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Abstract. A Boolean function b is a hard-core predicate for a one-way function f if
b is polynomial-time computable but b(x) is difficult to predict from f (x). A general
family of hard-core predicates is a family of functions containing a hard-core predicate
for any one-way function. A seminal result of Goldreich and Levin asserts that the
family of parity functions is a general family of hard-core predicates. We show that no
general family of hard-core predicates can consist of functions with O(n1−ε) average
sensitivity, for any ε > 0. As a result, such families cannot consist of

• functions in AC0,
• monotone functions,
• functions computed by generalized threshold gates, or
• symmetric d-threshold functions, for d = O(n1/2−ε) and ε > 0.

∗ The results in this article were originally presented at CRYPTO 1997 [6] and STACS 2000 [7]. Part of
this research by the first author was done while visiting McGill University. The research of the second author
was done at the Royal Institute of Technology, Stockholm. The third author was supported by NSF NYI Grant
No. CCR-9457799 and a David and Lucile Packard Fellowship for Science and Engineering. Part of this
research was done while he was a postdoctoral fellow at the University of Texas at Austin and the University
of California, Berkeley, and part done while visiting McGill University.
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The above bound on sensitivity is obtained by (lower) bounding the high-order terms of
the Fourier transform. We also explore lower bounds on the size of small-depth circuits
implied by the above bound on the average sensitivity.

Key words. Cryptography, One-way function, Hard-core predicate, Pseudorandom
generator.

1. Introduction

A basic assumption on which much of modern (theoretical) cryptography rests is the
existence of one-way functions. In general, such functions may have quite pathological
structure, and the development of useful cryptographic primitives from general one-way
functions (often with additional properties) is one of the triumphs of modern cryptogra-
phy. One of the more troubling ways that a one-way function may be unsatisfactory is that
it may “leak” information about x into f (x): in particular, it may be possible to compute
nearly all of x from f (x) in polynomial time. The problem of showing that f (x) hides
at least one bit of information about x is the hard-core predicate problem, identified in
the seminal work of Blum and Micali [3]. Specifically, they show how to construct a
pseudorandom bit generator from a specific permutation (exponentiation modulo a large
prime) under the assumption that computation of discrete logarithms is difficult. The
generator starts with a seed x0 and then iteratively computes xi+1 = gxi mod p, where g
is a generator of Z

∗
p. In every iteration the generator outputs a pseudorandom bit b(xi ),

which is, more or less, the most significant bit of xi . The proof of security of the Blum–
Micali generator relies on the fact that if computing discrete logarithms is hard, then
it is difficult to predict b(x) given gx mod p—the predicate b is a hard-core predicate
for modular exponentiation. As they point out, their construction can be applied to any
given one-way permutation and a hard-core predicate for that permutation.

At this point it was natural to ask if hard-core predicates exist for all one-way permu-
tations. An affirmative, and quite satisfactory, answer was given by Goldreich and Levin
[9] who demonstrated that every one-way function has a hard-core predicate.1 Specifi-
cally, they show that for any one-way function f , there is a polynomial-time predicate
bf so that bf (x) is difficult to compute from f (x). A hard-core predicate, though a basic
primitive, has remarkable potency.

• If f is a permutation, a hard-core predicate immediately gives rise to a pseudoran-
dom generator (by the Blum–Micali construction).

• If f is a permutation, a hard-core predicate immediately gives rise to a secure
bit-commitment scheme (see [2]).

• If f is a one-way trapdoor permutation, a hard-core predicate for f immediately
gives rise to a semantically secure encryption scheme (see [10] and [27]).

• The Goldreich–Levin construction of a hard-core predicate for any one-way func-
tion is an important ingredient in the proof that the existence of one-way functions
implies the existence of pseudorandom generators [18], [13], [14].

1 Specifically, a nonuniform hard-core predicate can be found for any one-way function f . If one can tolerate
a minor alteration to the one-way function f , a uniform predicate can always be found.
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Considering their importance (and the result of Goldreich and Levin mentioned above),
it is natural to wonder how simple such predicates can be. For specific conjectured one-
way functions such as RSA or discrete exponentiation, extremely simple hard-cores
can be found, e.g., [1], [3], [17], and [16], but each of these proofs relies heavily on
the specific structure of the relevant one-way function. In general, one seems to need
relatively complex predicates.

In this article we demonstrate that, in general, hard-core predicates must be quite rich,
having a nonnegligible portion of their Fourier transform concentrated on high-degree
coefficients. From this follows a number of richness conditions for such predicates:
general hard-core predicates

• cannot have small average sensitivity (specifically, they cannot have average sensi-
tivity O(n1−ε) for any ε > 0),

• cannot be computed in AC0,
• cannot be monotone,
• cannot be computed by generalized threshold functions, and
• cannot be computed by symmetric d-threshold functions, with d = O(n1/2−ε) for

any ε > 0.

It is interesting to note that these results parallel those for universal hash functions
obtained by Mansour et al. in [24]. See also [20] for related work on the complexity of
pseudorandom generators.

Section 2 defines the notions of one-way function and hard-core predicate. Section 3
briefly erects the framework of Fourier analysis for Boolean functions. Sections 4 and
5 are devoted to proving the main theorem and discussing some applications. Section 6
refines the result for AC0 functions by providing strong lower bounds on the size of
constant-depth circuits computing hard-core predicates.

Preliminary versions of the results in this article were originally presented in [6] and
[7]. The results in Section 6 of this article were originally obtained in [6] using Håstad’s
switching lemma [12] rather than the bounds on sensitivity used here.

2. One-Way Functions and Hard-Core Predicates

A function f : {0, 1}∗ −→ {0, 1}∗ is length-preserving if f ({0, 1}n) ⊂ {0, 1}n for all n.
We write f (n) for f restricted to inputs of length n. For convenience, we restrict our
attention to length-preserving one-way functions. This restriction does not affect the
generality of the discussion: any one-way function can be modified so as to be length-
preserving by a standard padding argument.

Definition 1. A (length-preserving) function f : {0, 1}∗ −→ {0, 1}∗ is a one-way func-
tion if f is computable in polynomial time, and for all functions A: {0, 1}∗ −→ {0, 1}∗
computable by polynomial-size circuits and for all k > 0,

Pr
[

f (A( f (n)(x))) = f (n)(x)
] = O(n−k),

this probability taken uniformly over all x ∈ {0, 1}n .
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In this cryptographic setting we consider A to be a polynomially bounded adversary
attempting to invert the function f .

As discussed in the Introduction, a hard-core predicate for a one-way function f is a
polynomial-time predicate b for which the value b(x) is difficult to predict from f (x).
For reasons which will become clear later, it is convenient for us to express Boolean
functions as functions taking values in the set {±1}.

Definition 2. The Boolean function b: {0, 1}∗ −→ {±1} is a hard-core predicate for
a length-preserving one-way function f if b is computable in polynomial time and for
all functions A: {0, 1}∗ −→ {±1}, computable by polynomial-size circuits, and for all
k > 0,

Pr
[
A( f (n)(x)) = b(n)(x)

] = 1
2 + O(n−k),

this probability taken uniformly over all x ∈ {0, 1}n .

Clearly, it would be desirable to have a predicate that is hard-core for any one-way
function, but this is too much to hope for. Assuming that one-way functions exist, it is
easy to see that for any predicate b one can construct a one-way function f for which
b(x) is easy to compute given f (x). However, Goldreich and Levin showed that there
is a fixed predicate b that is a hard core predicate for a padded version of any one-way
function.

Theorem 1 [9]. Let f be a one-way function, and define gf (x, w) = f (x) ◦ w where

◦ denotes concatenation, and |x | = |w|. Then bGL(x, w) = (−1)�
|x |
i=1xi wi is a hard-core

predicate for gf .

In Section 5 we discuss the concept of a general family of hard-core predicates, a
family of functions containing a hard-core predicate for any one-way function. We also
discuss there issues of uniformity for such predicates.

For a more detailed discussion of one-way functions, hard-core predicates, and their
uses in modern cryptography, see [8] and [23].

3. Fourier Analysis of Boolean Functions

Let L(Zn
2) =

{
f : Z

n
2 → R

}
denote the set of real-valued functions on Z

n
2 = {0, 1}n .

Though our interest is in Boolean functions, it is temporarily convenient to consider this
richer space. L(Zn

2) is a vector space over R of dimension 2n , and has a natural inner
product: for f, g ∈ L(Zn

2), we define

〈 f, g〉 = 1

2n

∑
x∈{0,1}n

f (x)g(x).

For a subset α ⊂ {1, . . . , n}, we define the function χα: {0, 1}n → R so that χα(x) =∏
a∈α(−1)xa . These functions χα are the characters of Z

n
2 = {0, 1}n . Among their many

wonderful properties is the fact that the characters form an orthonormal basis for L(Zn
2):
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Proposition 2.

1. ∀α ⊂ [n],

∑
x∈{0,1}n

χα(x) =
{

2n if α = ∅,
0 otherwise,

2. ∀α, β ⊂ [n], χα(x)χβ(x) = χα ⊕ β(x), where α ⊕ β denotes the symmetric
difference of α and β, and

3. ∀α, β ⊂ [n],

〈
χα, χβ

〉 = {
1 if α = β,

0 otherwise.

Considering item 3, the characters {χα α ⊂ [n]} are orthogonal and have unit length.
Since there are 2n characters, they span L(Zn

2), as promised. Any function f : {0, 1}n →
R may then be written in terms of this basis:

f =
∑
α⊂[n]

f̂αχα,

where f̂α = 〈 f, χα〉 is the projection of f onto χα . These coefficients f̂α , α ⊂ [n], are
the Fourier coefficients of f , and, as we have observed above, uniquely determine the
function f .

Given the above, it is easy to establish the Plancherel equality:

Proposition 3. Let f ∈ L(Zn
2). Then ‖ f ‖2

2 =
∑

α f̂ 2
α , where ‖ f ‖2

2 = 〈 f, f 〉 =
(1/2n)

∑
x∈{0,1}n f (x)2.

As always, f̂∅ = Exp[ f ] and, when f is Boolean,∑
α

f̂ 2
α = ‖ f ‖2

2 = 1.

It is interesting to note that if we let an n-bit string w encode a set α(w) ⊂ {1, . . . , n}
in the natural way, then the Goldreich–Levin predicate bGL(x, w) = χα(w)(x).

A prominent theme in the study of (continuous) Fourier analysis is local-global duality:

. . . the speed of convergence of a Fourier series improves with the smooth-
ness of f . This reflects the fact that local features of f (such as smoothness)
are reflected in global features of f̂ (such as rapid decay at n = ±∞).
This local-global duality is one of the major themes of Fourier series and
integrals,. . .

Dym and McKean [5, p. 31]

This very same duality (between smoothness of f and rapid decay of f̂ ) is central for
our study. In our framework, a natural measure of smoothness for a Boolean function f
is its average sensitivity:
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Definition 3. The average sensitivity of a Boolean function f : {0, 1}n → {±1} is the
quantity

S( f ) = 1

2n

∑
x∈{0,1}n

n∑
i=1

| f (x)− f (x ⊕ ei )|
2

,

where ei ∈ {0, 1}n denotes the vector containing a single 1 at position i and ⊕ denotes
coordinatewise sum modulo 2. (The 1

2 factor appearing in the last term here reflects the
choice of {±1} as the range for Boolean functions.)

We look at some examples. The average sensitivity for the n-input parity function is n,
since for any input x , flipping any of the n input bits will change the parity. The n-input
OR function has average sensitivity 2n2−n: if the input is all 0, then flipping any bit
changes the value of the function (for this input the inner sum is equal to n), for any of
the n inputs with weight 1, flipping the single 1 bit will change the value of the function
(for each of these n inputs the inner sum is equal to 1), and for all inputs with weight at
least 2, the inner sum is equal to 0.

Observe that average sensitivity is proportional to the likelihood that a random pair
of neighboring points take on different values: “smooth” functions, where neighboring
points are likely to agree, evidently have small average sensitivity.

The connection between average sensitivity (smoothness) and rapid decay of the
Fourier transform is given by the following equality, due to Kahn et al. [19]:

S( f ) =
∑
α⊂[n]

|α| f̂ 2
α . (1)

Considering the above equality, and recalling that ‖ f ‖2 = 1 for a Boolean function f , the
average sensitivity of f is exactly determined by the distribution of this unit mass among
the terms f̂ 2

α . This is a manifestation of the local-global duality principle mentioned
above: functions having their Fourier transform concentrated on small coefficients (those
for which |α| is small) have small average sensitivity and, as such, are smooth. In this
case, we opt to define our notion of smoothness in terms of the Fourier transform as
follows:

Definition 4. We say that a function f : {0, 1}n −→ {±1} is (t, δ)-smooth iff∑
|α|>t

f̂ 2
α ≤ δ.

A function g: {0, 1}∗ −→ {±1} is (t (n), δ(n))-smooth iff there exists n0 > 0, so that
for all n ≥ n0, g(n) is (t (n), δ(n))-smooth.

A final word on notation: we frequently study functions f (x, y) that take two strings
x, y as input. Using Ix and Iy as the (disjoint) index sets for x and y, respectively, it is
convenient to index the Fourier coefficients of f with two sets α, β, where α ⊂ Ix and
β ⊂ Iy :

f (x, y) =
∑
α⊂Ix
β⊂Iy

f̂α,βχα∪β(x, y) =
∑
α⊂Ix
β⊂Iy

f̂α,βχα(x)χβ(y),

where χα∪β(x, y) = χα(x)χβ(y) since α ∩ β = ∅.
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4. Main Result

Before proceeding we discuss the relevance of sensitivity to the problem of finding hard
core predicates.

4.1. Motivation and Proof Outline

First, notice that simple (and natural) candidates such as individual bits of x , e.g.,
b(x) = lsb(x) (the least significant bit) will in general fail to be hard-core predicates.
A simple counterexample can be found by taking any one-way function g and defining
f (xn−1 · · · x0) = g(xn−1 · · · x1)◦ x0. Though f is a one-way function, computing lsb(x)

from f (x) is trivial. As mentioned in the Introduction one-way functions may, in general,
“leak” substantial information about the input. The proof of our main result capitalizes
on this. One can think of the proof as a construction of a one-way function f which leaks
so much information about the input x , that for any sufficiently smooth function b, b(x)

is often determined by the information f leaks.
Now, to consider a somewhat more complicated candidate than lsb(x), suppose that

f is a one-way function of the form f (x) = g(xJ ) ◦ xJ where J ⊂ [n], |J | = k, and
where xJ denotes xi1 xi2 · · · xik , i j ∈ J , i1 < i2 < · · · < ik . In other words, f applies the
one-way function g to a part of x and outputs the rest of x unchanged. The hardness of
inverting f is now reduced to the hardness of inverting g, and the length of the argument
of g (g’s security parameter) is decreased. As long as this length reduction is within a
polynomial factor, f will be a one-way function. We briefly take the perspective of the
adversary: given f (x), we should like to predict some function b(x). We know a part of
the input to b, i.e. xJ , but not all of it. Now, if the sensitivity of b is low and the unknown
part of x is small, then it is likely that the unknown bits, xJ , are irrelevant to the output,
b(x). In particular, substituting random values for these bits together with the known
bits is likely to produce the correct value, b(x).

Our plan is to construct a function f as above, which requires choice of an appropriate
set J . Clearly, we cannot hope that a fixed J will work since we could then also find
a function b that only depends on the bits in xJ that are hidden to us; such a b could
then very well be unpredictable. This suggests that we use a random J . Choosing a
single random J (for all x of a given length, say) and defining f in terms of this J also
fails: first, this would lead to a nonuniform function f which is undesirable, but more
importantly, it would lead to a considerably weaker result than we are aiming for. We
wish to prove that “there exists a one-way function f such that every smooth predicate
b fails to be a hard-core predicate for f .” However, picking a random fixed J would
only (naively) show that “for every smooth predicate b there is a one-way function f
such that b fails to be a hard-core predicate for f ” (which we already knew). Selecting
a random J for every input x alleviates this difficulty. This randomness must be taken
from somewhere and we do this by “borrowing” randomness from x itself since x is
assumed to be random. This approach can be realized as follows. Writing the n input bits
as x ◦ y (where |x | = |y| = n/2), we now interpret (in some way) y as an encoding of a
subset J = J (y) of the bits in x . We then compute f as f (x, y) = g(xJ (y)) ◦ xJ (y)

◦ y.
This encoding could potentially introduce a problem. Since all information on J is

available in y (which is also supplied to the candidate hard-core b), this encoding must be



184 M. Goldmann, M. Näslund, and A. Russell

Fig. 1. Construction of f .

rich enough to avoid b “figuring out” which bits it should use, namely those in J , hidden
by g. To this end, we use the fact that we are assuming that b has low sensitivity and
define J in terms of highly sensitive (but still polynomial-time computable) functions,
namely XORs, see Fig. 1.

4.2. The Spectral Bound

We can now begin working toward our main result which asserts that if one-way functions
exist, then there are one-way functions for which every hard-core predicate is highly
nonsmooth. In Section 5 we explore the consequences of this theorem for general hard-
core predicates.

Theorem 4. If there exists a one-way function, then for every ε > 0 there is a one-way
function fε such that no (γ n1−ε, δ)-smooth Boolean function b: {0, 1}∗ −→ {±1} can
be a hard-core predicate for fε if γ + δ < 1

16 .

As is shown in Section 5, this implies the bound on sensitivity claimed in the
Introduction.
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Proof. Let g: {0, 1}∗ → {0, 1}∗ be a (length-preserving) one-way function. Fix an
arbitrary constant ε > 0. We describe below a one-way function fε = f (x, y) of n
variables so that if

b(n)(x, y) =
∑
α,β

b̂(n)
α,βχα(x)χβ(y)

and
∑
|α|+|β|>γ n1−ε (b̂(n)

α,β)2 ≤ δ, then, given f (x, y), one can guess b(x, y) with high
probability.

Assume that n is even and define f (x, y) where |x | = |y| = n/2 as follows. For an
element w ∈ {0, 1}k and a subset S = {s1, . . . , sl} ⊂ {1, . . . , k}, let wS = ws1 · · ·wsl ,

where s1 < · · · < sl . The input x is divided into tx
def= n1−ε blocks each consisting of

nε/2 bits. Similarly, y is divided into ty
def= log n1−ε blocks of n/(2 log n1−ε) bits. For

simplicity, we ignore issues of integrality for these quantities. Then the value f (x, y)

is computed as follows. Write y = yB1 · · · yBty
, where yBi is the i th block of y. Let

Ji =
⊕

k∈Bi
yk be the parity of the bits in yBi , and interpret the result J1, . . . , Jlog n1−ε as

a binary coded integer J (y) ∈ {0, . . . , n1−ε − 1}. We define the set

J (y) =
{

J (y)
nε

2
, J (y)

nε

2
+ 1, . . . , [J (y)+ 1]

nε

2
− 1

}
;

these are precisely the indices of the J (y)th block of x . Finally, define f (x, y) = (z, y)

where zi = xi when i �∈ J (y) and zJ (y) = g(xJ (y)). Clearly, f is a one-way function,
since inverting f in polynomial time implies inversion of g on n-bit inputs in time
polynomial in (2n)1/ε.

Now, let b: {0, 1}∗ → {±1} be a (γ n1−ε, δ)-smooth Boolean predicate. Our goal is
to show that b cannot be a hard-core predicate for f . For the remainder of this section,
fix the input length to n, an integer large enough so that b(n) is (γ n1−ε, δ)-smooth and
4γ < nε/log n1−ε. To simplify notation, for the remainder of this section we write b
rather than b(n).

The following lemma then implies the theorem.

Lemma 5. If b(x, y) is (γ n1−ε, δ)-smooth, then there is a probabilistic polynomial-
time algorithm Ab such that

Pr[Ab( f (x, y)) = b(x, y)] ≥ 1− 8(γ + δ),

this probability is taken over uniformly random choice of x and y and the coin tosses
of Ab.

Remark 1. Hard-core predicates are defined with respect to adversaries that are poly-
nomial-size circuits. However, since probabilistic polynomial-time algorithms are less
powerful than polynomial-size circuits, the above lemma is sufficient.

Describing Ab is easy. Given f (x, y), y, and hence J (y), is known. Also, all of
x except xJ (y) is known. Form x ′ by letting x ′i = xi when i �∈ J (y), and picking
x ′J (y) uniformly at random. Finally, let Ab( f (x, y)) = b(x ′, y). The guess is correct
when b(x, y) = b(x ′, y). Note that x ′ and y are independent and uniformly distributed.
However, x and x ′ are of course highly dependent.
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By the above discussion, Lemma 5 follows from Lemma 6, below.

Lemma 6. If b(x, y) is (γ n1−ε, δ)-smooth, and x, x ′, y are generated as described
above, then

Pr[b(x, y) = b(x ′, y)] ≥ 1− 8(γ + δ).

Let Z be the indicator function

Z(A, B) =
{

1 if A ∩ B �= ∅, and
0 otherwise.

and define

e(x, y) =
∑

|α|+|β|≤γ n1−ε

b̂α,βχα(x)χβ(y)(1− Z(α,J (y))),

h(x, y) =
∑

|α|+|β|≤γ n1−ε

b̂α,βχα(x)χβ(y)Z(α,J (y)), and

r(x, y) =
∑

|α|+|β|>γ n1−ε

b̂α,βχα(x)χβ(y).

Now, b(x, y) = e(x, y) + h(x, y) + r(x, y), and note that e(x, y) depends only on
inputs exposed by f (x, y) (i.e., it does not depend on xJ (y)), whereas each term in
h(x, y) depends on some hidden bits (i.e., bits in xJ (y)).

Observe that when x, x ′, y are generated according to the above procedure, e(x, y) =
e(x ′, y). We will prove that for random (x, y), with high probability both |r(x, y)| and
|h(x, y)| are small. Since (x ′, y) has the same distribution as (x, y) these bounds hold
for

∣∣r(x ′y)
∣∣ and

∣∣h(x ′, y)
∣∣ as well. This is sufficient to prove that with high probability

b(x, y) = b(x ′, y).
The contributions of r(x, y) and h(x, y) are bounded by the following two lemmas.

Lemma 7. If b(x, y) is (γ n1−ε, δ)-smooth, and x, y are uniformly distributed, then

Pr [|r(x, y)| ≥ λ] ≤ λ−2δ.

Proof. The probability is bounded with the Chebychev inequality: for a real-valued
random variable X ,

Pr [|X − Exp[X ]| ≥ λ] ≤ λ−2 Var[X ]. (2)

Observe that the expectation of each term in r(x, y) is 0 since either |α| > 0 or |β| > 0;
hence Exp[r(x, y)] = 0 and

Pr [|r(x, y)| ≥ λ] ≤ λ−2 Var[r(x, y)] .

As the terms appearing in r(x, y) are pairwise independent, the variance of the sum is
equal to the sum of the variances. Then

Var[̂bα,βχα(x)χβ(y)] = (̂bα,β)2 Var[χα∪β(x, y)]
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and, since α ∪ β �= ∅ for the terms in this sum, Var[χα∪β(x, y)] = 1 so that

Var[r(x, y)] =
∑

|α|+|β|>γ n1−ε

(̂bα,β)2 ≤ δ,

as desired.

Lemma 8. If 4γ < nε/log n1−ε, then Pr [|h(x, y)| ≥ λ] ≤ λ−2γ .

The proof of Lemma 8 is slightly technical, so we first see that Lemmas 7 and 8
together imply that with high probability b(x, y) = b(x ′, y).

Proof. [Proof of Lemma 6] Since |b(x, y)| = ∣∣b(x ′, y)
∣∣ = 1 it is enough to show that

with high probability ∣∣b(x, y)− b(x ′, y)
∣∣ < 2.

Considering that e(x, y) = e(x ′, y), applying the triangle inequality we have∣∣b(x, y)− b(x ′, y)
∣∣ ≤ |r(x, y)| + ∣∣r(x ′, y)

∣∣+ |h(x, y)| + ∣∣h(x ′, y)
∣∣ .

Therefore,

Pr
[∣∣b(x, y)− b(x ′, y)

∣∣ ≥ 2
] ≤ Pr

[|r(x, y)| ≥ 1
2

]+ Pr
[∣∣r(x ′, y)

∣∣ ≥ 1
2

]
+ Pr

[|h(x, y)| ≥ 1
2

]+ Pr
[∣∣h(x ′, y)

∣∣ ≥ 1
2

]
≤ 8δ + 8γ.

The last inequality follows by two applications of Lemma 7 and two applications of
Lemma 8 (with λ = 1

2 ).

As mentioned above, Theorem 4 follows from Lemma 6.

It remains to prove Lemma 8.

Proof of Lemma 8. As before, we use the Chebychev inequality,

Pr [|h(x, y)| ≥ λ] ≤ λ−2 Var[h(x, y)] = Exp[(h(x, y))2]− Exp[h(x, y)]2.

By linearity of expectation and independence of x and y,

Exp[h(x, y)] =
∑

|α|+|β|≤γ n1−ε

b̂α,β Exp[χα(x)] Exp[Z(α,J (y))χβ(y)].

Now, Z(∅,J (y)) = 0 for all y, and when α �= ∅ then Exp[χα(x)] = 0; hence each term
in h(x, y) has expectation 0 and Exp[h(x, y)] = 0, and we have

Var[h(x, y)] = Exp[(h(x, y))2]

=
∑

|α|+|β|≤γ n1−ε

|α′|+|β′|≤γ n1−ε

b̂α,β b̂α′,β ′ Exp[χα(x)χα′(x)]

·Exp[χβ(y)χβ ′(y)Z(α,J (y))Z(α′,J (y))].
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As Exp[χα(x)χα′(x)] = δα,α′ , we have

Var[h(x, y)] =
∑

|α|+|β|≤γ n1−ε

|α|+|β′|≤γ n1−ε

b̂α,β b̂α,β ′ Exp[χβ ⊕ β ′(y)Z(α,J (y))].

Accept, for the moment, the following claim.

Claim 9. For any β, β ′ with max(|β|, |β ′|) ≤ γ n1−ε, χβ ⊕ β ′(y) and Z(α,J (y)) are
independent.

This allows us to estimate the variance:

Var[h(x, y)] =
∑

|α|+|β|≤γ n1−ε

|α|+|β′|≤γ n1−ε

b̂α,β b̂α,β ′ Exp[χβ ⊕ β ′(y)] Exp[Z(α,J (y))]

=
∑

|α|+|β|≤γ n1−ε

|α|+|β′|≤γ n1−ε

b̂α,β b̂α,β ′δβ,β ′ Exp[Z(α,J (y))]

=
∑

|α|+|β|≤γ n1−ε

(̂bα,β)2 Exp[Z(α,J (y))]

≤
∑

|α|+|β|≤γ n1−ε

(̂bα,β)2 γ n1−ε

n1−ε

≤ γ .

We have used the Plancherel equality to conclude that
∑
|α|+|β|≤n1−ε (̂bα,β)2 ≤ 1. Also,

Exp[Z(α,J (y))] is exactly the probability that the fixed set α intersects the randomly
chosen block indicated by y; this probability is at most |α| divided by the number of
blocks.

It remains to prove the claim. We need to show that χβ ⊕ β ′(y) and Z(α,J (y)) are
independent. However, this follows from the fact that each “bit” in J (y) is the parity
of n/(2 log n1−ε) bits, whereas χβ ⊕ β ′(y) depends on the parity of

∣∣β ⊕ β ′
∣∣ ≤ 2γ n1−ε

bits. By the assumption stated in the lemma, 2γ n1−ε < n/(2 log n1−ε). Therefore, even
when all the bits in β⊕β ′ are fixed, the bits of J (y) are still uniformly and independently
distributed.

In the next section we explore the ramifications of Theorem 4 for general families of
hard-core predicates.

5. Applications to General Families of Hard-Core Predicates

In this section and the next, we adopt a stronger notion of efficient computation with
respect to hard-core predicates. Specifically, we broaden our consideration to include all
predicates for which there is a family of polynomial-size Boolean circuits {Cn | n > 0}
so that b(w) = Cn(w) for all w ∈ {0, 1}n . As we have adopted the convention that
Boolean functions take values in the set {±1}, we must demand the same of our circuits.
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For concreteness, then, we treat all Boolean circuits as though the map taking 0 to 1 and
1 to −1 is implicitly applied to their outputs.

The reason for considering this nonuniform notion of hard-core predicate is that rather
than focusing on the behavior of a single predicate, we wish to explore families of
predicates guaranteed to contain a hard-core predicate for any one-way function f . Such
families are called general hard-core predicates. Typically, as in the Goldreich–Levin
construction, a randomly chosen member of the family of predicates is likely to be a
hard-core predicate for f , and folding this “random choice” into the definition of b
(naively) requires nonuniformity. This does not greatly affect the results in the previous
section. The only difference is that the algorithm Ab requires a (polynomial-size) circuit
for the predicate b so that it can evaluate b on an input x, y.

Definition 5. A familyB ⊂ {±1}{0,1}∗ is called a general family of hard-core predicates
if for every one-way function f there is a (nonuniform) polynomial-time computable
predicate b ∈ B, such that b is a hard-core predicate for f .

It is a consequence of the proof of Theorem 1 that the collection of functions

BGL =
{

p: {0, 1}∗ → {±1} ∀n, p(n) = χα(n) , for some α(n) ⊂ {1, . . . , n}}
is a general family of hard-core predicates. For completeness, we outline a proof below.

Proof Sketch. For a family A = (α(1), α(2), . . .), with each α(n) ⊂ [n], define bA:
{0, 1}∗ → {±1} to be the predicate bA(w1, . . . , wn) = χα(n) (w). Our goal is to show
that for any one-way function f , there is a family A for which the function bA is a
hard-core predicate for f . To simplify notation, we only consider the case where f is a
permutation.

For a predicate b and an input length n, the hardness of b is defined as Hf (b, n) = s
where s is the largest integer such that every circuit C of size< s has Prx∈{0,1}n [C( f (x)) =
b(x)] < 1

2 + s−1. Since f is a permutation, Hf (b, n) is always finite. It is easy to see
that b is a hard-core predicate for f if and only if for all c and all sufficiently large n it
holds that Hf (b, n) > nc.

Let A = (α(1), α(2), . . .), where α(n) ⊂ [n] is chosen to maximize Hf (χα(n) , n). Then
bA is a hard-core predicate. Assume to the contrary that there is a c > 0 so that for
infinitely many n, Hf (bA, n) ≤ nc. We show that in this case, one can construct a
polynomial-size circuit family that inverts f with nonnegligible probability on infinitely
many input lengths n; this contradicts that f is one-way.

Implicit in the proof of Theorem 1 (due to [9]) is a construction of a (uniform)
polynomial-time oracle machine M B which has the property that

Pr
x∈{0,1}n
α⊂[n]

[B( f (x), α) = χα(x)] >
1

2
+ 1

nc0
�⇒ Pr[M B( f (x)) = x] >

1

nc1
, (3)

where c0 is any positive constant and c1 depends on c0. The latter probability is taken
over the choice of x and the coin tosses of M . Furthermore, the αi for which M queries
B( f (x), αi ) depend only on the coin tosses of M ; they are independent of f (x) and the
answers of the oracle B.
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We consider an arbitrary n such that Hf (bA, n) ≤ nc, and let C[α] be a circuit of
size nc such that Pr[C[α]( f (x)) = χα(x)] ≥ 1

2 + n−c. Let the oracle B be defined
by B( f (x), α) = C[α]( f (x)). Then Pr[M B( f (x)) = x] ≥ n−c′ for some c′. Fix the
random bits of M in such a way that it inverts f on at least a fraction n−c′ of the inputs.
This fixes the αi for which the oracle is queried, and we can replace the oracle by the
circuits C[αi ], giving us a polynomial-size circuit. This construction can be repeated for
the infinite collection of integers n for which Hf (bA, n) ≤ nc, as desired.

By being more careful, one can prove a stronger, but still nonuniform, result. Specif-
ically, we show that if A is constructed by picking α(n) ⊂ [n] uniformly at random for
each n, then with probability 1, bA is a hard-core predicate.

Proof Sketch. The basic structure of the proof is analogous to that of the above exis-
tence proof. First, note that for any constants c, d > 0, if Prα⊂[n][Hf (χα, n) ≤ nc] ≥ n−d ,
then we can repeat the above construction of the oracle B, this time letting C[α] be the
circuit of size nc that maximizes Prx∈{0,1}n [C[α]( f (x)) = χα(x)]. Then

Pr
x,α

[B( f (x), α) = χα(x)] ≥ 1
2 + Prα[Hf (χα, n) ≤ nc] · n−c ≥ 1

2 + n−cd

and as before we may construct a polynomial-size circuit that inverts f .
Now, let A = (α(1), α(2), . . .) be the random variable determined by independent

(and uniform) selection of each α(n) in {0, 1}n . For any c ∈ N, let Ec,n be the event
Hf (χα(n) , n) ≤ nc. By the above discussion, there is a constant n0 > 0 so that Prα(n) [Ec,n] <

n−2 for all n > n0. Thus
∑

n Prα(n) [Ec,n] ≤ N0 +
∑

n n−2 < ∞. Now, by the Borel–
Cantelli lemma (see, for example, Section 8.3 of [4]),

Pr
A

[∃nc∀n > nc, Ec,n] = 1.

As the union of countably many sets of zero measure has zero measure, we conclude
that

Pr
A

[∀c ∈ N, ∃nc∀n > nc, Ec,n] = 1.

Thus, with probability 1, bA is a hard-core predicate.

One consequence of the theorem of the last section is that general families of hard-core
predicates cannot be smooth:

Corollary 10. If B is a general family of hard-core predicates, then, for every ε > 0,
it must contain a function which is not (n1−ε, 1

17 )-smooth.

The close connection between smoothness and average sensitivity implies the
following.

Corollary 11. If B is a general family of hard-core predicates then, for every ε > 0,
B must contain a function with average sensitivity greater than n1−ε for all sufficiently
large n.
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Proof. The lower bound on the sensitivity follows from (1) coupled with the lower
bound on smoothness. Specifically, let b be a Boolean function and assume that S(b(n)) ≤
n1−2ε for some fixed ε > 0. Then

n1−2ε ≥ S(b(n)) ≥
∑

|α|>n1−ε

|α| (b̂(n)
α)2 ≥ n1−ε

∑
|α|>n1−ε

(b̂(n)
α)2

and thus
∑
|α|>n1−ε (b̂(n)

α)2 < n−ε so that b(n) is (n1−ε, n−ε)-smooth. The corollary
follows.

A celebrated theorem of Linial et al. shows that functions in AC0 are smooth:

Theorem 12 [22]. Let f : {0, 1}∗ → {±1} be a Boolean function with polynomial-size
constant depth circuits. Then f is (logO(1) n, o(1))-smooth.

An immediate corollary is that general hard-core predicates cannot be computed in
AC0:

Corollary 13. If B is a general family of hard-core predicates, then it must contain a
function which is not in AC0.

In Section 6 we derive strong bounds on the size of small-depth circuits that compute
general hard-core predicates.

It is interesting to note the folklore theorem [21] which asserts that any monotone
function f has small average sensitivity:

Lemma 14. Let f be a monotone Boolean function, then S( f ) = O(
√

n).

Proof. Focus on f (n): {0, 1}n → {−1, 1}. For an element x ∈ {0, 1}n let wt(x) =∑
i xi denote the weight of x and let N (x) = {x ⊕ ei i = 1, . . . , n} denote the set of

neighbors of x . A minterm of f is an element x ∈ {0, 1}n so that for all y ∈ N (x) with
wt(y) < wt(x), f (y) < f (x). Similarly, a maxterm of f is an element x ∈ {0, 1}n so
that for all y ∈ N (x) with wt(y) > wt(x), f (y) > f (x). Consider the following two
rules:

• Rule A. Let x be a minterm of f with wt(x) < n/2. Transform f into f ′, the
Boolean function equal to f on all points except for x , where f ′(x) = −1.

• Rule B. Let x be a maxterm of f with wt(x) > n/2. Transform f into f ′, the
Boolean function equal to f on all points except for x , where f ′(x) = 1.

Observe that these transformations preserve monotonicity and, furthermore, the applica-
tion of either rule to a function f results in a function f ′ with S( f ) < S( f ′). Repeated
application of these rules (in any order) results in a monotone function g for which
neither rule is applicable; hence

Mn
> ≤ g ≤ Mn

≥,



192 M. Goldmann, M. Näslund, and A. Russell

where Mn
>(x) = 1 ⇔ wt(x) > n/2 and Mn

≥(x) = 1 ⇔ wt(x) ≥ n/2. For such

functions g, S(g) = O(
√

n), so that S( f ) ≤ S(g) = O(
√

n), which establishes the
lemma.

Clearly, the same bound holds for any generalized monotone function (a generalized
monotone function is obtained by negating some of the inputs to a monotone function).

In light of the above, the following is immediate:

Corollary 15. If B is a general family of hard-core predicates, then it must contain a
nonmonotone function.

A Boolean function f : {0, 1}n → {±1} is a d-threshold function if there exists
a real multivariate polynomial p ∈ R[x1, . . . , xn] of total degree d or less so that
∀(x1, . . . , xn) ∈ {0, 1}n ,

f (x1, . . . , xn) = sign p(x1, . . . , xn).

When d = 1 such functions are generalized threshold functions and are generalized
monotone functions; their average sensitivity is addressed in Lemma 14 above.

In general, it has been shown by Gotsman and Linial [11] that d-threshold functions
are (d, 1 − εd)-smooth, for a constant εd > 0 independent of n. Though this is not
strong enough for our application, they show that under the added assumption that f is
symmetric, one has

S( f ) ≤ 2−n+1
d−1∑
k=0

(
n

[(n − k)/2]

) (
n −

[
n − k

2

])
,

where [x] is the integer part of x . Observe that when d = O(n1/2−ε), this quantity is
O(n1−ε). Then the following is immediate.

Corollary 16. If B is a general family of hard-core predicates, then it must contain
a function which, for large enough n, cannot be expressed as the sign of a symmetric
polynomial of degree d = O(n1/2−ε), for any ε > 0.

6. Bounds on Circuit Size and Depth

Instead of characterizing functions by smoothness, we can use circuit complexity as
a measure of simplicity. In this section we derive strong lower bounds on the size of
small-depth circuits for general hard-core predicates.

Definition 6. A circuit is a directed acyclic graph having gates as vertices. A gate
can be of type OR or AND and computes the corresponding Boolean function of its
incoming edges, the incoming edges being outputs of other gates or one of the inputs,
xi , i = 1, 2, . . . , n, or a negated input. The fan-in of a gate is the number of incoming
edges. There is a unique gate the output of which is the output of the whole circuit;
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as mentioned above, we actually treat this output as a ±1 value. The output gate can
therefore be considered as a sink, and the vertices corresponding to inputs are sources in
the graph. The size of the circuit is the number of gates and the depth is the maximum
path length from an input to the output gate.

A circuit c computing a Boolean function b is said to depend on m bits if there is a fixed
m-subset, J ⊆ {1, 2, . . . , n}, such that for all x , |x | = n, c(x) is uniquely determined
by xJ .

We assume that the circuit is “leveled.” That is, the gates at level i take their inputs
from gates at level i − 1 and all gates at a given level are of the same type (AND/OR),
types alternating from level to level. Hence all inputs xi (and negations x̄i ) are at level 0,
and the depth of the circuit is thus the number of levels. The restrictions that all negations
are at the input level and that the circuit is leveled are not severe; converting an arbitrary
circuit with unbounded fan-in gates to this form increases its depth by at most 1, and its
size increases by a constant factor. As usual, AC0 denotes the set of Boolean functions
computable by circuits of constant depth, polynomial size, and unbounded fan-in.

Consider the function fε in Theorem 4, and let b be a hard-core predicate for fε.
The lower bound on the sensitivity of b implies a lower bound on the size of a depth-d
AND/OR circuit that computes b.

Theorem 17. If b is a hard-core predicate for fε, then a depth-d AND/OR circuit for
b must have size at least 2�(n(1−ε)/d ).

Proof. We use Theorem 4 and the following result due to Linial et al.

Lemma 18 [22]. Let b be a Boolean function computed by a circuit of depth d and size
M , and let t be any integer. Then∑

|α|>t

b̂ 2
α ≤ 2M2−t1/d/20 .

Let t = n1−ε/40. If 2M2−n(1−ε)/d/800 ≤ 1
40 , then b is (n1−ε/40, 1

40 )-smooth, and cannot
be a hard-core predicate for fε. The lower bound on M follows.

7. Hard-Core Predicates for Padded Functions

We return to the Goldreich–Levin construction. It asserts that there is a fixed function bGL

that is a hard-core predicate for gf , a padded version of an arbitrary one-way function, f .
One can consider a generalized construction, any one-way function f (x) yielding a

padded version gf (x, w) = f (x) ◦ w, where |w| = p(|x |) for some polynomial p, so
that a fixed predicate b (independent of f ) is a hard-core predicate for gf . What kind of
lower bounds can one show for, for instance, the sensitivity of b?

Our results can be extended to such padded functions: a predicate such as b above
must have average sensitivity greater than |x |1−ε for all ε > 0. Note that this is not that
far from optimal since the Goldreich–Levin predicate has average sensitivity �(|x |).
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The lower bound follows from the following simple argument. For an arbitrary ε, take
f to be the function fε constructed in Section 4.2. Now, the task of the adversary is to
guess b(x, w) given f (x) and w (using x to mean both inputs of fε). However, once w

is known, b depends only on x , and hence is easy to guess from f (x) if it has average
sensitivity less than |x |1−ε.

Finally, one can consider more general ways than padding to modify a one-way func-
tion f so as to offer a guarantee that a fixed predicate b will be a hard-core predicate
for the result. In this general setting, however, the spectral properties of b cannot be
bounded as above. Consider the example of a one-way function f (x) modified to pro-
duce h f (x, w, z), where |x | = |w|, z is a single bit, and we define

h f (x, w, z) = f (x) ◦ w ◦ z′,
where

z′ = (1+ (2z − 1) · bGL(x, w))/2

and let b′(x, w, z) = (2z−1). Clearly, h f is one-way if f is one-way, and it is not hard to
see that predicting b′(x, w, z) from h f (x, w, z) is as hard as predicting bGL(x, w) from
f (x) and w. On the other hand, the sensitivity of b′ is 1 for all inputs.

8. Conclusion and Open Questions

The results presented here indicate a certain degree of optimality on behalf of the
Goldreich–Levin construction (see also [6]). (Observe that with probability 1 a function
selected from BGL will have linear average sensitivity.) Also, it suggests a connection
between families of universal hash functions and general hard-core predicates. On the
one hand, several well-known examples of universal hash functions have been shown to
be general hard-core predicates [9], [25], [26], and, on the other hand, smooth functions
make poor hash functions as well as poor hard-core predicates. An interesting problem
is to determine if there is a more precise connection between universal hash functions
and hard-core predicates.
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[26] M. Näslund. All bits in ax + b mod p are hard (extended abstract). In N. Koblitz, editor, Advances
in Cryptology—CRYPTO ’96, volume 1109 of Lecture Notes in Computer Science, pages 114–128.
Springer-Verlag, Berlin, Aug. 1996.

[27] A. C. Yao. Theory and applications of trapdoor functions (extended abstract). In Proceedings of the 23rd
Annual Symposium on Foundations of Computer Science, pages 80–91, Chicago, Illinois, 3–5 Nov. 1982.


