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Abstract. This work develops a novel approach to hide the senders and the receivers of
messages. The intuition is taken from an everyday activity that hides the “communication
pattern”—the public transportation system. To describe our protocols, buses are used as a
metaphor: Buses, i.e., messages, are traveling on the network, each piece of information
is allocated a seat within the bus. Routes are chosen and buses are scheduled to traverse
these routes. Deterministic and randomized protocols are presented, the protocols differ
in the number of buses in the system, the worst case traveling time, and the required
buffer size in a “station.” In particular, a protocol that is based on cluster partition of
the network is presented; in this protocol there is one bus traversing each cluster. The
clusters’ size in the partition gives time and communication tradeoffs. One advantage of
our protocols over previous works is that they are not based on statistical properties for
the communication pattern. Another advantage is that they only require the processors
in the communication network to be busy periodically.
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1. Introduction

Throughout history encryption was used to hide the contents of transmitted data. The
rapid growth in the use of the Internet only increased the necessity of encryption. How-
ever, encryption does not hide all the relevant information, for example, it does not hide
the identity of the communicating parties. That is, it does not prevent traffic analysis.
In this work we deal with the problem of anonymous communication—communication
that does not disclose the identity of the sender and receiver.

We develop a novel approach to hide the senders and the receivers of messages. The
intuition is taken from an everyday activity that hides the “communication pattern”—the

∗ A preliminary version of this paper was published in Proceedings of the 2nd International Conference on
FUN with Algorithms, pages 1–13, 2001.
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public transportation system. For example, a traveler that takes buses from one place to
another remains anonymous, and it is hard to trace him. Metaphorically, we consider the
pieces of information that senders send to receivers as passengers. There are “buses,”
i.e., messages, traveling on the network, and each piece of information is allocated a
seat within a bus. The sender and receiver are modeled as bus stations. Our aim is to
simulate this metaphor in the digital world while keeping the anonymity of the sender
and receiver. In most of our protocols we also hide the information that a message is
sent, that is, hide the number of passengers on each bus.

Previous work. One of the first works to consider the problem of hiding the commu-
nication pattern in the network was the work of Chaum [2] where the concept of a mix
was introduced. A single processor in the network, called a mix, serves as a relay. Each
processor p that wants to send a message M to a processor q encrypts M using q’s pub-
lic key to obtain M ′. Then p encrypts the pair (M ′, q) using the public key of the mix.
The mix decrypts the message and forwards M ′ to q. This scheme has been extended
in [11]–[15] where several mixes are used to cope with the possibility of compromising
the single mix. For example, in the onion routing system [14] a proxy defines a route
for a message through the routing network by rapping the message with a layered data-
structure called an onion; the onion is passed through the routers as specified by the
onion, each router which receives an onion peels of its layer, identifies the next hop in
the route, and sends the peeled onion to the next router. Mix schemes operate under some
statistical assumption on the pattern of communication. If a single message is sent, then
an adversary that monitors the communication channels can observe the sender and the
receiver of the particular message. Another example for a problematic case is when all
the processors send a message to the same destination—in this case the identity of the
receiver is revealed. A discussion on other mix-like systems can be found in [14].

An approach based on “xor-trees” has been presented in [6]. The scheme presented
in [6] fits long communication sessions during which the data exclusive-ored with
pseudorandom bits (that cancel each other) is transfered towards the root which in turn
broadcasts the arriving information to the nodes in the tree. The solution presented in [6]
is an extension of the DC-net approach suggested in [3].

Our contribution. We present deterministic and randomized protocols for anonymous
message delivery based on the buses metaphor. The protocols differ in the number of
buses in the system, the worst case traveling time, and the required buffer size in a
“station.” Our first solution uses a single bus that traverses an Euler tour. The traveling
time in this protocol is O(n). Our second solution is a full communication solution for
which two buses traverse each link in opposite directions. The traveling time in this
protocol is the distance between the sender and receiver, that is, the protocol achieves
optimal time. Our third solution is based on cluster partition of the network; in this
protocol there is one bus traversing each cluster. The clusters’ size in the partition gives
time and communication tradeoffs.

Our solutions do not rely on statistical properties for the communication pattern. In
our solution, unlike the solution presented in [6], the processors in the communication
network are busy in the transmission only periodically. That is, a processor is busy only
when a bus arrives at the processor. Moreover, there is no need to store information (such
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as the result of xoring arriving bits) in memory between bus arrivals; thus, our protocols
are more suitable for fault tolerant environments. For example, the scheme may be a base
for a robust anonymous message delivery by retransmitting a new bus upon a time-out.

Let us note two additional important properties of our scheme. First note that in our
protocols the buses traverse the network in fixed routes and a fixed schedule, thus the
adversary cannot learn whether there is any communication between the processors or
not. In addition, our scheme can cope with an adversary that monitors any number of
processors.

We also extend the scheme to cope with three extensions of the model: (1) protocols that
enable anonymous broadcast and multicast, (2) protocols which work even if the topology
of the network is unknown, and (3) protocols which tolerate Byzantine processors.

Organization. The rest of the paper is organized as follows. The problem statement
appears in Section 2. Two simple solutions that achieve minimum communication and
minimum time, respectively, are presented in Section 3. A solution that introduces a
tradeoff between time and communication is presented in Section 4. Lower bounds
on the possible tradeoffs between time and communication are proved in Section 5.
Solutions which cope with extensions of the model appear in Section 6.

2. The System and Threat Models

We consider a network of n processors, denoted p1, . . . , pn , connected by m commu-
nication links. We use the communication graph G(V, E) to represent our network, V
is the set of processors and E is the set of communication links connecting the pro-
cessors (that is n = |V | and m = |E |). We assume that G is connected. Processors
communicate by sending and receiving messages. The system is synchronous—there is
a common global pulse (possibly implemented by synchronized distributed clocks) that
triggers (whenever the clock reaches an integer value) the processors to send messages;
messages sent in a certain pulse arrive at the neighboring processor before the next pulse.

Some processor pi , called the sender, may decide to communicate with another (not
necessarily neighboring) processor pj , called the receiver. Informally, our objective is
to hide the fact that pi communicates with pj . That is, we want to hide the identities
of pi and pj . See below for a formal definition. Furthermore, some of our protocols
even hide the fact that a message was sent. A protocol that achieves these goals is called
an anonymous message delivery protocol. We note that the vast majority of known
cryptographic techniques focus on hiding the contents of the transmitted data, but not
the fact that data has been transmitted.

We consider two types of adversaries: the listening adversary and the Byzantine ad-
versary. The listening adversary can monitor all the communication links and also mon-
itor the internal contents of some processors in the network. The adversary is non-
adaptive: Before the execution of the protocol the adversary chooses a set of processors
C ⊆ {p1, . . . , pn} (we do not limit the size of the set). Later a pair of parties (or some
pairs) execute the anonymous message delivery protocol. At the end of the executions
the adversary should not know if pi sent a message to pj for every pi , pj /∈ C . (If the
adversary monitors the internal contents of the sender or the receiver, then it can identify
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the sender and the receiver.) This adversary is honest-but-curious, i.e., it cannot change
any messages, delete messages, add any messages, or change the state of any processor.
We next formally define anonymous message delivery protocols. For this definition, we
recall the definition of indistinguishable distributions [9], [16].

Definition 2.1 (Indistinguishability). Two sequences of probability distributions,
{Vk}∞k=1 and {Wk}∞k=1, are polynomial-time indistinguishable if for every probabilistic
polynomial-time Turing Machine M , every integer c ≥ 1, and for every sufficiently
large k,
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The protocols we define have a security parameter k which measures the length of
the keys in the cryptographic primitives they use (see Section 2.1 for a description
of these primitives). Roughly speaking, the requirement is that a Turing Machine that
runs in time polynomial in k cannot know who the sender and receiver are. The view
of the listening adversary controlling a set C of processors after an execution of a
message delivery protocol in which pi sends a message to pj is denoted by the random
variable VIEWk

C(i, j) where k is the security parameter. This view contains all messages
exchanged in the network and the local information known to processors in C , i.e., the
random inputs they used during the execution, the state of the processors, and the secret
keys they know.

Definition 2.2. We say that the protocol is an anonymous message delivery protocol
if:

Correctness. If pi sends a message M to pj , then pj receives the message.
Anonymity. For every C ⊆ {p1, . . . , pn} and every i1, i2, j1, j2 /∈ C , the sequences of

random variables {VIEWk
C(i1, j1)}∞k=1 and {VIEWk

C(i2, j2)}∞k=1 are indistinguishable.

The Byzantine adversary is more powerful than the listening adversary. Like the
listening adversary, the Byzantine adversary can monitor the communication links and
the internal contents of the processors of the network. In addition, for some parameter t ,
it can control up to t processors in the network. These processors can insert messages,
delete messages, or arbitrarily change messages that they receive (before forwarding the
messages). That is, these processors can deviate from the predefined protocol. Again
we assume that the adversary is non-adaptive. We do not give a formal definition of an
anonymous message delivery protocol in the presence of a Byzantine adversary since it is
quite complicated. The definition is similar to the definition of secure function evaluation
in the presence of a Byzantine (malicious) adversary.

We evaluate a protocol by its time complexity, its communication complexity, and its
buffer complexity: the time complexity is the worst case time required to transmit a mes-
sage from a sender to a receiver, the communication complexity is the maximal number
of messages that are sent simultaneously by the processors in the network (however,
these messages can be long), and the buffer complexity is the buffer size required for
each processor to store incoming and outgoing messages in each time step. In our proto-
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cols the buffer complexity is the number of seats in the buses that arrive simultaneously
at a processor.

2.1. Cryptographic Primitives

The first cryptographic primitive that we use is encryption which guarantees the secrecy
of messages. That is, a sender can send an encrypted message such that only the in-
tended recipient can decrypt it. We will require semantic security [9]—the encryption
is randomized and an eavesdropper cannot distinguish in polynomial time between en-
cryptions of any pair of messages. See, e.g., [7] for formal definitions. We consider two
types of encryption:

Symmetric key encryption. Both sender and receiver have a common secret key, which
is used for both encryption and decryption.

Public key encryption. The receiver has a secret private key which it uses for decryp-
tion. Furthermore, the receiver publishes a public key which is used for encryption
by any sender; an eavesdropper cannot distinguish between encryptions of messages
even if it has the public key.

Typical symmetric key encryption schemes are faster than public key encryption schemes;
however, they require every pair of processors in the network to have a common secret
key.

Authentication. The second cryptographic primitive that we use is authentication which
guarantees that if a sender sends a message to a receiver and a third party alters this mes-
sage, then with high probability the receiver can detect this fact. Again we can consider
two types: (1) symmetric key authentication in which the sender uses the common key to
authenticate a message and the receiver uses the common key to verify the authenticity
of the message, and (2) public key authentication, known as signatures, in which the
sender uses its private key to sign a message and the receiver uses the public key to
verify the validity of the signature. See, e.g., [8] for formal definitions of authentication
and signatures.

3. Simple Solutions

In this section we present two simple protocols, one with optimal communication com-
plexity and another with optimal time complexity. In Section 4 we generalize the ideas
of these protocols, and present protocols that exhibit tradeoffs between time and com-
munication. In all our protocols we metaphorically view each message as a bus. The
protocols vary according to the number of buses in the system, and the way they travel
in the communication graph.

3.1. Communication Optimal Protocol

We start with a solution with message complexity 1, i.e., in each time unit only one
processor sends a message to one other processor. Using our metaphor, there is only one
bus traveling in the system. We next define how the bus travels in the communication
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graph. First, fix any spanning tree in the graph. Next, use an Euler tour (that is, a DFS
tour) of the spanning tree to define a ring. The bus is rotating through the ring, and has n2

seats. Seat si, j is used to communicate an encrypted message from processor pi to pj ;
this message is encrypted either using the symmetric key of pi and pj , or using the public
key of pj (depending on which encryption infrastructure exists). Each time the bus gets
to processor pi it changes each message in the row of seats si, j either to an encryption of a
message it wants to send to pj , or to some detectable garbage which is then encrypted for
pj . Furthermore, pi checks what messages were sent to it, by decrypting the n messages
located in the i th column and ignoring the ones containing garbage.

By the semantic security of the encryption, a listening adversary cannot tell whether a
seat contains garbage or a real message, i.e., it cannot tell if two processors are commu-
nicating. Next, we state the communication and time complexities of our solution. The
communication complexity of this solution is optimal—there is single bus. However,
the time complexity is quite bad: it can take at most 2n − 1 time units until the bus
reaches the sender, and at most 2n − 1 additional time units until the bus reaches the
destination. The buffer complexity of this protocol is n2. We summarize the properties
of this protocol below.

Theorem 3.1. There is an anonymous message delivery protocol with communication
complexity 1, time complexity O(n), and buffer complexity O(n2).

We emphasize again that since there is one bus, most of the time each processor is not
involved in executing this protocol and does not need to store any information between
two visits of the bus. Furthermore, by Theorem 5.2, the time complexity in any protocol
with communication complexity 1 is �(n).

3.1.1. Reducing the Number of Seats

In this section we present a protocol that reduces the number of seats in each bus assuming
that not too many messages are sent simultaneously. We modify the above protocol where
instead of assigning a seat for any source/destination pair, the sender writes its message
in a randomly chosen seat (deleting the previous contents of the seat). However, the
sender wants to hide the fact that it wrote a message in some seat/seats, thus it changes
the contents of all the seats in the bus. To achieve this goal, the sender encrypts the
message using the public keys, in reverse order, of all the processors in the Euler tour
between the sender and receiver. When the bus gets to some processor, it replaces the
contents of each seat by the decryption of the previous contents under its private key.
Next, if any message makes sense, then the processor knows that this is a message
sent to it, and it changes it to a random contents. Recall that we use a semantically
secure public-key encryption; such an encryption scheme must be probabilistic, and the
length of the nested encryption, that is, after the multiple encryptions, is O(n). (Here
we ignore the security parameter.) The sender appends dummy blocks to the encryption
such that its length does not leak information on the intended receiver. For more details
on semantically secure encryption, see, e.g., [7].

The buffer complexity in the protocol is O(n) times the size of the bus. To determine
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the size of the bus that may serve well under this policy we use the so-called birthday
problem (or birthday paradox). As an example, with probability 1/2 in a group of 23
random people there will be two people with the same birthday. More generally,

Claim 3.2. Suppose s balls are randomly and independently assigned to r bins (where
s < r ). The probability that all balls fall into distinct bins is ≈ e−s(s−1)/2r .

Assume that we have an upper bound s on the number of messages that will be sent
anonymously. Thus, if we take the size of the bus to be r = O(s2), then the probability
that two processors will randomly choose the same seat is less than 1/4. If we take the
size of the bus to be r = O(ks2), for some security parameter k, then the probability of
a collision drops to 1 − e−1/k ≈ 1 − (1 − 1/k) = 1/k.

Of course, if there is a collision, then the first message gets lost. A possible way
to overcome this problem is that the recipient sends an acknowledgment to the sender
using the same seat. If the sender does not get the message, then the sender resends the
message. The expected number of times that a message will be sent is less than 2 even
if the number of seats is r = O(s2).1

Theorem 3.3. Assume that there is some upper bound s on the number of anonymous
messages that are sent simultaneously. There is an anonymous message delivery protocol
with communication complexity 1, expected time complexity O(n), and buffer complexity
O(ns2).

The above protocol enables us to send an anonymous-sender message, that is, a mes-
sage in which the sender keeps its anonymity from the receiver (simply by not mentioning
the originator of a message). Now, if a sender pi sees that it resends a message many
times, then pi can decide to double the size of the bus. However, pi does not want to
reveal that it is trying to send a message, thus it can send an anonymous-sender message
to another (random or fixed) processor to double the size of the bus. Similarly, a processor
that receives acknowledgments for several messages in a row can send an anonymous
message to reduce the size of the bus.

Another way to reduce the number of seats is to assume that each time the bus gets
to pi it will send only one message.2 In this case, we can use a bus with only n seats:
Each processor has a single seat si in the bus that can be used for sending a message to
another processor in the ring. The message M is encrypted by the sender in a way that
ensures that only the receiver can decrypt M . That is, when the bus gets to a processor
pj it tries to decrypt the messages in the n − 1 seats si , where i �= j , and receives the
messages that it can verify their authenticity.

1 The disadvantage of this protocol is that when a sender does not get the acknowledgment, then it knows
that someone else is also sending messages.

2 Alternatively, if pi has more than one processor with whom it wants to communicate, then it will use a
buffer to store these messages; this will increase the delivery time to O(n2).
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3.2. Full Communication—Time Optimal Protocol

We next present a protocol with optimal time complexity, however with bad communi-
cation complexity. In this protocol two buses travel through every link—a bus in each
direction. The nodes transfer seats from one bus to another according to the shortest
path criteria. A seat si, j that arrives at a node pk is assigned to a bus that traverses the
link attached to pk that is on a shortest path to pj . The seats that are transferred use the
routing information, and may be transferred together with the routing messages that are
repeatedly exchanged. That is, the communication in this protocol is “swallowed” by
the communication of the routing-update protocol.

As in the previous protocol all messages are encrypted using the key of the receiver
before they are assigned to seats, and encrypted garbage messages are sent if there is
no real message. Thus, anonymity is guaranteed. Next we state the communication and
time complexities of this protocol. The communication complexity of this protocol is the
number of buses, i.e., 2m (where m is the number of edges in the graph). This protocol
has optimal time for message arrival, which is the number of links in the shortest path
between the receiver and sender. The buffer complexity of a node is the number of
shortest paths that contain this node. This number can be small or big depending on the
communication graph. For example, if the graph is a complete graph, each bus contains
one seat, and the buffer complexity of a node is the number of its neighbors, i.e., n − 1,
however, the number of buses is O(n2). The other extreme is a star, where the buffer
complexity of the center is O(n2) and the number of buses is O(n).

Theorem 3.4. There is an anonymous message delivery protocol with communication
complexity 2m and buffer complexity at most O(n2). The time complexity between two
nodes is the distance between the nodes in the communication graph.

4. Time and Communication Tradeoff

In this section we examine more sophisticated protocols that can be tuned up to trade
time and communication. The first observation is that the full communication protocol
presented in Section 3.2 already presents tradeoffs between time and communication:
the protocol can use any connected spanning subgraph of the communication graph with
two buses on each edge of the subgraph. This reduces the communication complexity
but might increase the time complexity since the distance between two nodes in the
subgraph might be bigger. To obtain the minimum number of buses, the protocol uses a
spanning tree; in this case the communication complexity is O(n).

We next present protocols which reduce the number of buses to less than n. In these
protocols we divide the graph into clusters and construct bus routes within each cluster.
For concreteness, we choose specific partitions to clusters that are based on [5], however,
similar partitions can be used as well (see the related work in [5]).

The partition scheme of [5] uses a spanning tree of the communication graph, and
partitions its nodes and edges to clusters. One way to partition the tree is a node partition
which results in clusters with at least x nodes and no more than δx nodes, where x can
be chosen to be any value in the range 1, . . . , n and δ is the maximum degree of a node
in the tree. In this partition neighboring clusters are connected by a single link. The
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partition scheme that we use is edge partition, that is, each edge in contained in exactly
one cluster. In this case each cluster contains at least x edges and no more than 3x edges,
where, again, x can be chosen to be any value in the range 1, . . . , n. (In fact at most
one cluster is of size 3x and all the rest are of at most 2x .) Each cluster is a connected
subgraph of the spanning tree, i.e., it is a tree that contains O(x) nodes. In this partition
two neighboring clusters are connected by a single node.

We now roughly describe the edge partition scheme of [5]. A rooted spanning tree is
constructed and each node p is marked by Mp, the number of edges in its subtree. In
each iteration a node with Mp ≥ x , such that for all p’s children q it holds that Mq < x ,
is chosen. Then a subset of the subtrees rooted at p’s children are selected such that the
total number of the edges in these subtrees is greater than x but not exceeding 2x . These
trees form a cluster, that is removed from the tree. Now, the numbers Mp are recalculated
for the remaining tree, and the scheme proceeds to the next iteration. Note that if the
number of edges in the tree is less than 3x , then it may not be possible to partition the last
remaining tree into a cluster of x to 2x edges. For example, a root with three outgoing
edges for which the subtree rooted at each of them is of size exactly x − 1 cannot be
partitioned as we require—hence we allow the last cluster to include 3x edges.

Once the network is partitioned to clusters, we have one bus in each cluster which
performs an Euler tour on the spanning tree of the cluster. There are at most �n/x�
clusters in the graph, thus the number of buses, i.e., the communication complexity,
is no more than �n/x�. If a message is sent from a node in one cluster to a node in
another cluster, then this message should move from one bus to another until it reaches
the cluster of the receiver. That is, when a bus reaches a node that is part of more than
one cluster (recall that we use an edge partition), then seats are transfered from one bus
to another. The bus in Cluster� has a seat si, j for every pi and pj such that the simple
path connecting them in the spanning tree passes through an edge of Cluster�. We next
analyze the buffer complexity: For a given node and a given seat si, j , there can be at most
two clusters containing the node such that the path from pi to pj in the spanning tree uses
an edge from the cluster. Thus, the buffer size of each node is at most twice the number
of simple paths in the tree passing through the node. This number is at most O(n2).
Since the messages are encrypted using a semantically secure encryption, anonymity is
guaranteed.

4.1. Bus Scheduling

We would like to minimize the time required for a message to arrive at its destination. To
achieve this goal, buses in clusters with a common node should reach the common node
simultaneously in order to transfer seats. We show how to schedule the buses to satisfy
this condition. Recall that we consider synchronous settings, where the bus traverses an
edge in a single time unit. Furthermore, we use the fact that clusters have similar sizes.
We first consider an ideal case, where the clusters have identical size. In this case we
can start with an arbitrary cluster, schedule its bus, and whenever the bus reaches a node
shared with another cluster, we start scheduling the bus of the neighboring cluster. Since
we consider a spanning tree, then there are no cycles and this scheduling is possible.

If the clusters have different numbers of nodes, we first schedule the bus in a cluster
Cluster� with the maximum number of edges mmax. Recall that an Euler tour in this cluster
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will take 2mmax time units. Then whenever the bus reaches a node that is part of other
clusters, the buses of the other clusters are scheduled. It is possible that a neighboring
cluster Clusterj has m ′ < mmax nodes, in such a case the bus of Clusterj will wait,
O(mmax − m ′) time units, for the bus of Cluster�, whenever it reaches the node that is
common to Cluster� and Clusterj . The procedure continues in a fashion similar to the
case of identical size clusters.

We next analyze the time complexity of this protocol. If the distance between node pi

and node pj in the spanning tree is d, then the path can pass through at most d clusters,
and in each cluster it would take less than 2mmax steps until the message would pass to
the next cluster. Thus, the delivery time from pi to pj is O(dx) (since mmax < 3x , where
x is the parameter chosen in the edge partition scheme). In the worst case the message
will pass through each edge of the spanning tree at most twice and the delivery time
would be O(n).

Theorem 4.1. For every x , where 1 ≤ x ≤ n, there is an anonymous message delivery
protocol with communication complexity O(n/x), buffer complexity O(n2), and where
the time complexity between two nodes is O(min(dx, n)), where d is the distance between
the nodes in the spanning tree.

Example 4.2. Consider a complete binary tree with a “natural” partition into clusters.
More precisely, consider a complete binary tree whose height is �a for some parameters
� and a, and its number of nodes is n = 2�a+1 − 1. We partition the tree into clusters
of size x

def= 2a+1 − 1 where each cluster is a complete binary tree of depth a. The
distance d between two nodes in this case is at most 2 log n. However, the upper bound
of Theorem 4.1 is too pessimistic for this case. Observe that any simple path in the tree
passes through at most 2 log n/log x clusters, thus the delivery time is O(x log n/log x)

and the message complexity is (n − 1)/(x − 1). See the example in Fig. 1.

Fig. 1. A tree of height 3 partitioned into seven clusters of height a = 1.
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4.2. Reducing the Number of Seats

We can reduce the number of seats in a bus, i.e., reduce the buffer complexity. We use
a bus with O(n2/x2) seats, a seat sk,� for a message that should be transfered from
the kth cluster to the �th cluster. In this case only one message can be sent at a time
from a particular cluster to another cluster. It is possible that more than one processor
in Clusterk will try to transmit a message to Cluster�. We use a probabilistic approach,
where each processor in Clusterk that would like to send a message to Cluster� uses a
random function to decide whether to overwrite the seat sk,�. To ensure that overwrites
are not observed each message is changed at every node. To do so, every message is
encrypted in a nested fashion, using all the keys of the processors in the route to the bus
exchange node.

5. Lower Bounds

In this section we prove lower bounds on the time/communication tradeoffs. As a warm-
up we start with the simple case where there is one bus traversing the communication
tree according to some Euler tour. This tour, whose length is O(n), traverses each leaf
of the tree once and there are at least two leaves. Thus, for any two leaves u and v the
distance between u and v or v and u in the tour is at least n/2, and it takes at least n/2
time units to send a message from u to v or from v to u. The next lemma generalizes
the above simple scenario. It considers a protocol where in each time step only one
processors sends a message. The order of the processors sending the messages can be
arbitrary, it may change in time, or even be randomized. In this case we consider a very
long execution of the protocol, where processors exchange many messages. We measure
the expected delivery time from pi to pj , where the expectation is taken over the many
times that pi sends a message to pj .

Lemma 5.1. In any protocol with communication complexity 1, there are two nodes
in the graph such that the expected delivery time from one node to the second
is �(n).

Proof. A necessary condition for transmitting a message from a node u to a node v is
that u sends some message on one of its outgoing edges. In each time unit there is at
most one node sending a message. For any t , consider the sequence of nodes that send
messages in the first t time units. (We do not assume anything about this sequence other
than that it contains at most t nodes.) There is at least one node u that appears at most
t/n times in this sequence. In other words, the expected distance from two occurrences
of u in the sequence is �(n). Fix such u and pick any node v. Assume that u wants to
send a message to v one time unit after each time that it appears in the sequence. It takes
�(n) time units for u to send a message to v.

The above proof does not use the anonymity requirement of the delivery protocol,
but only relies on the message complexity. There is one delicate issue that we should
elaborate. By the assumptions on the order of sending messages, this order might depend
on the transmitting parties (if we use the anonymity requirement, then this assumption
might be reasonable). The simplest way to eliminate this problem is to fix a vertex v in
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advance, and assume that each other vertex wants to transmit a message to v one time
unit after each time that it appears in the sequence.

Note that every protocol with communication complexity c and time complexity t can
be transformed into a protocol with communication complexity 1 and time complexity
tc (since we consider a synchronous system). Thus,

Theorem 5.2. In any protocol with communication complexity c, there are two nodes
in the graph such that the expected delivery time from one node to the second is �(n/c).

The above theorem implies that the tradeoff in Theorem 4.1 cannot be improved by a
factor bigger than O(d), where d is the distance between the two nodes in the spanning
tree. We next show that if we consider the “natural” partition of the complete binary
tree into clusters described in Example 4.2, then we obtain message complexity n/x and
time complexity �(x log n/log x). The upper bound is shown in Example 4.2. We next
show that this upper bound is tight for this partition. To prove this claim consider an
Euler tour in a complete binary tree with x nodes starting from the root, and let v be
the first leaf visited in the tour. The distance in the tour between v and the root is �(x).
Now we consider the complete binary tree, and define a sequence of log n/log x nodes
v0, v1, . . . , vlog n/log x , where v0 is the root of the tree, and vi is a leaf in the cluster of vi−1

whose distance from vi−1 in the Euler tour of the cluster is �(x). Thus, the delivery time
of a message from vlog n/log x to the root is �(x log n/log x) no matter how the buses are
scheduled.

6. Extensions

In this section we show how simple modifications to the idea of the buses can cope with
three extensions to the model. The first extension is anonymous multicast and broadcast,
the second is when the topology of the communication graph is unknown, and the third
is to a Byzantine adversary, that is, an adversary that can cause processors to behave
maliciously.

6.1. Anonymous Multicast and Broadcast

In this section we discuss informally how to multicast and broadcast a message anony-
mously. Anonymous broadcast enables a sender to broadcast a message to all processors
without revealing its identity. To enable anonymous broadcast the sender only needs
to send an anonymous-sender message to some (fixed or randomized) receiver pj , that
is, a message in which the sender keeps its anonymity from the receiver. This message
will simply say “broadcast message M to all processors.” Processor pj uses any (non-
anonymous) broadcast protocol to broadcast M . The protocol of Theorem 3.3 enables
anonymous-sender messages hence enables anonymous broadcast. Furthermore, in all
our protocols where we allocate a seat si, j for sending a message from pi to pj (e.g., the
protocol of Theorem 3.1) we can add a seat s∗, j meaning that some anonymous processor
wants to send a message to pj , in this case the sender uses the nested encryption method
described in Section 3.1.1 to hide the fact that it changes the content of a seat. If there
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are not too many anonymous broadcasts sent simultaneously and the sender selects a
random pj , then this solution is efficient.

Multicast enables a sender to send a message to some subset D of processors. We
consider three variants of anonymous multicast: (1) keeping the anonymity of the
sender, (2) keeping the anonymity of the recipients, and (3) keeping the anonymity
of both the sender and the recipients. Anonymous-sender multicast reduces to sending
an anonymous-sender message to a single processor in the multicast set saying “mul-
ticast message M to the processors in D.” Anonymous-recipients multicast reduces to
sending independently the message M anonymously to each processor in D. This can
be done without any overhead in all our protocols where we allocate a seat si, j for each
pair of processors. Finally, anonymous-sender, anonymous-recipients multicast can be
achieved by independently sending the message M to each processor in D using an
anonymous-sender protocol.

6.2. Unknown Topology

We consider the scenario where the processors in the network do not know the topology
of the network (for example, the network can change periodically). The solution we
propose for this problem is to use a random walk on the communication graph. More
precisely, there is one bus traversing the graph, and in each step the processor holding
the bus chooses uniformly one of its neighbors, and sends the bus to the chosen neighbor.
Aleliunas et al. [1] proved that the expected time of a random walk that visits all the
nodes of an undirected graph with n nodes and m edges is O(nm). Thus, the expected
delivery time of a message using a random walk (in an unknown graph) is O(nm). This
bound on the delivery time is tight for some graphs, e.g., the so-called lollipop graph.
However, it is too pessimistic for some graphs, e.g., for a clique the expected delivery
time is O(n log n) (and not O(n3)).

Theorem 6.1. There is an anonymous message delivery protocol in a network whose
topology is unknown with communication complexity 1, expected time complexity O(nm),
and buffer complexity O(n2).

6.3. Byzantine Adversary

We now turn to the case in which processors are Byzantine, that is, they may try to
add/delete or change messages in a malicious way. First note that the communication
graph must be t + 1 connected in order to tolerate t faults. Otherwise, there is a cut of
t or less Byzantine processors that can partition the graph into two isolated connected
components. We therefore assume that the communication graph is t +1 connected, thus,
by Menger’s theorem [10], for every two nodes there are t +1 paths connecting them such
that there is no internal node common to two of these paths. For every pair of processors
we fix such t + 1 disjoint paths. We describe a protocol in which there are two buses on
each link, one in each direction. When pi wants to send a message to pj anonymously,
then pi authenticates this message using a private key common to pi and pj . Processor
pi sends the message over the t +1 fixed disjoint paths, therefore the message will reach
the destination through at least one path with no Byzantine processor. This ensures that
a Byzantine processor cannot generate/change a message originating from some sender
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in a way that is not identified by the receiver. Thus, the Byzantine processor can only
drop messages. To achieve anonymity we use the mechanism of the full communication
protocol described in Section 3.2. The number of seats in a bus equals the number of paths
that use this link in the bus traveling direction. The time complexity from pi to pj in this
protocol is the length of the longest path amongst the t +1 disjoint paths from pi to pj . In
the worst case this can be n. We summarize the properties of the above protocol below.

Theorem 6.2. Assume that the communication network is t + 1 connected. There is
an anonymous message delivery protocol against a Byzantine adversary that controls at
most t processors with communication complexity 2m, time complexity O(n), and buffer
complexity O(n2).

We next discuss how to reduce the number of buses. Given a communication graph that
is at least t + 1 connected, we will find a spanning subgraph that is t + 1 connected and
contains fewer edges. Finding a t+1-connected spanning subgraph that has the minimum
number of edges is NP-hard. However, there are good approximation algorithms for this
problem. A recent result [4] describes an efficient algorithm that returns a graph whose
number of edges is no more than 1 + 1/(t + 2) times the optimal number of edges. In
particular, the number of edges is no more than (t+1)n. This, however, might increase the
delivery time since the length of the t + 1 disjoint paths might be longer. We summarize
the properties of the above protocol below.

Theorem 6.3. Assume that the communication network is t + 1 connected. There is
an anonymous message delivery protocol against a Byzantine adversary that controls at
most t processors with communication complexity 2(t + 1)n, time complexity O(n), and
buffer complexity O(n2).
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