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Abstract. In this paper an attack on block ciphers is introduced, the interpolation at-
tack. This method is useful for attacking ciphers that use simple algebraic functions (in
particular quadratic functions) as S-boxes. Also, attacks based on higher-order differ-
entials are introduced. They are special and important cases of the interpolation attacks.
The attacks are applied to several block ciphers, the six-round prototype cipher by Ny-
berg and Knudsen, which is provably secure against ordinary differential cryptanalysis,
a modified version of the block cipher SHARK, and a block cipher suggested by Kiefer.
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1. Introduction

In an r -round iterated cipher the ciphertext is computed by iteratively applying in r
rounds a round function g to the plaintext, such that

xi = g(ki , xi−1),

where x0 is the plaintext, ki is the i th round key, and xr = y is the ciphertext. A special
kind of iterated ciphers are the Feistel ciphers. A Feistel cipher with block size 2m and
r rounds is defined as follows. Let xL

0 and xR
0 be the left and right halves of the plaintext,

respectively, each of m bits. The round function g operates as follows:

xL
i = xR

i−1,

xR
i = f (ki , xR

i−1) + xL
i−1,

and the ciphertext is the concatenation of xR
r and xL

r . Note that f can be any function
taking as arguments an m-bit text and a round key ki and producing m bits. “+” is a
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commutative group operation on the set of m-bit blocks. For the remainder of this paper
it assumed that “+” is the exclusive-or operation (⊕).

The attacks presented in this paper are classified according to the taxonomy of [5].
In a key-recovery attack an attacker finds the secret key. In a global deduction an at-
tacker finds an algorithm, which encrypts any plaintext into a valid ciphertext without
knowing the secret key. In an instance deduction an attacker finds an algorithm, which
encrypts a subset of all plaintexts into valid ciphertexts without knowing the secret
key.

The reduced cipher is the cipher that one gets by removing the final round of the
original cipher. The output from this cipher is denoted ỹ = (ỹL, ỹR).

In a key-recovery attack one often tries to find the value of the last-round key. A guess
of this value is used to decrypt the ciphertext by one round and in this way one hopes to
obtain the output from the reduced cipher. If there exists a method to distinguish whether
this is the actual output from the reduced cipher or not, then one can find the last-round
key. Once this key has been found, attacks similar to the ones presented here can be
mounted on a cipher one round shorter than the original. As the measurement of the
time needed by an attack, the total number of encryptions of the attacked block cipher is
used. Note that this general description of an attack can be extended to the case where
the attacker looks for the first-round key instead of the last-round key or both at the same
time.

This paper considers two types of attacks. First, attacks based on higher-order differ-
entials are given. Generalizations of this attack are then introduced under the name of
interpolation attacks.

Let the ciphertext bits yj be expressed as multivariate polynomials qj (x) ∈ GF(2)[x1,

. . . , xm], where the xi ’s are the plaintext bits. The algebraic degree of the encryp-
tion function is then defined to be the maximum total degree of these polynomials,
maxj deg qj . The higher-order differential attack is applicable if the algebraic degree d
of the ciphertext from the reduced cipher as a function of the plaintext is low. Since a
dth-order differential over such a cipher is a constant, it is possible to predict certain
values of the output of the reduced cipher, which can be used to recover the last-round
key.

In the univariate version of the interpolation attack, the ciphertexts are expressed as
polynomials p(x) ∈ GF(2m)[x] of the plaintexts x . If such a polynomial has a sufficiently
low degree or a low number of nonzero coefficients, it is possible to reconstruct it from a
collection of plaintexts and their corresponding ciphertexts. This can be used to construct
an algorithm which can encrypt and decrypt without knowledge of the secret key, and it
can be used to recover the secret key in iterated ciphers. By viewing the plaintexts and
ciphertexts as the concatenation of s blocks of m/s bits, where s divides m, the attack
is generalized to multivariate polynomials. It follows that the higher-order differential
attack is the special case where s = m.

This paper is organized as follows. Section 2 gives new attacks based on higher-order
differentials and in Section 3 a new attack on block ciphers is presented, the interpolation
attack. In Section 4 the attacks are applied to the cipher by Nyberg and Knudsen [10]
and to a modification hereof, to a modified version of SHARK [11], and to a cipher by
Kiefer [4]. Conclusions are in Section 5.
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2. Attacks Using Higher-Order Differentials

In [7] Lai gave a definition of higher-order derivatives of discrete functions. Later Knud-
sen used higher-order differentials to cryptanalyze ciphers presumably secure against
conventional differential attacks, that is, attacks based on first-order differentials [6]. An
extension of Knudsen’s attacks is given next. The reader is referred to [6] and [7] for the
definitions of higher-order differentials.

Consider a Feistel cipher with block size 2m. Suppose that xR is kept constant and
consider the right side ỹR of the output from the reduced cipher. Since xR is a constant,
each bit of ỹR can be expressed as a multivariate polynomial GF(2)[x1, x2, . . . , xm] in
the bits of xL = (x1, x2, . . . , xm). Assume that none of these polynomials have degree
higher than d . Then according to Proposition 2 of [7] (see also [6]), we have∑

xL∈Ld

p(xL) = c, (1)

where Ld denotes a d-dimensional subspace of GF(2)m , c is a constant for any space
parallel to Ld , and p is a function which computes the output from the reduced cipher.
It follows that

σ(w) =
∑

xL∈Ld+1

p(xL + w) = 0, for all w ∈ GF(2)m, (2)

if and only if p(x) is a polynomial of degree d or lower. In the following algorithm
the variables x = (xL, xR) and y = (yL, yR) hold the plaintext and the ciphertext,
respectively, T is a full rank (d +1)×m matrix over GF(2), and f is the round function.

1. Let xR and w be m-bit constants.
2. For all a ∈ GF(2)d+1:
(a) Let xL = aT + w.
(b) Obtain the ciphertext y(a) of plaintext (xL, xR).
3. For all values, k, of the last-round key:
(a) Let σ = 0.
(b) For all a ∈ GF(2)d+1:

(i) Let y = y(a).
(ii) Let ỹR = yL ⊕ f (k, yR).

(iii) Let σ = σ ⊕ ỹR.

The keys for which σ ends up being zero are candidates for the correct value of the
last-round key. If it is assumed that for a wrongly guessed value of the last-round key
the values of σ are random and uniformly distributed one can repeat the algorithm with
another choice of w or xR until only one value of the key remains suggested. This method
is easily generalized to any iterated cipher, and we get the following result, extending
that of Theorem 11 of [6].

Theorem 1. Given an iterated block cipher, let d denote the maximum polynomial
degree of m ′ ≥ 1 ciphertext bits of the round next to the last expressed as a function of
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the plaintext bits. Furthermore, let b denote the number of last-round key bits. Assume that
the maximum polynomial degree of the m ′ bits resulting from a wrongly guessed value of
the last-round key is larger than d and that the values obtained when computing the m ′ bits
in these cases are uniformly distributed. Then there exists a dth-order differential attack
of expected time complexity 2b+d requiring 2d+1 · g chosen plaintexts with g = �b/m ′�
which will successfully recover the last-round key.

Proof. We give the proof in the case of a Feistel cipher. The proof in the general case
is similar. Consider iteration 3(b). Let k denote the correct value of the last-round key,
and let k ′ denote any wrong value. Then

ỹR = yL ⊕ f (k, yR),

ỹ′
R = yL ⊕ f (k ′, yR)

= ỹR ⊕ f (k, yR) ⊕ f (k ′, yR).

The difference between ỹR, obtained using the correct key, and ỹ′
R, obtained with a wrong

key, is two applications of the function f . Therefore it seems plausible to assume that
the maximum polynomial degree of the m ′ bits of ỹ′

R is larger than that of ỹR. By the
assumption an incorrect value of the last-round key will be suggested with probability
2−m ′

. After one attack about 2b−m ′
values will be candidates for the correct key. Repeating

the attack g = �b/m ′� times discards most wrong values of the key. The maximum time
complexity of the attack is 2b+d + 2b+d−m ′ + 2b+d−2m ′ + · · ·+ 1 which is at most 2b+d+1

when m ′ ≥ 1.

The attack can be improved by a factor of two, if the constant of (1) can be predicted.
In that case iterations 2 and 3(b) of the above algorithm are performed only for all
a ∈ GF(2d). The key for which σ = c will be the correct key with some high probability.
For most ciphers, depending on the f -function, there are possible extensions to the above
attack. It may be possible to perform the attack for only a subset of the bits in the last-
round key, and it may also be possible to search for (subsets of) the first-round key.

3. The Interpolation Attack

In this section a new attack is introduced on block ciphers. The attack is based on the
following well-known formula.

Let F be a field and let 2n elements x1, . . . , xn , y1, . . . , yn ∈ F be given, where the
xi ’s are distinct. Define

f (x) =
n∑

i=1

yi

∏
1≤ j≤n, j �=i

x − xj

xi − xj
. (3)

Then f (x) is the only polynomial over F of degree at most n − 1 such that f (xi ) = yi

for i = 1, . . . , n. Equation (3) is known as the Lagrange interpolation formula (see, e.g.,
page 185 of [2]).

In the interpolation attacks presented in this paper one constructs polynomials using
some plaintexts and the corresponding ciphertexts. For these attacks it is not always
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necessary to find all the coefficients of the polynomial, merely to compute the value of
f (x) for one or a few values of x . In the following it is shown how to evaluate f in linear
time in some point x (in particular x = 0) using n (other) evaluations of f .

Assume that f has degree at most n − 1. Also assume that there are given n points
{(x1, y1), (x2, y2), . . . , (xn, yn)} where xi = αi for some primitive element α ∈ F and
yi = f (xi ). Then to evaluate f in a point x �= x1, x2, . . . , xn , we use the Lagrange
interpolation formula:

f (x) =
n∑

i=1

yi

∏
1≤ j≤n, j �=i

x − xj

xi − xj
.

Evaluating this expression for x = 0 yields

f (0) =
n∑

i=1

yi

∏
1≤ j≤n, j �=i

xj

xj − xi
=

n∑
i=1

yi · gi

hi
,

where (with xi = αi )

gi = α(1+2+···+n)

αi
= αn(n+1)/2−i

and

hi =
∏

1≤ j≤n, j �=i

(α j − αi ).

Rewriting one gets

h1 =
n∏

j=2

(α j − α)

and the recurrence relation

hi+1 = hi · αn−1(αi − 1)

αn − αi
.

In a similar way, more general formulas for computing f (x) for arbitrary values of x can
be derived. Using these expressions, it is possible to compute f (0) (or more generally
f (x)) in linear time O(n) and constant memory.

Note that the values of gi and hi can be precomputed since they are independent of
the yi values.

Next it is explained how to utilize the above in attacks on block ciphers. Consider an
m-bit secret-key block cipher for a fixed (unknown) key. The ciphertext y can be de-
scribed as a polynomial p(x) ∈ GF(2m)[x] of the plaintext. If the number of coefficients
of these polynomials is sufficiently low, one can reconstruct it with sufficiently many
plaintext/ciphertext (p/c) pairs by solving a simple system of linear equations. Subse-
quently, one has an algorithm which can encrypt and decrypt plaintexts and ciphertexts
but without knowledge of the secret key.

In a chosen plaintext variant of this attack it is possible for an attacker to establish
polynomials with a reduced number of coefficients by fixing some of the bits in the
chosen plaintexts. In that case, the result is an instance deduction, since the obtained
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algorithm can only encrypt plaintexts for which a number of bits are fixed to a certain
value.

Consider a key-recovery variant of the attack. Instead of specifying the ciphertext
as a function of the plaintext, the output from the reduced cipher ỹ is expressed as
a polynomial p(x) ∈ GF(2m)[x] of the plaintext. Assume that this polynomial has
degree d (hence has d + 1 unknown coefficients) and that d + 2 known p/c pairs are
available. Then for all values of the last-round key one decrypts the ciphertexts one
round, constructs the polynomial with d + 1 pairs, and checks whether the polynomial
is correct for the remaining p/c pair. If this is the case, then the correct value of the
last-round key has been found with some high probability, by reasoning similarly as in
the proof of Theorem 1. In this variant of the attack, it suffices to be able to construct
a function value of the polynomial, and the method in the beginning of this section can
be applied. Moreover, even if the key guess is wrong, the value of the polynomial may
still be accepted with some probability. However, if it is assumed that for a wrongly
guessed value of the last-round key the resulting polynomial has a degree higher than
d and that the values obtained in trying to construct a unique polynomial are uniformly
distributed, then the probability of success of the attack can be increased by simply
checking additional pairs with the polynomial until only one value of the key remains.

One may also consider a multivariate generalization of the interpolation attack. An
m-bit plaintext can be viewed as the concatenation of s sub-blocks each of m/s bits
corresponding to elements in GF(2m/s). Accordingly, the ciphertext may then also be
viewed as s sub-blocks of m/s bits. Each of these ciphertext sub-blocks is then expressible
as a multivariate polynomial evaluated in the plaintext sub-blocks.

Note that an unknown polynomial of degree d has exactly d +1 unknown coefficients.
However, as we demonstrate later, in some cases (for some ciphers) the number of
unknown nonzero coefficients will be less than that. Therefore, in the following we use
the number of nonzero coefficients rather than the polynomial degree of the involved
polynomials to estimate the success of the interpolation attack.

The following result sums up the attack.

Theorem 2. Consider an m-bit iterated block cipher with s sub-blocks each of m/s
bits. Express an output sub-block from the penultimate round as a (uni- or multivariate)
polynomial in G F(2m/s) of some plaintext blocks and let n denote the number of nonzero
coefficients in the polynomial. Furthermore, let b denote the number of last-round key bits
involved in the attack. Assume that the number of nonzero coefficients in the polynomials
resulting from a wrongly guessed value of the last-round key is larger than n and that
values obtained in trying to construct a unique polynomial are uniformly distributed.
Then there exists an interpolation attack of expected time complexity 2b(n +1) requiring
n + λ known (or chosen) plaintexts with λ = �bs/m� which will successfully recover
the last-round key.

Proof. Let k denote the correct value of the last-round key, and let k ′ denote any wrong
value. Let ỹ and ỹ′ be the text obtained from the ciphertexts by decrypting one round
with the correct key k, respectively a wrong key k ′. Then

ỹ = g−1(k, y),
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ỹ′ = g−1(k ′, y)

= g−1(k ′, g(ỹ, k)).

The difference between ỹ, obtained using the correct key, and ỹ′, obtained with a wrong
key, is one application of the round function g and one of its inverse with a wrong
key. Therefore it seems plausible that for a wrongly guessed value of the key one will
not succeed in generating a correct polynomial. The probability of guessing correctly
a random m/s-bit value is 2−m/s . Repeating the feat λ times has probability 2−λm/s .
Therefore the expected number of false positives is t = 2b−λm/s for which the expected
number of texts needed follows. The maximum time complexity is (2b(n+1)+2b−m/s(n+
2) + 2b−2m/s(n + 3) + · · ·) which is at most 2b+1(n + 1) for m ≥ s.

Similar to the attack of Theorem 1 it may be possible to perform the attack for only a
subset of the bits of the last-round key, and it may also be possible to search for (a subset
of) the first-round key, depending on the structure of the round function. Similarly for
some round functions it may be advantageous to solve algebraically for the round key
in the last round instead of trying all possible 2b values, as illustrated in [12].

In the above interpretation, the higher-order differential attack is a special case with
s = m, 1-bit sub-blocks, and polynomials in m variables. However, note that in the higher-
order differential attacks typically one attacks many 1-bit sub-blocks simultaneously.

For some ciphers it is possible to mount attacks for several, different values of s.
It depends on the specific block cipher which of these attacks is the most efficient. In
Section 4 examples are given to illustrate this.

Meet-in-the-Middle Approach

The attacks described in this section are extensions of the attacks in the previous sections
using a meet-in-the-middle technique. Only the extension of the key-recovery attack is
described; the extensions of the global and instance deductions follow easily.

Once again, one tries to guess the correct last-round key and use this to obtain (hope-
fully) ỹ, the output from the reduced cipher. In the following, only the verification of ỹ
is described. Given an iterated cipher of r rounds, let z denote the output of round r ′,
where r ′ ≤ (r − 1). The value of z is expressible via the plaintext x as a polynomial
h1(x) ∈ GF(2m)[x] where m is the block size. Similarly, z can be expressed as a polyno-
mial h2(ỹ) ∈ GF(2m)[ỹ] of the output ỹ of the reduced cipher. Let the degree of h1(x)

be d1, let the degree of h2(ỹ) be d2 and let d = d1 + d2. Thus, the following equation,

h1(x) = h2(ỹ), (4)

has at most d +2 nonzero unknowns. One can show that the equation is uniquely solvable
up to a multiplication and an addition of both h1 and h2 with a constant. To ensure that
a nontrivial and unique solution is obtained, the coefficient corresponding to the highest
exponent is set equal to 1 and the constant term equal to 0. After this, the equation
is solved by using d known or chosen plaintexts. What is left is to check whether yet
another p/c pair (x, ỹ) satisfies h1(x) = h2(ỹ). If it does, then it is assumed that the
correct value of the last-round key has been found.

The following result sums up the attack.
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Theorem 3. Consider an m-bit iterated block cipher with s sub-blocks each of m/s
bits and with r rounds. Express the output from round r ′, r ′ ≤ r − 1, as a multivariate
polynomial of (some of ) the plaintext blocks and let n1 denote the number of coefficients
in the polynomial. Also, express the output from round r ′ as a polynomial of the output
sub-blocks from round (r − 1), and let n2 denote the number of coefficients in the
polynomial. Furthermore, set n = n1 + n2 and let b denote the number of last-round key
bits. Assume that the number of nonzero coefficients in the polynomials resulting from
a wrongly guessed value of the last-round key is larger than n and that values obtained
in trying to construct such polynomials are uniformly distributed. Then there exists an
interpolation attack of expected time complexity 2b(n + 1) requiring n + g known (or
chosen) plaintexts with g = �bs/m� which will successfully recover the last-round key.

The best known methods for solving a system of n linear equations in n unknowns that the
authors are aware of, require O(n2) words of memory and run in time (approximately)
O(n3). However, it is not necessary to solve the systems of equations, merely to have an
algorithm which can detect whether a solution exists. Furthermore, (4) has a very special
form and it is expected that special methods will exist which require less memory and
time.

4. Examples

In this section the attacks of the previous sections are applied to a range of proposed
block ciphers.

4.1. Nyberg and Knudsen’s Cipher

Based on the use of a quadratic function over a Galois field, Nyberg and Knudsen demon-
strated in [10] how to construct a cipher which is provably secure against differential
cryptanalysis [1]. The cipher is a Feistel cipher with the nonlinear function f given by
F : GF(232) → GF(232) with

f (k, x) = d(h(e(x) ⊕ k)),

where h : GF(233) → GF(233), h(x) = x3, k ∈ GF(233), e : GF(232) → GF(233) is
a function which extends its argument by concatenation with an affine combination of
the input bits, and d : GF(233) → GF(232) discards one bit from its argument. With at
least six rounds one can show that the probability of any differential can be bounded
sufficiently low and subsequently there is a proof that this yields a secure cipher (with
respect to conventional differential cryptanalysis). Also, the cipher is secure against the
linear attack [8], which follows from [9].

In the following the higher-order differential attack is applied. Choose plaintexts where
the right halves are fixed. Since the output bits from the round function are only quadratic
in the input bits, the polynomial degree of the bits in the reduced cipher as a function of
the plaintext bits is not higher than eight.

Therefore from Theorem 1 it follows that there exists an attack, which requires only
28+1 = 512 chosen plaintexts and an expected running time of order 241. A variant
of the attack searching for the keys in the last two rounds requires about 32 chosen
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Table 1. Higher-order differential attacks on the Nyberg–Knudsen cipher.

Number of rounds Number of chosen plaintexts Running time

6 29 241

6 25 270

7 217 249

7 29 274

8 217 282

plaintexts and an expected running time of order 270. Similarly, there are attacks on
versions with seven and eight rounds, the complexities are given in Table 1. The attack
has been implemented on scaled-down versions, and it recovers the last-round key as
predicted.

Also, in [12] it was shown that for these attacks the round key in the last round can be
solved for algebraically as opposed to trying all possible 2b values.

4.2. A Dedicated Cipher

Consider the Feistel cipher with the round function given by f (k, x) = h(x ⊕ k) where
h : GF(232) → GF(232), h(x) = x3, that is, the input to the cubing function is not
extended and the output not truncated as in the previous case. This cipher is similar to
the cipher in the previous section, and is also secure against the (conventional) differential
attacks [10] and against the linear attack [8]. The cipher is as vulnerable to the higher-
order differential attack as the previous one, but much more vulnerable to the interpolation
attack for s > 1, as shown in the following.

Express the ciphertext halves after r rounds of encryption as polynomials of the
plaintext halves in GF(232)[x]. It follows by easy calculations that these polynomials
have at most 32r−1 + 3r + 3r−1 + 1 nonzero coefficients. Note, that degrees of xR and
xL are at most 3r and 3r−1, respectively. Thus, this polynomial can be reconstructed by
considering at most 32r−1 + 3r + 3r−1 + 1 p/c pairs using, e.g., Lagrange interpolation.
With r = 6 the attack needs at most 218 known p/c pairs, which yields an algorithm for a
global deduction. Note that the number of coefficients will be lower than specified, since
not all elements xi

Lx j
R for 0 ≤ i ≤ 3r and 0 ≤ j ≤ 3r−1 will appear in the polynomial.

For the key-recovery attack with r = 6 assume that the right half xR of the plaintext is
fixed (that is, consider a chosen plaintext attack), and consider the right side of the output
ỹR = p(xL) from the reduced cipher expressed as a polynomial p(xL) ∈ GF(232)[xL].
This polynomial has degree at most 33 = 27 since the degree does not increase in the first
round and since ỹR equals the left half of the output of the fourth round. Consequently,
28 pairs of corresponding values of xL and ỹ are enough to determine it uniquely (using
Lagrange interpolation). It is then tested whether ỹ is actually output from the reduced
cipher or not. This is done by verifying whether a 29th p/c pair agrees with the obtained
polynomial. If it does, then it is assumed that the correct key has been found. The expected
time complexity is 29 × 232−1 ≈ 236.

The meet-in-the-middle variant can be applied as follows. Let r = 6 and assume
again that the right half xR of the plaintext is fixed. Let zL denote the left half of the
output from round four. The value of zL is expressible via the plaintext as a polynomial
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g(xL) ∈ GF(232)[xL]. This polynomial has degree at most 32, that is, there are at most 10
nonzero coefficients in g(xL). Similarly, zL can be expressed as a polynomial h(ỹL, ỹR) ∈
GF(232)[ỹL, ỹR] of the output from the reduced cipher. It follows that h(ỹL, ỹR) =
ỹ3

L ⊕ a ỹ2
L ⊕ bỹL ⊕ c ⊕ ỹR, where a, b, and c are some key-dependent constants. Thus,

there are at most 10 + 3 = 13 unknown coefficients of the equation

g(xL) = h(ỹL, ỹR). (5)

Setting the constant term of g to equal 0 (the coefficient corresponding to the highest
exponent in h has already been found to equal 1), one proceeds to solve the resulting
system of equations by using 12 p/c pairs from the reduced cipher. Thus, one obtains
the polynomials g and h. It is then checked whether yet another p/c pair (x, ỹ) satisfies
g(xL) = h(ỹL, ỹR). If it does, then it is assumed that the correct key has been found.

Similar attacks can be applied to versions of the cipher with up to 32 rounds at least in
theory. Consider the version with 32 rounds. Let g(xL) ∈ GF(232)[xL] be an expression
of the left half zL of the output from round 22. The degree of this polynomial is at most
320. Let h(ỹL, ỹR) ∈ GF(232)[ỹL, ỹR] be an expression of zL from the output of the
reduced cipher. In the bivariate polynomial h(ỹL, ỹR), the number of exponents in ỹL

and ỹR is at most (39 +1) and (310 +1), respectively. Thus, the number of coefficients in
h(ỹL, ỹR) is at most (39 + 1)(310 + 1) ≈ 319. This means that the number of coefficients
in (5) is at most 320 + 319 ≈ 232.

4.3. Attacks on Modified SHARK

The iterated cipher SHARK is proposed by Rijmen et al. in [11]. The cipher has a block
size of nm bits and each round has a nonlinear layer and a diffusion layer. The nonlinear
layer consists of n parallel m-bit S-boxes. The diffusion layer consists of an nm-bit
linear mapping constructed from a Reed–Solomon code. There are two suggestions
for introducing the keys into the cipher. The first is by a simple exclusive-or with the
inputs to the S-boxes, the other uses a key-dependent affine mapping. Also, an output
transformation is applied after the last round of SHARK. The transformation consists of
a key addition and an inverse diffusion layer.

Denote by SHARK(n, m, r) the version with a block size of nm bits using n parallel
m-bit S-boxes in r rounds. In [11] an implementation SHARK(8, 8, r) (64-bit blocks)
is given. The eight S-boxes are identical and constructed from the permutation h :
GF(2m) → GF(2m) given by h(x) = x−1, with an affine mapping in the output bits.
The cipher is analyzed with respect to linear and differential attacks, and it is argued that
eight rounds of SHARK(8, 8, r) give a security level comparable with that of triple-DES,
and from Table 1 of [11] it follows that four rounds of this version give a security level
comparable with that of DES.

In the following it is shown that there are many instances of SHARK that can be
broken significantly faster than expected.

First, the number of rounds of SHARK must be determined with respect to the algebraic
degree of the S-boxes. Assume that the outputs of the S-box are of degree d in the input
bits. Since the S-boxes represent the only nonlinear component in SHARK, the algebraic
degree of the ciphertexts after r rounds of encryption will be at most dr . To avoid attacks
based on higher-order differentials it must be ensured that dr is high, preferably that
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dr ≥ nm. Thus, for a 64-bit block cipher, if d = 2, e.g., using the cubing function in a
Galois field, the number of rounds must be at least six.

Consider versions of SHARK where the keys are mixed with the texts by the exclusive-
or operation. As will be shown there are instances of SHARK(n, m, r) for which the
interpolation attacks are applicable. Consider 64-bit versions using as the S-box h(x) =
x−1 in GF(2m). The inverse permutation in a Galois field has a high algebraic degree,
note that h(x) = x−1 = x2m−2 in GF(2m). However, as will be shown, the interpolation
attack is applicable with a complexity which depends only on the number of S-boxes and
on the number of rounds in the cipher. Note that the attacks presented are not applicable
to the specific instance of SHARK from [11].

Consider first a version with n = 1. It follows by easy calculations that the ciphertext y
after any number of rounds can be expressed as a fraction of polynomials of the plaintext
x (or, similarly, x can be expressed as a polynomial of y) as follows:

y = x ⊕ a

bx ⊕ c
, (6)

where a, b, c are key-dependent constants. These three constants can be found using
the interpolation attack with only four known p/c pairs by considering and solving
y · (bx ⊕ c) = (x ⊕ a). The result is a global deduction, that is, an algorithm that
encrypts (decrypts) any plaintext (ciphertext).

For n > 1 the number of coefficients in the polynomials used in the attacks increases
with the number of diffusion layers in the cipher. Note that because of the inverse
diffusion layer in the output transformation there are only r − 1 diffusion layers in an
r -round version of SHARK. In the following consider a version of SHARK(n, m, r ). Let
the plaintext words each of m bits be denoted x1, . . . , xn , and let the ciphertext words
be denoted y1, . . . , yn . Express the ciphertext words as polynomials in GF(2m) in terms
of the plaintext words. For r = 1, one gets expressions of the form yi = axi/(bxi ⊕ c).
For r = 2 each ciphertext word can be written as a fraction of polynomials where
in the denominator one gets an expression of degree at most n. Also, the degree of the
polynomial in the enumerator is at most the degree of the polynomial in the denominator.
Thus, the number of coefficients in the fraction of polynomials is at most 2 × 2n . By
doing similar calculations for r = 3 and so on, it follows that the number of coefficients
in the polynomials for r rounds is at most

2 · (nr−2 + 1)n.

This is also the number of known plaintexts for the interpolation attack on an r -round
version yielding a global deduction. It follows that the attack is independent of the sizes
of the S-boxes, and depends only on the number of S-boxes and the number of rounds.

The interpolation attack with the meet-in-the-middle technique can also be applied
for these ciphers. Consider the interpolation attack with known plaintexts. One first
establishes

qj,1(y1, . . . , yn)

qj,2(y1, . . . , yn)
= pi,1(x1, . . . , xn)

pi,2(x1, . . . , xn)
, (7)

that is, expressions of the ciphertexts in one middle round, where i + j = r − 1, using
polynomials of both the plaintext and the ciphertext. Subsequently, one can solve the
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Table 2. Complexities of the interpolation attack on variants of SHARK using as S-box h(x) = x−1.

Number of rounds Number of S-boxes Known plaintexts Memory Time

Any 1 3
6 2 29 218 227

6 4 227 254 281

3 8 217 234 251

4 8 235 270 2105

5 8 252 2104 2156

6 8 275 2150 2225

following systems of equations:

qj,1(y1, . . . , yn) · pi,2(x1, . . . , xn) = pi,1(x1, . . . , xn) · qj,2(y1, . . . , yn). (8)

The number of known plaintexts required to solve (8) is

2 · (nr1−1 + 1)n · (nr2−1 + 1)n,

where r1 +r2 = r −1 and r1, r2 ≥ 1, which follows by calculations similar to the above.
The round keys for SHARK are typically quite big, so the general key-recovery attack

described earlier in this paper may be impractical. However, it is possible to perform
the attack for only a subset of the first-round and/or last-round keys. As an example,
one can repeat the attack for all values of the first s words of the first-round key and
express the ciphertext (of a middle round) as a polynomial pi,1(S(x1 ⊕ k1), . . . , S(xs ⊕
ks), xs+1, . . . xn), where S(·) are the S-boxes and xi are the plaintext words. The values
of the key words for which the interpolation succeeds are candidates for the secret key,
and the attack is repeated sufficiently many times until one value of the secret key is
found.

Table 2 gives the complexities of the interpolation attack on variants of SHARK using
as the S-box h(x) = x−1 in GF(2m). It follows that using eight S-boxes, a 64-bit block
variant with up to five rounds and a 128-bit block variant with up to eight rounds are,
at least in theory, vulnerable to our attacks. The required amount of memory and time
for the versions with five and six rounds are of course unrealistic today. However, as
discussed earlier, the linear equations obtained in the attacks are of a very special form.
Therefore there might exist methods solving such systems faster than for systems of
arbitrary linear equations. Furthermore, the complexities were computed assuming that
the number of coefficients in the polynomials are maximum. A closer analysis might
reveal that this number is smaller. Also, the attacks can be faster than an exhaustive
search for the keys depending on the chosen key length. In a chosen plaintext attack the
number of coefficients in the polynomials used in the attack can be reduced by fixing
some plaintext bits. As examples, there exist interpolation attacks on the variant with
eight S-boxes and four rounds using about 221 chosen plaintexts and on the variant with
eight S-boxes and seven rounds using about 261 chosen plaintexts.

It has been demonstrated that certain instantiations of SHARK are insecure. The results
also demonstrate a case where the use of bigger and fewer S-boxes does not result in
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more secure ciphers. Finally, it is noted that the designers of SHARK expressed their
concern with the use of the inverse in a Galois field as S-boxes [11].

4.4. Kiefer’s Scheme

In this section the scheme by Kiefer [4] is attacked in a higher-order differential attack.
The cipher is probabilistic and uses the following encryption rule:

xi �→ (F(k) ⊕ ri , fk(ri ) ⊕ xi ), (9)

where F : GF(2m) → GF(2m) is a one-way function, fk : GF(2m) → GF(2m) is
a function depending on the key k ∈ GF(2m) in some complex way, ri ∈ GF(2m) is
a random value, and xi ∈ GF(2m) is a message block. The function fk has the form
fk = πk ◦ g where πk : GF(2m) → GF(2m) is a bitwise linear transform depending on
k, and g : GF(2m) → GF(2m) is a public, almost perfectly nonlinear, function of the
form g(x) = x2s+1 for some s.

Assume that enough plaintext is available to have four pairs of ciphertexts of the form

(ai , bi ) = (F(k) ⊕ ri , fk(ri )), i = 1, . . . , 4, (10)

such that a1 ⊕ a2 = a3 ⊕ a4. Define β = ⊕4
i=1 bi and γ = ⊕4

i=1 g(ri ). Then

β =
4⊕

i=1

bi = πk

(
4⊕

i=1

g(ri )

)
= πk(γ ). (11)

Since {a1, . . . , a4} is a two-dimensional subspace of GF(2n), the elements in {r1, . . . , r4}
also constitute a two-dimensional subspace which, with a fixed key, is parallel to the first
one. Note also that the Hamming weight of the exponent in the definition of g expressed
as a binary number is only two, implying that the output bits are only quadratic in the
input bits. By (1), this implies that one can compute the value of γ = ⊕4

i=1 g(ai ).
If repeated m times, one obtains m corresponding pairs of β and γ . This makes it

possible to solve (11) with respect to the unknown function πk (it is a linear transform).
After having found πk , invert fk and thus obtain a value of ri . Subsequently, compute
F(k) and the system is broken.

It remains to compute the minimum number t of known plaintexts needed to obtain m
times four pairs (ai , bi ) with the required property; recall that the cipher is probabilistic
and thus the attacker has no control over the values of ri . By using a birthday paradox
type argument it can be shown that t ≈ (m ·2m+2)1/4. For a typical block size of m = 64
this gives t ≈ 218.

5. Concluding Remarks

A new attack on block ciphers, the interpolation attack, was introduced. The interpolation
attack is a natural extension of the higher-order differential attack, but in many cases
much more efficient than the latter. It was demonstrated that the attack works on several
proposed block ciphers. In particular, it was shown that a cipher provably secure against
differential and linear cryptanalysis is very vulnerable to the interpolation attack. Also,
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variants of the attack were used to cryptanalyze the (unmodified) cipher by Nyberg and
Knudsen, variants of the cipher SHARK, and a cipher by Kiefer.

Recently, a probabilistic version of the interpolation attack was introduced [3]. This
version of the attack finds a polynomial relation between plaintexts and ciphertexts which
hold only for a fraction of all cases. It was demonstrated that this attack can also be used
to break the cipher by Nyberg and Knudsen [10].
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