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Abstract. The standard Diffie–Hellman key exchange is suseptible to an attack known
as the man-in-the-middle attack. Lack of authentication in the protocol makes this attack
possible. Adding separate authentication to the protocol solves the problem but adds
extra transmission and computation costs. Protocols which combine the authentication
with the key exchange (an authenticated key exchange) are more efficient but until now
none were provably secure against the man-in-the-middle attack. This paper describes an
authenticated key exchange based on the difficulty of theqth-root problem, a problem
believed to be equivalent to the discrete logarithm problem over groups of orderq2

(whereq is a large prime) and parallel to the square-root problem over the ring modulo
N, whereN is a strong two prime composite integer. We show that mounting a man-in-
the-middle attack for our protocol is equivalent to breaking the Diffie–Hellman problem
in the group.
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1. Introduction

Astandard digital key exchange allows two parties to exchange publicly viewable data
electronically, and with that data create a secret key known only by the two parties. The
Diffie–Hellman key exchange does exactly this, and in general is very secure (see [4]).
However, the Diffie–Hellman key exchange was not designed with any authentication. It
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is suseptible to the man-in-the-middle or impersonator attack. In this attack an adversary
impersonates one of the parties. Without authentication there is no way to distinguish a
friend from a foe.

Two basic methods have been used to solve this key exchange authentication problem.
The first method simply adds an authentication scheme to the exchange. Public key
exchange data is not accepted unless it is accompanied by a valid digital signature of the
public data. Although this solves the authentication problem it adds extra transmission,
computation, and data management costs to the protocol.

The second method is to modify the Diffie–Hellman key exchange such that the
digital authentication is built into the exchange (see [7] and [3]). Authentication is most
often added to the key exchange by incorporating a good one-way function into the key
exchange. The one-way functions most often used are standard hash functions. These
functions are complicated and often hard to analyze. To date, none of these authenticated
key exchanges has been provably secure against the man-in-the-middle attack.

The authentication property of our key exchange is based on a relatively new hard
problem. Theqth-root problem (described below) is believed to be equivalent to the
discrete logarithm problem over groups of orderq2, whereq is a large prime integer.
This hard problem gives us a very simple one-way function: raising elements of order
q2 in the group to theqth power is a one-way function. The algebraic simplicity of this
one-way function is what enables us to prove the security of the key exchange.

What we propose to do in this paper is to describe an authenticated key exchange
provably secure against the man-in-the-middle attack. We will show that if the man-
in-the-middle attack can be mounted against our key exchange, then we can solve the
Diffie–Hellman problem.

2. Theqth Root Problem

Theqth root problem (see [1] and [6]) over a groupG of orderq2 is parallel, in many
ways, to the square-root problem modulo a two prime composite. Factoring the modulus
is equivalent to the ability to find square roots, and the ability to find square roots enables
factoring. Likewise, solving the discrete logs problem inG is equivalent to the ability to
find qth roots inG, and the ability to findqth roots enables the solving of the discrete
logarithm problem (see [2]). These problems convert the hard problems of factoring and
discrete logs to root-finding problems.

A few characteristics of the problems disrupt their parallelism. These characteristic
differences all stem from the fact that the square-root problem is tied to the factoring
problem and theqth-root problem is tied to the discrete log problem overG. Each give
good and bad cryptographic traits to its particular “root” problem.

The first major difference is the choice of group. An important cryptographic imple-
mentation detail is what group will the system be working over. The choice effects run
time, security, power consumption, and the amount of data necessary for transmission.
For example, moduloN arithmetic, whereN is a large composite integer, is complicated
and time consuming. On the other hand, if the groupG was chosen such that the base
operations are overGF(2), much less time and effort are usually required. The square-
root problem is tied to factoring, which limits the choice of group. Theqth-root problem
is tied to the discrete logarithm problem, allowing for many choices for the group.
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The second difference is the possible existence of a trapdoor. This is both a plus and
minus for both groups, depending on the cryptographic requirements. When the security
of a system is based on factoring, knowledge of the factors is a trapdoor. This single piece
of information allows the holder to compute square roots at will. No such trapdoor exists
with theqth-root problem.1 A trapdoor makes public key encryption and signature with
message recovery possible. Without the trapdoor, designing public key encryption and
signature with message recovery is difficult if not impossible. On the other hand, if only
a signature is needed, then the fact that such a trapdoor does not exist lends credence to
the system, especially in situations with mutually mistrusting parties.

This paper describes a simple authenticated key exchange based on theqth-root
problem.

3. Why Is an Authenticated Key Exchange Necessary?

In a standard Diffie–Hellman key exchange (see Fig. 1), a shared secret is established
by exchanging a common base element raised to a one-time random, secret value. The
users create the shared secret by raising the value received by the random secret they
have created. Because the exponentiation is commutative, these values will be the same
for both users. However, because the discrete logarithm problem is so hard, no one other
than these two users should be able to create this shared secret

The two users can now use the shared secret as a key for a symmetric cryptosystem.
This technique is simple, fairly efficient, and secure. Computing the secret key from

the two public portions of the key is called the Diffie–Hellman problem and it appears
to be as difficult as the discrete logarithm problem.

Definition 1 (The Diffie–Hellman Problem). Given

• G: A cyclic group (or subgroup) for which discrete logarithms are “hard”.
• α: A primitive element inG.
• (αa, αb

)
: Public portions of a key exchange.

Find the secret keyαab. Although never proven, this problem is considered to be equiv-
alent to the discrete logarithm problem.

Fig. 1. Standard Diffie–Hellman key exchange.

1 The discrete logarithm problem is intractable and without trapdoors for most large groups with non-
smooth order. However, there are some poor choices of groupsG for which the discrete logarithm problem is
subexponential—see [8] and [5].
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Fig. 2. Impersonation attack.

There is only one major problem with the scheme: it is not authenticated. This means
that user A has no way of knowing if theαr B actually came from user B. A third party (C)
could have intercepted the transmission from B and substituted their own value (sayαrC ).
User A believes that the key generated is shared with user B, when in fact it is shared
with user C. Any transmissions sent by user A to B can be intercepted by user C and
read. User C can also send messages to user A, posing as user B. If user C intercepts and
replaces transmissions from both users (A and B), user C can effectively tap an encrypted
line. Neither user would be able to tell that any thing is wrong with their system and
both would believe that the messages they were sending could only be read by the other
user. This attack is called the impersonation or man-in-the-middle attack (see Fig. 2).

Definition 2 (Generalized Impersonation Attack). LetE be a key exchange protocol
with public long term parametersPa, Pb, one-time public parametersDa, Db, which
returns a keyK : E (Pa, Pb, Da, Db) = K . An impersonation attack on E computes a
one-time publicD′ and a matching keyK ′ given Da, Pa, Pb: E

(
Pa, Pb, Da, D′

) = K ′.
The attack can be reduced to finding the functionF , where

F(Pa, Da, Pb) = [D′, K ′].

4. Authenticated Key Exchange

The main purpose of an authenticated key exchange is to prevent the impersonation
attack. An authenticated key exchange does not guarantee that the two parties share the
same key. The two parties will share the same key only if they receive uncorrupted data
from each other. An authenticated key exchange does guarantee that the two parties
either

(1) share a common key or
(2) share no key with each otherORanyone else.

The impersonation attack can be thwarted in several ways. The first technique adds
an authentication mechanism into the key exchange: add a digital signature of the public
version of the key half. This prevents the impersonation attack at the cost of a digital
signature.
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A less costly solution is to use a key exchange with authentication built in: an au-
thenticated key exchange protocol. The following scheme differs from the basic Diffie–
Hellman scheme by applying a one-way function to the random value and adding a long
term secret key to the scheme. In this simplified description it is assumed that each user
has an authenticated public version of the other user’s secret key and that the secret keys
remain secret. It is described in [7] and what follows is a generalized overview:

Components

• G: A group for which discrete logarithms are “hard”.
• α: An element whose order is divisible by a large prime divisor.
• xi : Long term secret integer (modulo the order ofα) for useri .
• γi : The public version ofxi , namelyγi ≡ αxi .
• ri : A one-time random secret integer (modulo the order ofα) for useri .
• µi : The public version ofri , namelyµi ≡ αri .
• H : This function converts an element inG into an integer modulo the order ofα.

In standard Diffie–Hellman key exchange theµi values are exchanged and combined with
the user’s one-time random secret value to obtain the final key. This scheme exchanges
the same one-time public values (theµi values) but combines them with the long term
keys in such a way that the impersonation attack is blocked.

Authenticated Key Exchange(see Fig. 3)

1. Transmit theµi values.
2. Receiveµj .

3. Computeθi ≡ µj γ
H(µj )

j ≡ αxj H(µj )+r j .

4. Compute the shared key:θ xi H(µi )+ri
i ≡ α(xi H(µi )+ri )(xj H(µj )+r j ).

Whilethe long term secret is necessary for authentication, without the one-way func-
tion on the random data (i.e., usingµi in the exponent) the impersonation attack would
still be viable. Here is how it works. In the description below C will impersonate user A
to user B:

1. C (the man-in-the-middle) has access toγA and prevents the trueµA from reach-
ing B.

2. C generates a random valuet .
3. Let t equalxA + r ′A. NeitherxA nor r ′A is known.

Fig. 3. Authenticated key exchange.
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4. C now generatesµ′A ≡ αr ′A by computingµ′A ≡ αtγ−1
A .

5. The shared key will beαt (xB+r B), which C creates with knowledge oft .

4.1. How the Attack is Blocked

In the previous authenticated key exchange the one-way function,g, on the random
public component was simple exponentiation:µi is used in the exponent to create the
key. An imposter would still be able to generate a randomt value, but removing the
public version of the long term private key and solving for the random one-time public
key appears to be a very hard problem.

GivenγA, γB, andµB the imposter must generate a matching pairµC, K , where

K = α(xA H(µC)+rC)(xB H(µB)+r B),

whererC is the discrete logarithm, baseα, ofµC. The imposter can createα(xB H(µB)+r B)

which reduces the problem to finding a pair

µC, [t = xAH(µC)+ rC].

Choosing a randomrC and solving fort involves solving a discrete log problem. Choosing
a randomt and solving forµC seems more tractable. Start by generating a random
t ′ = xA + rcH(µC)

−1. This allows us to strip off thexA in the exponent and group all
the unknowns together. IfµC can be found, then the originalt value is easily derived
(t = t ′H(µC)).

With this data the valueµH(µC)
−1

C can be computed. However, computingµC from this
value appears to be as difficult as the discrete log problem.

5. Simplified Authenticated Key Exchange

In order to simplify the key exchange the first question to ask is what purpose does the
one-way function serve? Its main purpose is to prevent an imposter from using the public
information of two legitimate users to create a key and a public value. The imposter wants
the key and public value to have the property that if the public value is sent to one of
the legitimate users, they will use it, along with their private key and the other legitimate
user’s public key, to create a key which the imposter can duplicate. This is what the
second version of the impersonation attack does (see Fig. 4).

The scheme presented in this paper also uses a one-way function to thwart an imper-
sonation attack. The one-way function is much simpler (arithmetically) however, and
thus more can be proved about it. In [2] it was shown that findingqth roots in a group of
orderq2 was as equivalent to finding discrete logarithms in a subgroup of orderq. Rais-
ing elements to theqth power in a group of orderq2 is a simple one-way function based
on the discrete logarithm problem, and the one we use for this simplified authenticated
key exchange (see Fig. 5). The scheme is the following:

Components

• G: A group (or subgroup) for which discrete logarithms are “hard” and which has
orderq2.
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Fig. 4. Impersonation attack—version 2.

• α: An element whose order isq2.
• xi : Long term secret integer (moduloq2) for useri .
• γi : The public version ofxi , namelyγi ≡ αxi .
• ri : A one-time random secret integer (moduloq2) for useri .
• µi : The public version ofri , namelyµi ≡ αri .

Simplified Authenticated Key Exchange (SAKE)

1. Transmit theµi values.
2. Receiveµj .
3. Computeθj ≡ µq

j γj ≡ αxj+qrj .

4. Compute the shared key:θ xi+qri

j ≡ α(xi+qri )(xj+r j q).

The simplicity of the one-way function has several benefits. First, it allows us to show
that performing an impersonator attack on SAKE is equivalent to solving the Diffie–
Hellman problem. Second, it may allow for efficiency improvements in hardware as the
one-way function and exponent,q, can be chosen or designed as needed. One draw back
to this scheme is that it requires a group (or subgroup) of orderq2. Finding such a group
is slightly more difficult (though this is one time work) and for some groups, such as
elliptic curves, it could require more transmission bits.

Fig. 5. Simplified authenticated key exchange.
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6. Mapping to the Diffie–Hellman Problem

Although standard Diffie–Hellman key exchange is vulnerable to the impersonation
attack, the fundamental Diffie–Hellman problem appears to be hard. This section shows
that performing an impersonation attack against SAKE would break the Diffie–Hellman
problem.

We have:

• G: A group (or subgroup) for which discrete logarithms are “hard” and which has
orderq2.
• α: An element whose order isq2.

An impersonation attack against SAKE (see Definition 2) implies that the attacker,
knowing onlyαX, αY, andαZ , is able to generate the pair

[αR, K = α(X+q Z)(Y+q R)].

With this matched pair, an impersonator would sendαR to the user with the secret key
X. This user would think that a key had been exchanged with the user with the secret
key Y. Instead the key would be shared with the impersonator. This section shows that
implementing the impersonation attack is equivalent to breaking the Diffie–Hellman
problem.

6.1. The ORACLE

The ORACLE is a function which takes three inputed values and returns two. In particular
the ORACLE is defined by the functionf :

f (αX, αY, αZ) = [αR, K = α(X+q Z)(Y+q R)].

6.2. The Reduction: Solving the Diffie–Hellman Problem Using the ORACLE

Given the ORACLEf , solving the Diffie–Hellman problem requires three calls to the
oracle, five exponential group operations, and standard group operations.

To ComputeαXY

1. Choose three random values inZ∗q2, Z1, Z2, Z3.

2. Call the oracle on inputsαX, αY, andαZ1:

f (αX, αY, αZ1) = [αR1, K1 = α(X+q Z1)(Y+q R1) = αXY+q(X R1+Y Z1)].

3. Call the ORACLE on inputsαX, αR1, andαZ2:

f (αX, αR1, αZ2) = [αR2, K2 = α(X+q Z2)(R1+q R2) = αX R1+q(X R2+Z2R1)].

4. Call the ORACLE on inputsαY, αZ1, andαZ3:

f (αY, αZ1, αZ3) = [αR3, K3 = α(Y+q Z3)(Z1+q R3) = αY Z1+q(Y R3+Z3Z1)].
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5. RaiseK2 andK3 to the−q power to obtain

K−q
2 = α−q X R1,

K−q
3 = α−qY Z1.

6. Multiply K1, K−q
2 , andK−q

3 to obtain the Diffie–Hellman value:

K1K−q
2 K−q

3 = αXY+q(X R1+Y Z1)−q(X R1+Y Z1) = αXY.

6.3. Conclusions of the Proof

With the imposter ORACLE and the public versions of the key, the Diffie–Hellman
problem can be easily broken. This shows breaking SAKE with an imposter attack is as
difficult as breaking the Diffie–Hellman problem.

7. Conclusions

The SAKE algorithm provides a simple, authenticated method for exchanging keys
which is provably secure against an imposter attack. The algorithm is flexible: it works
over any group for which discrete logarithms are difficult and the square of a large prime
divides the order. For example, various elliptic curve orFP are suitable.

Another benefit is that the primeq is fixed, allowing for easy optimization of the
implementation. The group can even be created with a particular primeq in mind. A
prime with low bit density will improve the efficency.
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