
Machine Vision and Applications           (2024) 35:66 
https://doi.org/10.1007/s00138-024-01541-3

RESEARCH

Uncertainty estimates for semantic segmentation: providing enhanced
reliability for automatedmotor claims handling

Jan Küchler1 · Daniel Kröll1 · Sebastian Schoenen1 · Andreas Witte1

Received: 23 November 2023 / Revised: 15 March 2024 / Accepted: 6 April 2024
© The Author(s) 2024

Abstract
Deep neural network models for image segmentation can be a powerful tool for the automation of motor claims handling
processes in the insurance industry. A crucial aspect is the reliability of the model outputs when facing adverse conditions,
such as low quality photos taken by claimants to document damages. We explore the use of a meta-classification model to
empirically assess the precision of segments predicted by a model trained for the semantic segmentation of car body parts.
Different sets of features correlated with the quality of a segment are compared, and an AUROC score of 0.915 is achieved
for distinguishing between high- and low-quality segments. By removing low-quality segments, the average mIoU of the
segmentation output is improved by 16 percentage points and the number of wrongly predicted segments is reduced by 77%.

Keywords Semantic segmentation · Motor claims management · Meta-classification · Uncertainty quantification · False
positive detection

1 Introduction

In the rapidly evolving world of automotive insurance,
technological advancements are reshaping the landscape.
Efficient and accurate claims handling remain key success
factors for the insurance industry. At the heart of this process
is damage assessment, traditionally reliant on manual meth-
ods. This procedure often required experts to either make
on-site visits to inspect damaged cars or, increasingly com-
mon today, reviewphotographs provided by claimants.While
this approach is thorough, it is also time-consuming and vul-
nerable to human biases and errors.

Daniel Kröll, Sebastian Schoenen and Andreas Witte contributed
equally to this work.
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The advent of new computer vision techniques, partic-
ularly semantic segmentation [1], opens up possibilities to
automate and streamline the damage assessment process. By
segmenting images into categorized car parts and damages,
this holds the potential to identify, classify and localize car
damages. Embracing these techniques could empower the
insurance industry to cut operational costs, expedite claim
processing, and crucially, boost accuracy.

However, any technology-driven solution requires rig-
orous validation of its reliability. While deep neural net-
works (DNNs) have demonstrated exceptional performance
in semantic segmentation tasks [2, 3], the variability in
images of damaged cars—influenced by factors like light-
ing conditions, vehicle models, capture angles, and other
variables—can introduce uncertainties. Addressing this chal-
lenge is of paramount importance.

Figure 1 shows an example for an image with some of
the aforementioned issues, together with the semantic seg-
mentation mask of car body parts. Among other mistakes, a
small area at the rim of the rear left wheel is identified as
an air intake, likely due to dirt obscuring the usual features
expected for a wheel.

To ensure a reliable and trustworthy damage assessment
leveraging these technologies, the incorporation of uncer-
tainty estimates into semantic segmentation is indispensable.
By doing so, the industry can not only revolutionize the dam-
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Fig. 1 Photograph of a car (left), taken to highlight issues that can
negatively affect the performance of DNN segmentationmodels: reflec-
tions, dirt and bad exposure. Result of our semantic segmentationmodel
(right), trained to segment car body parts. Predicted segments are shown

as colored overlays. A few mistakes in the prediction are highlighted
by red boxes: a reflection on the door is segmented as a molding part,
and a part of the rear left rim is identified as an air intake

age assessment but also make it transparent, consistent, and
trustworthy, truly elevating the standards of automotive insur-
ance claims handling.

Various approaches have been proposed to provide a
measure of uncertainty in the model results for semantic
segmentation. Modern architectures steadily improve the
robustness of segmentation models, but they do not improve
in terms of uncertainty estimation and calibration [4]. While
the output scores of a DNN are correlated with the accu-
racy of the result, models are often overconfident and output
high probabilities even for wrong results [5–7]. In general,
uncertainty quantification for deep learning is a widely stud-
ied topic [8], with techniques comprising primarily Bayesian
approaches and ensemble methods, but also empirical meth-
ods to estimate uncertainties. Monte Carlo dropout is used
in a Bayesian framework to estimate model uncertainties [9,
10], and can be combined with test-time image augmenta-
tion to also encompass data uncertainties [11]. A technique
called ‘Bayes by Backprop’ is an alternative approach prin-
cipled in the minimization of the variational free energy and
used to quantify the uncertainty in the learned weights [12].
Ensemble methods assess the uncertainty by comparing the
results of multiple, slightly different models trained for the
same task [13], and have been found to give a well calibrated
result probability [14]. Using distillation techniques, even
single models can be trained to predict the pixel-wise uncer-
tainty in a segmentation result [15, 16], thus reducing the
computational demands at inference time.

In this work, we explore the use of a meta-classification
[17] model to empirically estimate the uncertainty of indi-
vidual segments [18]. Although this approach is not based
on a theoretical foundation, it has the advantage of neither
requiring modifications to the segmentation model, nor to
its training, and has a relatively low computational overhead
during inference.

As detailed in the following, uncertainty measures are
first defined pixel by pixel, based on the softmax probability
output of the segmentation network together with the loss
gradient of the last convolutional layer. They are aggregated
over predicted segments, and used, together with the pre-
dicted class of a segment and its size, to build a classification
model that distinguishes betweenwell andwrongly predicted
segments. The score of this classifier is used as a measure of
the uncertainty in the prediction. A low uncertainty result
can be automatically processed with high confidence, while
a high uncertainty score can indicate the need of human over-
sight. In special cases, the uncertainty score can be used to
improve the segmentationmask. By removing segments with
a high uncertainty from the segmentationmask, the precision
of the segmentation output can be improved for the cost of
reducing the recall. Figure 2 shows a schematic diagram of
the method.

2 Pixel- and segment-wise uncertainty
measures

The output of a semantic segmentation network with a final
softmax layer are the pixel-wise probabilities pki for every
semantic class k = 1, . . . , N , with the index i running over
all pixel coordinates. The predicted class for every pixel is
the one with the highest probability, ĉi = argmaxk pki .

The probability of the predicted class for a pixel, p̂i =
maxk pki quantifies the confidence in the result [19], thus
1 − p̂i is used as one measure of the pixel-wise uncertainty.

Following1 [18], two further quantities are defined, mea-
suring the dispersion of the pixel-wise probabilities:

1 Rottmann et al. make the source code of their method available at
https://github.com/mrottmann/MetaSeg.
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Fig. 2 Schematic diagram of the explored method. An input image
is processed by a semantic segmentation model and the resulting seg-
mentation mask and softmax probabilities are aggregated to segment

wise features. These are processed by a meta-classification model in
order to produce a segment-wise uncertainty map. Finally, the segment
uncertainties are used to correct the segmentation mask

• the entropy

Ei = 1

log K

N∑

k=1

pki log(p
k
i ),

which ismaximizedwhen themodel result sees all classes
as equally likely,

• as well as the difference between the two largest softmax
values,

Di = p̂i − max
k �=ĉi

pki ,

which targets cases where the network predicts a similar
probability for the two most likely classes.

In [20], a gradient-based approach for uncertainty quan-
tification in semantic segmentation is introduced. The gradi-
ent of a categorical cross entropy loss with respect to the last
convolutional layer of the segmentation network can be com-
puted efficiently. When taking the predicted class ĉi as the
one-hot label per pixel, these gradients quantify how similar
the result is to the examples in the trainingdata set. Intuitively,
larger gradients mean that the weights of the convolutional
layer need to be changed more strongly to accommodate the
input, therefore indicating an uncertain result. The norm of
the pixel-wise gradients is taken as an additional measure
of the uncertainty, which can be efficiently computed [20]
as Gi = ∥∥pki (1 − δkĉi )ψi

∥∥
2, with ψi denoting the features

before the last convolution layer.
Figure 3 shows qualitative heat-maps of the pixel-wise

uncertainty measures for the example image of Fig. 1. Due
to the labeling accuracy, the boundaries between segments
of different classes are uncertain and highlighted in the heat-
maps. The wrongly predicted segments at the door and at the
rim of the rear left wheel are also indicated by high pixel-
wise uncertainties. On the other hand, the uncertainties vary
strongly in these segments. The pixel-wise uncertainties are
aggregated to segment-wise measures, in order to build fea-
tures for the classification of high- and low-quality segments.

The aggregation of uncertainty estimates from pixel to seg-
ment level has been shown to improve the performance for
the detection of anomalies by accounting for the correlation
between neighboring pixels [21].

The predicted semantic segmentation mask for an image
is split into a set K̂ of segments, i.e. connected areas of the
same class. Segment by segment, the pixel-wise uncertainty
measures are averaged over all pixels of the segment, e.g.
the mean entropy E(k̂) of a segment k̂ ∈ K̂ is E(k̂) =
1/|k̂| ∑i∈k̂ Ei and analogously for the other uncertainty
measures. The values are also averaged separately over the
boundary and the inner part of the segment, as defined
by [18], because the boundaries typically exhibit higher
uncertainties. Additionally, the standard deviation of the
pixel-wise uncertainty distributions on the boundary, inner
and full segment is used as an input to the meta-classification
model.

The quality of segments is defined with respect to the
ground truth using the measure of intersection over union
[22]. The ground truth segmentation mask is split into a
set K of segments, analogously to the prediction. Predicted
segments are then compared to all ground truth segments
with a matching class label and a non-trivial intersection,
denoted as K|k̂ . For a predicted segment k̂ ∈ K̂ and the
union of thematching and intersecting ground truth segments
K = ⋃

k∈K|k̂ k, the segment-wise intersection over union is
defined as

IoU(k̂) =
∣∣∣k̂ ∩ K

∣∣∣
∣∣∣k̂ ∪ K

∣∣∣
.

Figure 4 shows a sketch to clarify the definition of the IoU
and further quality metrics, which are defined and motivated
below.

The IoU penalizes scenarios in which, for example, one
ground truth segment is covered by two disjoint predicted
segments, which are split by a small, wrongly predicted area.
Intuitively, both predicted segments describe a fraction of
the ground truth segment well, even though, in the original
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Fig. 3 Qualitative heat-maps of 1 − p̂i (top left), 1 − Di (top right), the entropy Ei (bottom left) and the gradient uncertainty Gi (bottom right),
for the example image shown in Fig. 1. Darker shades indicate higher pixel-wise uncertainties (color figure online)

definition, the IoU is small. To address this, the adjusted inter-
section over union, IoUadj., is defined in [18] by restricting
the denominator to the union of the predicted segment with
the area of the matching ground truth segments which is not
covered by other predicted segments of the same class.

In a similar fashion, we assess the quality of predicted
segments by their precision,

p(k̂) =
∣∣∣k̂ ∩ K

∣∣∣
∣∣∣k̂

∣∣∣
,

i.e., the fraction of pixels in the predicted segment which
overlap with a matching ground truth segment. For com-
pletely wrong predictions, i.e. without overlap of the pre-
dicted segment and the ground truth, p = IoU = IoUadj. =
0. Only for at least partially correct segments, the behavior
of the metrics differ and p ≥ IoUadj. ≥ IoU. By choosing
the precision instead of the IoU, we intentionally neglect to
quantify how much of the ground truth segment is covered.
For some downstream tasks using the segmentation informa-
tion of a partial, but precise segment can still be valuable. As
an example, a damage detected on a precise but incomplete

segment of a car body part is, in many cases, sufficient to
provide a correct cost calculation.

3 Segment quality classification

The aforementionedmetrics are used to train a segmentmeta-
classifier for a semantic segmentation model for car body
parts. The segmentation model is a fully convolutional DNN,
distinguishing between 70 car body parts. Segment metrics
and ground truth information are collected for about 3000
labeled images, which were used as a validation data set for
the training of the segmentation model. An independent set
of about 1000 labeled images, which was not used for the
training of the segmentation model, provides a test set of
segments with ground truth information.

Segments with p > 0.5 are labeled as correctly predicted.
The threshold, τp, is determined from the distribution of the
segment precision, c.f. Fig. 5, visual investigation of seg-
ments with varying precision and in consideration of down-
stream tasks. The performance of the meta-classification
model does not strongly depend on the chosen precision
threshold, as will be detailed below.
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Fig. 4 Sketch of a segmentation result and the quality metrics for one
of the segments. aAground truth segment of classA (black dashed rect-
angle) is covered by three predicted segments: two of class A (blue),
divided by a segment of a different class B (red). The correctly seg-
mented area is indicated by the two blue shaded rectangles. b The IoU
of the left-most predicted segment is small, as it is calculated by divid-

ing the blue shaded area by the intersection of the ground truth and the
predicted segment, respectively. In contrast, for the IoUadj. the area cov-
ered by the other segment of class A is disregarded. For the precision,
p, the correctly predicted area is compared only to the full predicted
segment (color figure online)

Fig. 5 Distribution of the segment-wise precision. Segments with p >

0.5 are selected as correct predictions. The population of segments at
very lowprecision consistsmostly of small,wrongly predicted segments

Various classification models are trained to predict the
binary segment quality, i.e. classify p > 0.5 versus p ≤ 0.5,
and the resulting performance is compared. Different sets of
features are tested, as listed in Table 1.

Table 1 List of segment-wise features included in the three feature sets:
‘all’, ‘reduced’, and ‘uncertainty only’

Features All Reduced Uncertainty only

Averages of pixel-wise
uncertainties

� � �

Relative segment size � �
Predicted class � �
Standard deviation of
pixel-wise uncertainties

�

Boundary/inner pixel
information

�

Two types of classifiers are tested: a gradient boosted
decision tree, based on the XGBoost library [23] as a high
performance method [24], as well as a linear regression
classifier [25], as a simpler baseline. The XGBoost hyper-
parameters are optimized in a grid search employing 5-fold
cross validation on the training data set.

Table 2 lists the area under the receiver operator character-
istic curves (AUROC, [26]) obtained for all combinations of
classifier types and segment feature sets. The precision-recall
curves are displayed in Fig. 6. The XGBoost model trained
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Table 2 AUROC scores for all evaluated combinations of classifier
types and feature sets, with statistical uncertainties due to the size of
the test data set

Feature set XGBoost Log. reg

All 0.916 ± 0.002 0.891 ± 0.003

Reduced 0.915 ± 0.002 0.885 ± 0.003

Uncertainty only 0.890 ± 0.003 0.882 ± 0.003

Fig. 6 Precision as a function of the recall obtainable for selecting low-
quality segments for all evaluated combinations of classifier types and
feature sets. The legend states the average precision AP

using all features performs best, achieving an AUROC score
of 91.6%±0.2% and an average precision of 93.4%±0.2%.
Reducing the feature set by excluding the standard deviation
of the uncertainty distributions and split of segment features
into boundaries and inner areas only entails a minor decrease
in performance. The achievedAUROCscore is 91.5%±0.2%
with an average precision of 93.3% ± 0.2%. The results are
comparable to the classification results achieved in [18] for
a different model and data set.

The predicted class and the segment size are important for
the performance of theXGBoost classifier.Without them, the
AUROC score is reduced to 89.0%±0.3% and is on par with
the results obtained using the simpler logistic regression of
the input features.

For further studies, the XGBoost model trained with
the reduced feature set is used. The output of this meta-
classification model is scaled to a range of [0, 1] with higher
values for segments with a low predicted quality and is used
as a measure of the uncertainty for a segment. As can be seen
in Fig. 7, the classifier score is strongly correlated with the
segment precision (ρ = 0.74), and the two variants of IoU
(ρ ≥ 0.90). This correlation prevails even when choosing
a different segment precision threshold to define the binary
target for meta-classification.

Fig. 7 Average segment quality in bins of the meta-classifier output.
Shown are p (black), IoU (blue) and IoUadj. (red) for the meta-classifier
trained with the nominal precision threshold τp = 0.5, as well as p for
meta-classifiers trained with τp = 0.2 (gray dotted) and τp = 0.8 (gray
dashed). The legend lists the correlation coefficient ρ for each case
(color figure online)

The uncertainty measure can be used to remove low-
quality segments from the predicted mask. This prevents
downstream tasks from including wrong predictions, which
can lead to false positive results for car body parts that are not
at the predicted location or not even displayed in an image.
The failure modes of the segmentation model include small,
wrongly predicted segments within larger areas of correct
predictions. This can be caused by reflections or dirt on the
surface of the car. Segments with an uncertainty larger than a
specific threshold are removed from the segmentation mask,
as detailed in Listing 1. If such a segment is fully enclosed by
just one other segment, i.e. if all neighboring pixels have the
same predicted class in the original prediction, it is replaced
by the enclosing class. Otherwise, the segment is set to the
“background” class, thus preventing downstream tasks from
using the pixels for further results. Figure 8 shows an example
of the segment-wise uncertainties and the corrected segmen-
tation mask for the image shown in Fig. 1. The wrongly
detected air intake segment at the rim is removed, preventing
wrong input to subsequent processes. The wrongly predicted
molding segment on the door is removed, and replaced by the
surrounding door class. Figure 9 shows additional examples.
Comparing the uncertainty map with the segmentation mask
and the original image, it can be seen that well segmented
parts have low uncertainties, while challenging areas, e.g.
due to bad lighting or being in the background of the image,
lead to higher segment-wise uncertainties. The mask correc-
tion procedure is able to remove many of the erroneously
predicted segments.

The segment-wise uncertainty map provides comprehen-
sive and easy-to-use information about the reliability of each
segment for further applications. For example, if damages are
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Fig. 8 Heat-map of the segment-wise uncertainties (left) and corrected
segmentation mask (right) for the example image shown in Fig. 1.
Within the heat-map, the colored contours show segments with an
uncertainty above the threshold which are either removed and set to

the background class (red), or replaced by the unambiguous surround-
ing class (green), as decided by the algorithm described in the text (color
figure online)

Fig. 9 Additional examples, showing (from left to right) the original image, the segmentation mask, the heat-map of the segment-wise uncertainties
and the corrected segmentation mask. Several mistakes, for example on the rear bumper in the upper image and on the trunk in the lower image,
are removed

Algorithm 1 Segmentation mask correction
for all segments s do

if Uncertainty(s) > τ then
| Collect neighbor segments, for example using
| a dilation operation on the pixel mask
n ← NeighborSegments(s)
if len(n) = 1 then

class(s) ← class(n0)
else

class(s) ← background
end if

end if
end for

found only on segments with a low uncertainty, the claims
handling process can be automated with high confidence in
the end result. Individual high uncertainty segments can be
removed from the segmentation mask, in order to improve
the quality of the result.

The quality of a segmentation mask for an image can be
characterized by the mean (i.e., class averaged) IoU. Given
the sets of predicted classes, Ĉ, and of the classes in the
ground truth labels, C, for an image, this metric is defined as

mIoU = 1∣∣∣Ĉ ∪ C
∣∣∣

∑

c∈Ĉ∪C

tpc
tpc + f pc + f nc

,

where tpc, f pc, and f nc are the numbers of true positive,
false positive and false negative predicted pixels of class c,
respectively. Notably, any class which is neither in the pre-
diction nor in the labels does not affect the mIoU, while
classes which are in the predicted segments but not in the
ground truth labels (and vice versa) reduce the mIoU of a
segmentation mask.

The mIoU is computed image by image for the origi-
nal segmentation mask, as well as for the corrected mask,
to quantify the impact of removing segments with a high
uncertainty. Figure 10 shows the distribution of the differ-
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Fig. 10 Distribution of the mIoU difference, �, between the corrected
and the original mask. The red, hatched area marks entries with � < 0,
indicating a quality degradation, occurring only for f�<0 = 2.6% of
the images. The inset shows a scatter plot of the mIoU of the corrected
prediction in dependence on themIoU of the original mask (color figure
online)

ence between these two values. On average over all images,
the mIoU is improved by �mIoU = 0.16, corresponding to
an increase of the averagemIoU from 0.50 to 0.66. The stan-
dard deviation of the distribution of�mIoU is 0.09 on the test
set. For > 97% of the images in the test set an improvement
of the result is observed. In the rare cases that the correction
procedure results in a mIoU decrease, usually small, irregu-
larly formed but precise segments within the larger area of
a misidentified car body part are removed. Figure 10 also
shows the mIoU values for corrected masks in dependence
on the uncorrected result. The method yields improvements
over a large range of mIoU.

In order to study the robustness of the correction proce-
dure, images are grouped into different categories. Different
image perspectives bring different challenges to the model:
images showing the full car have smaller relative segment
sizes, while zoom images can lack helpful context. The expo-
sure of the image could have an impact on the procedure, as
under- or over-exposed areas effectively hide information.
Lastly, the image resolution is an important factor for the
overall image quality. Table 3 lists the average improvement
�mIoU due to the correction procedure for images in dif-
ferent categories. The individual results agree well with the
overall average, showing that the method is robust under the
tested effects.

A major factor of the improvement is the removal of
small segments, in turn leading to a wrongly predicted class
being removed from the mask entirely. Even though only a
small fraction of pixels in the image is affected, the effect
on the mIoU is significant because every class has the same
weight. The number of wrongly predicted classes per image
is reduced from 6.3 to 1.4, on average, with standard devi-

Table 3 Average �mIoU for images in different categories of image
perspective, exposure and resolution

Perspective
Full car Zoom

0.16 ± 0.11 0.17 ± 0.07

Exposure
Underexposed Balanced exposure Overexposed

0.14 ± 0.09 0.17 ± 0.10 0.17 ± 0.10

Resolution
<1MP 1–4MP >4MP

0.17 ± 0.11 0.17 ± 0.10 0.18 ± 0.07

ations of 4.0 and 1.5, respectively. At the same time, a
small decrease in the number of correctly predicted classes
is observed as well, reducing the number from 11.2 to 10.6,
with standard deviations of 7.3 and 6.9. Crucially, this reduc-
tion prevents false positive detections in downstream tasks.

4 Conclusion

In this work, the development and application of a meta-
classification model is presented, which is used to assess
the quality of the output of a semantic segmentation model
for car body parts. Pixel-wise uncertainties are derived from
the softmax probabilities and gradients, and are combined
to segment-wise features. A gradient boosted decision tree
classifier based on the average uncertainty features per seg-
ment has been trained to distinguish between precise and
imprecise segments. The resulting meta-model achieves an
AUROC score of 0.915 ± 0.002. The outputs of this classi-
fier provide a comprehensive uncertainty measure for each
segment.

In a production setting, the meta-classification model runs
as a post-processing step after evaluating the car body part
segmentation model. The resulting uncertainty scores are
then used to remove low-quality segments from the pre-
dictions. This removal prevents false positive detections in
downstream tasks and improves the segmentationmask qual-
ity for this use-case by �mIoU = 0.16.

The proposed method can improve the reliability of a
segmentation model output. In the context of motor claims
handling, this has been proven to be a valuable tool for the
automation of damage assessment tasks.
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