of clawfree functions or collision-
resistant hash functions. Thus we rely here on a (seemingly) stronger assumption than
merely the existence of one-way functions. We note that Protocol 4 is a protocol for
the almost perfect coin-tossing of a single bit and thus almost perfect coin-tossing of m
coins can be achieved in O(m) rounds (see the proof in [18] which actually demonstrates
statistical closeness). In this section we show that the almost perfect coin-tossing of
polynomially many coins can also be achieved in a constant number of rounds.

Protocol 3 (Augmented Almost Perfect Coin-Tossing). An augmented almost perfect
coin-tossing protocol is constructed by taking Protocol 2 and making the following
modifications:

• The commitment sent by Party 1 in Step 1 is perfectly hiding.
• The argument of knowledge provided by Party 1 in Step 2 is perfect zero-knowledge.
• The proof provided by Party 1 in Step 5 is a perfect zero-knowledge argument of

knowledge. (Recall that in Protocol 2, this proof need not be a proof of knowledge.)

Constant-round perfect zero-knowledge arguments of knowledge are known to exist as-
suming the existence of constant-round perfectly hiding commitment schemes [10], [17].
Furthermore, constant-round perfectly hiding commitment schemes can be constructed
using families of clawfree [19] or collision-resistant hash functions [32], [13]. These
commitment schemes work by having the receiver first uniformly choose a function f
from the family designated in the protocol. The receiver then sends f to the sender who
uses it to commit to a string by sending a single message. Thus, using such a scheme,
Protocol 3 begins by Party 2 choosing a function f from a clawfree or collision-resistant
family and sending it to Party 1. Then Party 1 commits using f .

We stress the use of arguments of knowledge for both proofs here, whereas in Protocol 2
the proof of Step 5 need not be a proof of knowledge. The reason for this is that since the
commitment is perfectly hiding, c is essentially a valid commitment to every s1 ∈ {0, 1}m .
Thus, every y is “consistent” with c and s2. Therefore, what we need to ensure is that y
is consistent with s2 and the decommitment of c that are known to Party 1. This can be
accomplished using a proof of knowledge.

17 We note that it actually suffices to use statistical zero-knowledge and statistically hiding commitments.
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Theorem 12. Assuming the existence of perfectly hiding commitment schemes, Proto-
col 3 is a secure protocol for augmented almost perfect coin-tossing. That is, for every
admissible pair of probabilistic expected polynomial-time machines for the real model
(A1, A2) there exists an admissible pair of probabilistic expected polynomial-time ma-
chines for the ideal model (B1, B2), such that

{IDEAL f,B̄(1
n, 1n)} s≡ {REAL�2, Ā(1

n, 1n)},

where f is the augmented coin-tossing functionality and �2 denotes Protocol 3.

Proof Sketch. As in the proof of Theorem 11, we separately consider the cases that A1

and A2 are adversarial. We first consider the case that A1 is adversarial.

Lemma 6.1. Let (A1, A2) be a pair of probabilistic expected polynomial-time ma-
chines for the real model in which A2 is honest. Then there exists a pair of probabilistic
expected polynomial-time machines (B1, B2) for the ideal model in which B2 is honest,
such that

{IDEAL f,B̄(1
n, 1n)}n∈N

s≡ {REAL�2, Ā(1
n, 1n)}n∈N.

Proof Sketch. Loosely speaking, the only difference between here and the proof of
Lemma 5.1 is that the commitment is only computationally binding. Furthermore, recall
that in the proof of Lemma 5.1 we actually showed that the ideal and real distributions
are statistically close, as required here. Thus, it is enough to show that this remains
the case even though the commitment is only computationally binding. In the proof of
Lemma 5.1, the fact that the commitment is perfectly binding is used to show that if A1

successfully proves both (zero-knowledge) proofs, then y = F(s1 ⊕ s2), where s1 is the
value A1 committed to in the first step. Thus, the analogous argument here is that if A1

successfully proves both (zero-knowledge) proofs of knowledge, then y = F(s1 ⊕ s2),
where s1 is the value A1 used for the commitment in the first step. This is proven by
showing that otherwise, the extractor for the proofs of knowledge can be used to extract
two different decommitments from A1. This would contradict the computational binding
of the commitment scheme.

Lemma 6.2. Let (A1, A2) be a pair of probabilistic expected polynomial-time ma-
chines for the real model in which A1 is honest. Then there exists a pair of probabilistic
expected polynomial-time machines (B1, B2) for the ideal model in which B1 is honest,
such that

{IDEAL f,B̄(1
n, 1n)}n∈N

s≡ {REAL�2, Ā(1
n, 1n)}n∈N.

Proof Sketch. The proof of this lemma is very similar to the proof of Lemma 5.2. That
is, we define analogous mental and hybrid experiments. Recall that the mental experiment
is identically distributed to the ideal execution. Furthermore, the only difference between
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the mental and hybrid experiments is with respect to the value of the commitment. Since
the commitments here are perfectly hiding, the experiments are identically distributed.
Likewise, the only difference between the hybrid experiment and the real setting is that
the hybrid setting uses a simulated proof rather than a real one. Then, since we use perfect
zero-knowledge here, these distributions are also identically distributed. We therefore
have that the ideal and real distributions are identical (and not even just statistically
close).

This completes the proof of Theorem 12.
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Appendix. Expected Polynomial-Time Adversaries and Zero-Knowledge
Arguments of Knowledge

In this work we considered a slightly non-standard definition of secure computation in
which the real-model adversary is allowed to run in expected polynomial-time (rather
than being limited to strict polynomial-time). This means that the simulator for the zero-
knowledge argument system must remain expected polynomial-time also in the case that
the verifier runs in expected polynomial-time; likewise for the extractor working with an
expected polynomial-time prover of knowledge. (When computing the running-time of
the simulator, we include the running-time of the verifier; likewise for the extractor and
prover.) However, the standard definitions of zero-knowledge arguments of knowledge
(and specifically the one used by Feige and Shamir [17]) refer to strict polynomial-time
adversaries only.

In this appendix we show that the argument system of [17] remains a zero-knowledge
argument of knowledge even when the verifier and prover may run in expected polynomial-
time. However, it seems that this does not hold for all zero-knowledge arguments of
knowledge. In particular, as we will see, the zero-knowledge proof of [20] seems not to
remain zero-knowledge if the verifier may run in expected polynomial-time.

Failure of the naive approach. A naive approach to solving the above problem would be
to simply truncate the execution of the verifier after it exceeds its expected running-time
by “too much”. The intuition behind such a suggestion is that the output of the truncated
verifier is very close to that of the original one. Furthermore, this truncated verifier
runs in strict polynomial-time. Thus, we can simply apply the existing simulator to the
truncated verifier and we are done. The conclusion would be that any zero-knowledge
argument remains zero-knowledge, even when the verifier runs in expected polynomial-
time. However, the above intuition is not correct in our context here. For example,
consider a very simple (cheating) verifier V ∗ who with probability 1/p(n), for some
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polynomial p(·), plays the honest verifier strategy, and otherwise it aborts (not sending
any message). In addition, when V ∗ does not abort, it runs for p(n) steps before sending
any messages. Now, the expected running-time of V ∗ equals that of the honest verifier.
Thus, according to the above strategy, we would truncate V ∗’s execution after it exceeds,
say, n2 times the running-time of the honest verifier. The point is that if p(n) is larger
than this value, then the truncated V ∗ never replies. Thus, the simulation of the truncated
V ∗ can be distinguished from real executions of V ∗ with probability 1/p(n). (Of course,
this specific verifier can be simulated because p(n) is a polynomial. Nevertheless, the
example suffices for ruling out the above strategy as presented. For more discussion and
examples, see [16, Section 3] and [2].)

A.1. The Zero-Knowledge Arguments of Knowledge of [17]

We assume that the reader is familiar with the system of zero-knowledge arguments of
knowledge of [17].

A.1.1. Extraction from an Expected Polynomial-Time Prover

In this section we consider a generic extractor K that works in the following way. Let P∗

be a prover with input x and auxiliary input y. Then the extractor K chooses a uniformly
distributed random-tape r for P∗, defining a prover P∗x,y,r , and works as follows:18

1. Interact with P∗x,y,r and play the honest verifier V . If V rejects, then halt and output
⊥. If V accepts, then continue to the next stage.

2. Let q(·) be a fixed, predetermined polynomial. Then interact with P∗x,y,r and play
the honest verifier V in many interactions, until q(|x |) accepting executions are
achieved. In each execution, use fresh randomness for V (whereas P∗’s randomness
is fixed for all executions).

3. Given the transcripts of q(|x |) accepting executions with a prover who uses the
same randomness in each one, K computes a witness for x . (With overwhelming
probability this task can be done in polynomial-time.)

The extractor for the system of arguments of knowledge of [17] (which is actually n
parallel executions of Blum’s proof of knowledge of Hamiltonicity) works in exactly
this way. For this scheme, the polynomial q(·) of Stage 2 is q(n) ≡ 1 (that is, one
additional successful execution is enough, see [16]). Other proofs of knowledge can also
be cast in this setting (e.g., the extractor for the proof of knowledge based on coloring
in [25] can also work in this way). For simplicity, we show the expected running-time
of K when q(n) ≡ 1. The general case is easily derived.

We begin by analyzing the running-time of Stage 2 of the extraction procedure of K
(Stage 3 can be ignored since it merely involves a fixed polynomial-time computation).
First, denote by tP(r, s), the running-time of P∗ in an execution with the honest verifier
V , where P∗’s random-tape equals r and V ’s random-tape equals s (we note that by P∗

we really mean P∗x,y). Now, notice that when P∗ interacts with the honest verifier, its
messages are a deterministic function of r and s. Therefore, tP(r, s) is a fixed running-

18 We note that a very similar type of extractor was explicitly considered by Halevi and Micali [26], who
called it a “conservative knowledge extractor”. However, their motivation was very different.
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time. Next, let χP(r, s) = 1 if and only if V accepts when interacting with P∗, when
P∗ and V ’s respective random tapes are r and s. Then the running time of Stage 2 of
the extraction procedure exactly corresponds to the random variable Tr in the following
game, where r is a fixed value (and the probability is taken over the extractor’s coins).
Recall that r is fixed for all of the executions, whereas s is different in each execution.
Assume, for simplicity, that the length of V ’s random-tape s is n.

• Initialize Tr = 0.
• Iterate:

1. Choose s ∈R {0, 1}n .
2. Let Tr = Tr + tP(r, s).
3. If χP(r, s) = 1, then halt.

We now compute the expected value of Tr . (In the claim below, p corresponds to the
probability that P∗, with randomness r , successfully completes the proof when the
random tape s is uniformly chosen.)

Claim A.1. For a given r , denote by p the probability (over a uniform choice of s) that
χP(r, s) = 1. Then

Exp[Tr ] = 1

p
· 1

2n

∑
s∈{0,1}n

tP(r, s).

Proof. Denote the set of “good” random-tapes by G
def= {s | χP(r, s) = 1}. Then we

have that |G| = p · 2n , |Ḡ| = (1− p) · 2n and

Exp[tP(r,G)] = 1

|G|
∑
s∈G

tP(r, s)

and

Exp[tP(r, Ḡ)] = 1

|Ḡ|
∑
s /∈G

tP(r, s).

Now, the expected number of times that the process of choosing a random-tape s is
repeated until (but not including) success equals 1/p − 1. Thus, we first show the
following intuitive equality:

Exp[Tr ] =
(

1

p
− 1

)
· Exp[tP(r, Ḡ)]+ Exp[tP(r,G)]. (6)

Equation (6) is shown as follows. First, notice that we can divide the expectation of
Tr into events relating to how many iterations of the game occur until halt is reached.
That is,

Exp[Tr ] =
∑

k

Pr[k iterations until halt] · Exp[Tr | k iterations until halt].

Noticing further that

Exp[Tr | k iterations until halt] = (k − 1) · Exp[tP(r, Ḡ)]+ Exp[tP(r,G)]
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we have

Exp[Tr ] =
∑

k

(1− p)k−1 p · ((k − 1) · Exp[tP(r, Ḡ)]+ Exp[tP(r,G)])

=
∑

k

(1− p)k−1 p · k · Exp[tP(r, Ḡ)]−
∑

k

(1− p)k−1 p · Exp[tP(r, Ḡ)]

+
∑

k

(1− p)k−1 p · Exp[tP(r,G)]

=
(

1

p
− 1

)
Exp[tP(r, Ḡ)]+ Exp[tP(r,G)],

proving (6). Then

Exp[Tr ] =
(

1

p
− 1

)
· Exp[tP(r, Ḡ)]+ Exp[tP(r,G)]

= 1

p
((1− p) · Exp[tP(r, Ḡ)]+ p · Exp[tP(r,G)])

= 1

p

(
1

2n

∑
s /∈G

tP(r, s)+ 1

2n

∑
s∈G

tP(r, s)

)

= 1

p
· 1

2n

∑
s∈{0,1}n

tP(r, s),

completing the proof.

Before continuing, we restate Claim A.1 in terms of the running-time of P∗. That is, let
tP(r) denote the random variable of the running-time of P∗, with randomness r , when
interacting with the honest verifier (with a uniformly chosen random-tape). Then we
have that

Exp[tP(r)] = 1

2n

∑
s∈{0,1}n

tP(r, s).

Therefore, by Claim A.1 we have that the expected running-time of Stage 2 is

Exp[Tr ] = 1

p
· Exp[tP(r)].

We are now ready to conclude the analysis of the overall running-time of the extractor.
Recall that the extractor first (honestly) verifies the proof from the prover. If it succeeds
(and this occurs with probability p), then Stage 2 of the extraction procedure is run.
Therefore, the expected running-time (when r is fixed) equals

Exp[tP(r)]+ p · Exp[Tr ] = Exp[tP(r)]+ p · 1

p
· Exp[tP(r)] = 2 · Exp[tP(r)].

Until this point, we have considered a fixed r . However, the extractor chooses P∗’s
random-tape uniformly. Therefore, the expected running-time of the extractor (over all
possible r ’s) equals exactly twice the expected running time of P∗. Recalling that P∗ is
expected polynomial-time, this completes the analysis.
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A.1.2. Simulation for Expected Polynomial-Time Verifiers

Loosely speaking, the Feige–Shamir argument system works in two stages. In the first
stage the verifier proves that it knows some secret, using a (witness hiding) proof of
knowledge. Then, in the second stage, the prover proves that it knows the witness to the
input statement. However, this second proof is designed in such a way so that if the secret
from the first stage is known, then the proof can be successfully proven without really
knowing the witness to the input statement. Furthermore, this proof is indistinguishable
from a real proof. The zero-knowledge simulator for this argument system therefore
works by extracting the secret from the first stage and then using it to prove the proof of
the second stage. Thus, in order to show that the simulator remains expected polynomial-
time when the verifier may run in expected polynomial-time, we must first show that the
extraction procedure does not take “too long”. However, in Section A.1.1, we have already
shown that the extraction procedure in this setting terminates in expected polynomial-
time. It therefore remains to show that the second stage of the argument system also
terminates in expected polynomial-time.

The basis for this claim is as follows. First, notice that the second stage of the simu-
lation requires no rewinding and works by running a single proof with the verifier V ∗.
Furthermore, and this is the key point, there exists a (not necessarily efficient) inter-
active machine who interacts with V ∗ and generates exactly the same distribution of
messages as the simulator (without being given the secret obtained by the extractor from
the first stage). This machine simply extracts the secret by itself (it is not computationally
bounded and can therefore do this) and uses it in the same way as the simulator. Since
the verifier is expected polynomial-time when interacting with this machine, this also
holds when interacting with the simulator of the second stage. We conclude that the
entire simulation terminates in expected polynomial-time.

A.2. The Zero-Knowledge Proof System of [20]

In this section we show that in contrast to the argument system of [17], the simulator
provided for the zero-knowledge proof system of Goldreich and Kahan [20] does not nec-
essarily remain expected polynomial-time when simulating for an expected polynomial-
time verifier. We stress that we do not claim that it is impossible to construct a different
simulator that will have this property. However, it seems from our analysis below that it
would be difficult to construct such a simulator.

For this section we assume familiarity with the proof system of [20]. Recall that in
this proof system, the verifier begins by committing to its random query string (us-
ing a perfectly hiding commitment scheme). The parties then continue by running the
zero-knowledge proof for 3-coloring of [25] in parallel, using the verifier’s queries
from the first step. That is, the prover sends (perfectly binding) commitments to ran-
domly permuted colorings of the graph. Then the verifier decommits, revealing its query
string. Finally, the prover answers according to the revealed queries. The exact sound-
ness of the system depends on the number of parallel executions and is negligible.
We denote the soundness of the proof system by µ(n) (i.e., the probability that V
accepts and the graph is not 3-colorable is less than µ(n)). We stress that the ex-
act value of µ(n) can be calculated and this does not depend on any computational
assumptions.
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Before proceeding, we note that the prover’s commitments (to the colorings) are only
computationally hiding. Therefore, given enough time, it is possible to break them and
extract the committed values (which in this case equals the coloring itself). In particular,
in time 2n (where n is the security parameter), it is possible to break these commitments.

Loosely speaking, we will construct a verifier that with probability 2−n runs for 2n

steps and breaks the prover’s commitments. Then the verifier checks if these commit-
ments are “real” or “convincing garbage”, where convincing garbage is a commitment
that would convince the verifier, yet does not constitute a legal 3-coloring. Then if it finds
that it received convincing garbage, it enters a very long loop (and otherwise continues
like the honest verifier). The key point is that although the simulator can generate con-
vincing garbage, the probability that any (even all-powerful) machine can do the same
is negligible. Therefore, when interacting in a real protocol execution, the verifier enters
the loop with very small probability. On the other hand, the simulator always generates
convincing garbage. By correctly choosing the number of steps run by the verifier in the
loop, we can ensure that its overall expected-time during simulation is super-polynomial.
Details follow.

The Verifier V ∗.

1. Send the prover a perfectly hiding commitment to a random query string q, exactly
according to the protocol specification.

2. Upon receiving the prover’s commitments (to many 3-colorings) do the following:
• With probability 2−n , break the prover’s commitments and obtain the values.

(This takes time at most 2n .)
If the commitments are such that none of them constitute a valid 3-coloring,

yet they all answer the query string q perfectly,19 then run for 2n/µ(n) steps.
3. Continue in the same way as the honest verifier.

We first claim that V ∗ is an expected polynomial-time machine. This can be seen as
follows. V ∗ attempts to break the commitments with probability 2−n . Therefore, the
2n time it takes to do this contributes only a single step to its expected running-time.
Furthermore, the probability that any machine sends a commitment of the form that
causes V ∗ to run for 2n/µ(n) steps is at most µ(n) (by the soundness of the proof
system). Therefore, V ∗ runs for 2n/µ(n) steps only with probability 2−n ·µ(n) and this
also contributes only a single step to its expected running-time. That is, the expected
running-time of V ∗ is at most

1

2n
·
(

2n + µ(n) · 2n

µ(n)
+ p(n)

)
+

(
1− 1

2n

)
· p(n) = poly(n),

where p(n) equals the running-time of the honest verifier.
On the other hand, we claim that the [20] simulator runs for a super-polynomial

number of steps, when simulating for this V ∗. In particular, this simulator always sends

19 A commitment answers the query string perfectly if for every edge in the query string, it turns out that
the committed colors of the vertices specified by the edge are different. Therefore, such a commitment would
convince the honest verifier in the proof.



Parallel Coin-Tossing and Constant-Round Secure Two-Party Computation 183

a commitment that causes V ∗ to run in time 2n/µ(n). Therefore, the expected running
time of the simulator of V ∗ is greater than

1

2n
·
(

2n + 1 · 2n

µ(n)
+ p(n)

)
+

(
1− 1

2n

)
· p(n) >

1

µ(n)
.

Since µ(n) is a negligible function, we have that the expected running-time of the simu-
lator is super-polynomial. Therefore, the simulator presented by [20] for demonstrating
the zero-knowledge property of their proof system is only expected polynomial-time if
the verifier is limited to strict polynomial-time.

We conclude with an open question that is raised by the above observation regarding the
proof system of [20]. That is, is it possible to construct a constant-round zero-knowledge
proof system for NP (with negligible soundness) that remains zero-knowledge for an
expected polynomial-time verifier?
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