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Abstract
Semantic segmentation plays a significant role in unstructured and planetary scene understanding, offering to a robotic system
or a planetary rover valuable knowledge about its surroundings. Several studies investigate rover-based scene recognition
planetary-like environments but there is a lack of a semantic segmentation architecture, focused on computing systems with
low resources and tested on the lunar surface. In this study, a lightweight encoder-decoder neural network (NN) architecture
is proposed for rover-based ground segmentation on the lunar surface. The proposed architecture is composed by a modified
MobilenetV2 as encoder and a lightweight U-net decoder while the training and evaluation process were conducted using a
publicly available synthetic dataset with lunar landscape images. The proposed model provides robust segmentation results,
allowing the lunar scene understanding focused on rocks and boulders. It achieves similar accuracy, compared with original
U-net and U-net-based architectures which are 110–140 times larger than the proposed architecture. This study, aims to
contribute in lunar landscape segmentation utilizing deep learning techniques, while it proves a great potential in autonomous
lunar navigation ensuring a safer and smoother navigation on the moon. To the best of our knowledge, this is the first study
which propose a lightweight semantic segmentation architecture for the lunar surface, aiming to reinforce the autonomous
rover navigation.
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1 Introduction

Semantic segmentation plays a significant role in unstruc-
tured and planetary scene understanding, offering invaluable
knowledge to a robotic system or a planetary rover about
its surroundings [1]. Through terrain semantic segmentation,
robotic systems are able to analyze images or videos and
accurately detect and classify multiple features or regions
within their environments, allowing superior comprehension
and spatial awareness. More specifically, robotic systems
are capable of identifying and differentiate various elements
including boulders, craters, or even potential obstacles and
hazards. This fact allows the use of semantic information in
the path planning, enabling the robotic system to navigate
in challenging landscapes with increased safety. Moreover,
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accurate semantic segmentation is able to recognize poten-
tial mineral deposits or geological formations, contributing
to scientific research for planet exploration.

Several studies investigate semantic segmentation in
unstructured and planetary scenes using traditional algo-
rithmswithout learning-based processes including [2–5], and
machine learning algorithms such as [6–9]. However the last
five years, terrain semantic segmentation based on deep neu-
ral networks dominates the literature [10].

Regarding the earthy unstructured scenes, in [11] and [14]
authors propose semantic segmentationmethodologies based
on a modified DeepLabV3 + [12, 13] and a U-net with Effi-
cientNet [15] backbone respectively, aiming to improve the
scene understanding of self-driving vehicles in unstructured
environments. Both models were trained and evaluated with
IDD (Indian Driving dataset) dataset due to its high diver-
sity, achieving satisfactory results using mean IoU (mean
Intersection over Union) metric. In [16], authors propose a
lightweight neural network for terrain semantic segmenta-
tion focused on unstructured environments which is capable
of merging multi-scale visual features, in order to effi-
ciently group and classify different types of terrains while a
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reinforcement learning algorithm, is able to utilize the pre-
dicted segmentationmaps aiming to plan and guide a robot in
paths with high safety. Similarly, in [17], a real-time terrain
mapping method for autonomous excavators is presented,
which is able to provide semantic and geometric informa-
tion for the terrain using RGB images and 3D point cloud
data, while a dataset which includes images from construc-
tion sites is designed and utilized. Regarding the datasets for
earthy unstructured environments, in [18, 19], two publicly
available datasets were developed for semantic segmentation
deep learning models, focusing on self-driving in semi-
unstructured or dense-vegetated environments. In [18], the
dataset designed, for accurate comprehension in scenes with
high coverage in grass, asphalt, soil and sand, while authors
in [19], targeted more on dense-vegetated and rough terrain
scenes for off-road self driving scenarios.

Concerning the planetary environments, several method-
ologies have been proposed for feature detection and terrain
or scene segmentation aiming to reinforce and improve planet
exploration tasks including landing, rover-based path plan-
ning, localization or planet surface investigation. In [20], a
modified-U-net architecture [21] for rock segmentation on
themartian surface is proposed, which was trained and tested
with a Mars-like dataset [22] captured on Devon Island,
achieving satisfactory accuracy. In [23], authors conduct a
performance evaluation in rock detection for Mars-like envi-
ronments using an original and modified versions of SSD
(Single-Shot-Detector) [24] neural network, trained with the
aforementioned dataset [22]. In [25], a modified Unet +
+ architecture [26] for rock segmentation in planetary-like
environments is proposed where two rounds of training are
performed for the learning process. In the pre-training stage,
the proposed architecture is fed by a synthetic dataset, created
by a proposed algorithm while in the fine-tuning stage, the
architecture is trained using a limited part of the Katwijk
beach planetary rover dataset [27]. In [28, 29], authors
conduct a benchmark analysis in Hazard Detection (HD)
for planetary landing using several state-of-the-art semantic
segmentation models compared with a replicated HD algo-
rithm fromNASA’sAutonomousLandingHazardAvoidance
Technology (ALHAT) project. The results proved that the
segmentation architectures provide high efficiency on hazard
detection outperforming the ALHAT algorithm in perfor-
mance time and accuracy.

Several studies investigate the sky and ground segmenta-
tion in planetary environments, aiming to refine the scene
understanding [30, 31]. In [30], an architecture for sky
and ground segmentation in planetary scenes is proposed,
inspired by U-net and NiN (Network In Network) [32] which
was trained for two rounds with SkyFinder [33] and Katwijk
beach planetery rover datasets [27] respectively. On the other
hand in [31], a DeeplabV3 + neural network is utilized for

skyline contour identification in martian environment, aim-
ing to estimate the rover’s global position.

A significant limitation of deep learning methods in plan-
etary environments, is the lack of qualitative real or synthetic
available datasets, comparedwith datasets for urbanor indoor
environments [34]. In [34], authors propose a simulator
which is able to construct valuable synthetic scenes for plane-
tary environments including richmetadatawhile furthermore
it is capable of generating multi-level semantic labels based
on pre-defined materials. On the other hand, in [35], authors
propose a large-scale dataset called AI4MARS for ter-
rain semantic segmentation of Mars, aiming to reinforce
autonomous navigation on the martian surface. AI4Mars
includes about 35K annotated images captured by Curiosity,
Opportunity and Spirit rovers while the labeling conducted
by experts with the aid of crowdsourcing using a web-based
annotation tool.

A crucial use of terrain classification in planetary envi-
ronments is the path planning optimization [36]. In [37], a
terrain segmentation model is proposed using PSPNet [38],
trained by real rover-based images from Mars and artificial
images generated by the Unity3D software, aiming to auto-
mate a path planning algorithm on the Martian surface. In
[39], authors propose amethodology for path rerouting using
imagery data, depth maps and a CNN-based neural network
trained with Katwijk beach planetery rover dataset, in order
to detect and avoid obstacles such as rocks and boulders.

Although several studies investigate rover-based scene
recognition in Martian surface or planetary environments in
general, quite few investigate similar tasks for the lunar sur-
face. Lunar topography includes several features including
rocks, boulders and craters, while the terrain in many areas
is quite uneven with mounds and valleys. Although several
studies propose methodologies for crater [40–42] or hazard
[43] detection and segmentation, they focus on safe landing
using remote-sensing images while there is a deficiency in
rock and boulder identification during the rover navigation;
a quite important issue for the smooth and trouble-free nav-
igation.

In this study, a lightweight encoder-decoder neural net-
work (NN) architecture is proposed for rover-based ground
segmentation on the lunar surface. The proposed architecture
is based on U-net and MobilenetV2 [44] while the train-
ing and evaluation process were conducted using a synthetic
dataset with lunar landscape images. The proposed model
provides robust results, allowing the lunar scene understand-
ing focused on rocks and boulders. The main contributions
of the study can be described as follows:

• Development of a lightweight semantic segmentation
model aiming to reinforce the autonomous rover naviga-
tion on the lunar surface
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• Investigation of lunar scene understanding through deep
learning, using synthetic dataset in training and a combi-
nation of real and synthetic datasets in evaluation

• Comparison of the model with U-net-based alternatives
in different computing setups, proving the superiority
of the proposed architecture in terms of accuracy and
performance-time

• Lunar scene understanding based on semantic-
segmentation through deep learning, proves a great
potential in autonomous lunar navigation ensuring a safer
and smoother navigation on the moon

2 Materials andmethods

Semantic information in unstructured environments provides
a contextual understanding of objects and their relation-
ships within an image, enabling machines to recognize
and categorize features semantically, reinforcing crucial
tasks including autonomous navigation in unknown plane-
tary scenes. Although the literature includes several studies
focused on terrain segmentation in unstructured scenes, there
are two main gaps, that this study attempts to fill:

• Semantic segmentation in the lunar surface using rover-
based images, instead of the most studies that investigate
scene understanding through semantic segmentation in
earthy unstructured environments or in the martian sur-
face

• A lightweight semantic segmentation model, capable of
being used in systems with low computing resources, pro-
viding high efficiency after training with a limited size of
dataset

In other words, the scope of this study, is to develop a
lightweight and robust semantic segmentation model, aim-
ing to be used in lunar surface exploration. Two challenges
have to be encountered: The first one is the lack of valuable
rover-based datasets for the lunar surface, compared with
Mars where several datasets have been proposed. The second
challenge is the size of the model, since most of the semantic
segmentation architectures are computationally expensive.

To address these challenges above, a U-net based archi-
tecture is proposed, since U-net is an efficient and accurate
neural network in terms of accuracy which doesn’t require
large datasets [45, 46].

More specifically, the proposed architecture is composed
by an encoder-decoder architecture where amodified version
of MobileNetV2 neural network is used as an encoder and a
lighter decoder ofU-net is utilized for the segmentation stage.
To speed up, the learning process, theMobileNetV2 has been
trained with ImageNet, a well-known image dataset which

includesmillions of general-purpose photographs. Thus, dur-
ing the training process, the pre-trained network “transfers”
its earned “experience” to the model, encountering the issue
of the limited size of lunar surface dataset.

2.1 Modified U-net architecture

As referred above, the proposed architecture is based on U-
net, a well-known architecture for semantic segmentation
which was initially proposed for medical applications.

The U-shaped model of U-net can be separated in two
main components: (a) the encoder, which reduces the image
dimensions, increasing the feature maps while learning to
classify the desired features, and (b) the decoder, which
reconstructs the image dimensions, decreasing the feature
maps and performing precise segmentation of the detected
features. The U-net decoder, is able to segment the detected
features retrieving the topology of the image content through
four skip connections among different levels of the encoder.
These connections transfer information to the decoder in
order to maintain the spatial details of images with the aim
to reconstruct them (Fig. 1).

U-net is mainly composed by convolutional (Conv2D)
and “BatchNormalization” layers. Regarding the encoder-
decoder functionality, the encoder downsamples the image
through the “MaxPooling2D” layer, and the decoder upsam-
ples the image using the UpSampling2D layer while the
“Concatenate” layer generates the skip connections between
the encoder and decoder part. At the end, “softmax” (Eq. 1)
which is the activation function is utilized in order to export
the segmentation map for each input image.

σ(
−→
z) i � ezi

∑K
j�1 e

zj
(1)

where −→z is the input vector and zi presents the elements
of the input vector.

∑K
j�1 e

zj is a normalization term with K
classes which ensures that the output of the function will sum
to one and each output value will be in a range of (0, 1). In
this study, the classes that are represented by K are rocks /
boulders, sky and ground (background) (see Sect. 2.2).

Although U-net is an accurate semantic segmentation
architecture, it provides increased performance-time while it
requires a time-consuming training processwithmuch exper-
imentation in fine-tuning, since it includes about 31,000,000
trainable parameters. In order to accelerate the training
process, “transfer learning” technique is utilized, using a pre-
trained (with ImageNet dataset)MobileNetV2 as the encoder
(Fig. 2).

MobileNetV2 is a CNN-based architecture designed for
providing high efficiency in mobile devices while it has been
utilized in multiple tasks of computer vision including clas-
sification, semantic segmentation, object detection, etc. The
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Fig. 1 U-net architecture

Fig. 2 Architecture of U-net with MobilenetV2 as encoder

Fig. 3 Inverted residual block
architecture

main MobilenetV2 architecture is composed by 19 residual
bottleneck layers where each bottleneck is based on inverted
residual block. The inverted residual block is based on a
narrow-wide-narrow approach using a point-wise convolu-
tion with ReLU6, followed by a depth-wise convolution with
ReLU6, followed by a linear point-wise convolution. More-
over, a skip connection,merges the input of the blockwith the
output through the “Add” layer (Fig. 3). ReLU6, a modifica-
tion of the well-known activation function ReLU (Rectified
Linear Unit), performs the non-linear transformation aiming
the model to learn more complex tasks while outperforms
the traditional ReLU in accuracy and execution-time [47].

The approach of inverted residual blocks reduces the
extracted parameters and computation compared with

conventional convolution layers. According to Sandler et al.
2018 [44] when the kernel k � 3 for 3 × 3 depth-wise con-
volution, the computational cost is about 9 times smaller
compared with traditional convolution without significant
reduction in accuracy.

More specifically, if the input of a traditional convolution
is hi × wi × di where h and w, the image dimensions and
d, the depth or channels while the output is hi × wi × d j ,
then the computational cost is calculated as hi × wi × di ×
d j × k× k, where k, the kernel size, while the corresponding
computational cost of an inverted residual block will be: hi ×
wi × di (k2 + d j ).

The combination of the original pre-trainedMobileNetV2
as an encoder with U-net decoder, provides a more
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Fig. 4 Proposed architecture

Fig. 5 Proposed architecture for
lunar terrain segmentation

lightweight architecture including about 8,000,000 train-
able parameters instead of U-net which includes about
31,000,000, while it is able to accelerate the training process.
However, this architecture remains unsuitable for applica-
tionswhich require high efficiency in terms of inference-time
especially for real-time tasks.

To deal with low-performance time without reducing the
accuracy, an architecture based on a modified MobileNetV2
encoder and a lightweight U-net decoder, is proposed.

Regarding the modifiedMobileNetV2, is composed by an
initial fully convolution layer followed by 13 residual bot-
tleneck layers, instead of the original MobileNetV2 which
includes 19, since right after the block 13, the parameters
are highly increased in the original architecture from about
92,000 to 155,000. Moreover, to further reduce the compu-
tational cost, the depth-multiplier which is a positive factor
that multiplies the channels through the depth-wise convolu-
tion, was defined with a value of 0.35 instead of 1.0 aiming to
decrease the output channels of the depth-wise convolution
layers. It’s worth mentioning that for depth-multiplier val-
ues less than 1.0, the depth-multiplier is applied to all layers
except the last convolution layer.

Concerning the U-net decoder, all the filters of the con-
volution layers were divided by the factor of 2 aiming to

accelerate the segmentation stage while the four skip con-
nections connects the input image, the block 1, block 3 and
block 6 of the encoder respectively.

The proposed architecture includes about 220,000 train-
able parameters which are far fewer than the 31,000,000
and 8,000,000 trainable parameters of U-net and original
MobileNetV2/U-net respectively.

The proposed architecture with detailed representation of
the layers is presented in Fig. 4 while a more abstract repre-
sentation is depicted in Fig. 5.

2.2 Dataset

As referred above, there is a lack in datasets for lunar surface
segmentation while to the best of author’s knowledge, there
is not rover-based image dataset with real lunar landscapes.
Instead, several datasets for the martian surface have been
proposed.

Thus, a dataset with artificial rover-based images which
depicts lunar landscapes was utilized for training and vali-
dation of the proposed architecture,. The dataset was created
by the Space Robotics Group of Keio University in Japan,
using Planetside Software’s Terragen and a DEM (Digital
ElevationModel), based onLunarOrbiter LaserAltimeter on
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Fig. 6 Dataset of lunar surface
for semantic segmentation
bySpace Robotics Group of Keio
University in Japan. The artificial
images are presented in the left
column while the corresponding
masks in the right column

NASA [48]. It includes about 9,700 artificial images and the
corresponding annotated masks taking into account the fol-
lowing four classes: large rocks, small rocks, sky and ground
(background) (Fig. 6):

Several drawbacks are included in the dataset, such as the
decreased accuracy in feature segmentation and the lack of
balance between the classes of large rocks and small rocks.
To deal with the imbalanced classes, the two classes of rocks
were merged in one class. Thus, the new dataset includes the
following classes: rocks, sky and ground (background).

Nevertheless, since this is the only publicly available
dataset for the lunar surface focused on semantic segmen-
tation, it was utilized in order to train and validate the
proposed architecture, aiming to provide a lightweightmodel
for potential use in systems with low computing resources
during the rover navigation, on the lunar surface.

3 Implementation and results

In this section, the implementation of the proposed modified
U-net architecture is described while afterwards, the eval-
uation and results of the model for lunar ground semantic
segmentation, are presented.

3.1 Training process of modified U-net

The proposed architecture was implemented using Python
and Keras / TensorFlow deep learning library [49] while sev-
eral Python libraries including NumPy [50], Matplotlib [51]
and Scikit-learn [52] were utilized.

The main goal of the architecture is to detect and local-
ize rocks and boulders while in order to segment the whole

scene, three classes are taken into account: rocks, sky and
background. The training data which constitute the 70% of
the lunar landscape dataset feeds the modified U-net while
the remaining 30% of the dataset is used for the validation
and testing. The model was trained for 15 epochs using the
early stopping technique while the batch size was defined
equal to 16. The categorical cross entropy loss function and
Adam optimizer with a learning rate of 5 × 10−5 were uti-
lized. Regarding the input size, the dimensions of 480 × 480
pixels was used, since it was observed that a larger image
size was provided more refined results than the widely used
size of 256 × 256 pixels.

The training and validation process were conducted in a
machine with Intel i7- 3.50 GHz × 8 cores of CPU, 16 Gb
of RAM and NVIDIA GTX 1080 Ti of GPU with CUDA
version 11.2 enabled.

3.2 Evaluation and results of modified U-net

The proposed architecture was trained and validated using
dice-coefficient, recall, Io (Intersection over Union) and pre-
cisionmetricswhich are definedwith the following formulas:

Recall � TP

TP + FN
(2)

Dice � TP

2TP + FN + FP
(3)

IoU � TP

TP + FN + FP
(4)

Precision � TP

TP + FP
(5)
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Table 1 Loss function,
dice-coefficient, recall, IoU
(Intersection over Union) and
precision after the training
process

Loss Dice-coef Recall IoU Precision

Training 0.07 0.79 0.98 0.70 0.77

Validation 0.06 0.78 0.98 0.69 0.76

Fig. 7 Loss and dice coefficient curves during training and validation

where, TP stands for true positive while FN and FP stands for
false negative and false positive. The results after the training
process are presented in Table 1 while the learning curves of
loss function and dice coefficient are depicted in Fig. 7.

As observed in Table 1, the value of loss function is below
0.1, the dice-coefficient is in a level of 0.80, the recall is close
to 1.0 while the IoU and precision are in a level of 0.70 and
0.75 respectively, indicating that the model is able to provide
satisfactory results. Moreover, in Fig. 7 the learning curves
of the training and validation process for loss function and
dice-coefficient are quite close after the sixth epoch without
fluctuations proving that the model doesn’t overfit.

After the training process, the proposed architecture was
validated in testing data which are completely unknown for
the model including images from the synthetic dataset and
from real lunar landscape images while the corresponding
qualitative results are presented in the Figs. 8 and 9.

As observed in Fig. 8, the proposed architecture provides
satisfactory results in testing data with synthetic images,
achieving IoU (Intersection over Union) in a level of 0.85
or above. It is able to differentiate the sky from the ground
region defining the horizon line with high accuracy while it
precisely predicts the location of the small rocks and boul-
ders on the lunar surface. It is not affected from the number
of rocks that exist in the scene, since it is able to provide
robust results in a scene without any or one rock (Fig. 8d, e)
or with multiple small rocks and boulders (Fig. 8c).

Moreover, the proposed architecture achieves respectable
results in real rover-based images (Fig. 9a-d) which are quite
different in terms of color and illumination compared with
the training data. Themodel is not affected by the camera tilt,
being capable of identifying rocks, either the camera targets
on the horizon (Fig. 9a, b) or on the ground (Fig. 9c, d).

Regarding size of the model, it includes only 220,000
trainable parameters while the weights file size of the model
is about 3.5 MB which is considered quite small for seman-
tic segmentation models. The model was tested in terms of
inference time for a set of images with a size of × 480 pixels
using three different computing setup: (a) a GPU-enabled
conventional desktop machine, (b) CPU-only conventional
desktop machine and (c) a CPU-only embedded system with
quite low resources. The results are presented in Table 2.

As observed in the Table 2, the model provides quite
satisfactory inference time in the GPU-enabled machine
achieving 40 ms inference time per image and 25 FPS
(Frames per second). The model performs sufficiently with-
out GPU (CPU-only) in the same machine, providing a
performance time in a level of 100 ms per image and 10
FPS. The model was also tested on a Raspberry Pi 4 with
4 GB of RAM which is a CPU-only embedded system
with quite low resources, providing inference time equal to
1080 ms and 0.92 FPS. Overall, the results are considered
respectable taking into account that the image segmenta-
tion tasks require high-endGPU-enabledmachines and prove
that the model can be be used in GPU-enabled or CPU-only
conventionalmachines and embedded systemswith lowcom-
puting resources.

4 Discussion

In this study, a deep learning architecture for semantic
segmentation is proposed,which is able to understand seman-
tically a lunar scene, focused on detecting and classifying
rocks and boulders. The main goal of this study is the
implementation of a lightweight deep learning model with
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Fig. 8 Left column: Original
images from the synthetic lunar
surface, (middle column) The
corresponding annotated masks,
(right column) Predictions of the
proposed architecture. In each
prediction (row) the IoU
(Intersection over Union) metric
is presented
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Fig. 9 Left column: Real images
from the lunar surface, (right
column) Predictions of the
proposed architecture. In each
prediction (row) the IoU
(Intersection over Union) metric
is presented
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Table 2 Inference time (in
milliseconds and FPS) of the
proposed model in a desktop
GPU-enabled and CPU-only
conventional desktop computer
and in a CPU-only embedded
system with low resources

Inference time Desktop machine
/GPU-enabled

Desktop machine
/CPU-only

Embedded system
Rasp. Pi 4

ms FPS ms FPS ms FPS

Proposed model 40 25 100 10 1080 0.92

Table 3 Parameters and model
size of the U-net, VGG16/U-net,
MobV2/U-net and the proposed
architecture

Architecture
Encoder/Decoder

Total params Trainable
params

Non-trainable
params

Model file size
(MB)

Units

U-net 31,061,416 31,047,712 13,704 373.1 17,179

VGG16/U-net 23,752,708 23,748,676 4,032 285.4 12,805

MobV2 / U-net 8,047,876 8,011,780 36,096 97.3 47,423

Proposed
architecture

228,588 221,724 6,864 3.5 16,202

a potential use in real-time, in order to increase the safety of
rover navigation during a mission on the moon.

Thus, an encoder-decoder architecture was developed
which is composed by a modified MobileNetV2 neural net-
work as encoder and a lightweight U-net decoder. Regarding
the MobileNetV2 architecture, it includes a fully convolu-
tion layer followed by 13 residual bottleneck layers while the
depth-multiplier factor was defined in a value of 0.35 instead
of the original MobileNetV2 which includes 19 residual bot-
tleneck layers and the default depth-multiplier factor is equal
to 1.0. Concerning the segmentation stage, all the filters of
U-net decoder were divided by the factor of 2 while the skip
connections transfer information related with the spatial con-
tent of each image from several layers (the initial input, the
block 1, the block 3 and the block 6) of the encoder part.

As presented in Sect. 3.2, the proposed architecture pro-
vides robust results achieving IoU in a level of 0.80 or above,
detecting and classifying rocks and boulders with satisfac-
tory accuracy in both synthetic and real rover-based images
from the lunar surface. To further validate the proposed archi-
tecture, it was compared with three similar and widely used
encoder-decoder architectures based on U-net:

• The original U-net
• The U-net with VGG16 as encoder
• The U-net with the original MobileNetV2 as encoder

The architectures above, were trained and tested under the
same parametrization so as a fair and proper evaluation to be
conducted.

The trainable parameters of the proposed architecture is
about 220,000 while the corresponding trainable parame-
ters of U-net, VGG16/U-net and MobileNetV2/U-net are
about 31,000,000, 24,000,000 and 8,000,000 respectively.
The weights file sizes are about 370 MB for U-net, 285 MB

for VGG16/U-net and 97 MB for MobileNetV2/U-net while
the corresponding weights file size of the proposed architec-
ture is about 3.5 MB (Table 3).

In Fig. 10, qualitative results from the alternative and
the proposed architectures are depicted while in Table 4
the corresponding IoU score is presented. It’s worth noting
that original MobileNetV2/U-net could not converge with
this specific parametrization, thus in the results below the
proposed architecture is compared with original U-net and
VGG16/U-net.

As observed in Fig. 10, all the models produce respectable
segmentation results. In Fig. 10a, b, c and d the proposed
model provides similar accuracy in rocks segmentation com-
pared with the original U-net and VGG16/U-net, predicting
all the important rocks and boulders that could harm a rover
during navigation. On the other hand, in Fig. 10e and f which
are depicted real images from lunar surface, the proposed
architecture provides refined segmentation results compared
with the alternativemodels. For instance, in Fig. 10e, the pro-
posed model precisely segments the two main rocks on the
ground instead of original U-net which fails to predict them
while VGG16/U-net falsely unifies them in a bigger rock.
Similarly, in Fig. 10f, the proposed model and VGG16/U-
net produce quite close results while original-U-net falsely
predicts a large shadow as a rock.

Regarding the evaluation of the models on testing data in
terms of intersection over union (IoU), the proposed architec-
ture provides an IoU score of 0.84 (Table 4) outperforming
the VGG16/U-net while is close to IoU of U-net which is
equal to 0.86. The results above, determines the superiority
of the proposed architecture since, it is about 110 times and
about 140 times smaller than the VGG16/U-net and the orig-
inal U-net respectively while provides similar segmentation
predictions in both alternative architectures.
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Fig. 10 First column: original synthetic (a, b, c) and real (d, e, f) lunar images, second column: original U-net model predictions, third column:
VGG16/U-net model predictions, fourth column: proposed architecture
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Fig. 11 Inference time in millisecond (ms) of the U-net, VGG16 / U-net
and the proposed model for the GPU-enabled machine, the CPU-only
machine, and the Raspberry Pi 4 embedded system

Table 4 IoU score in testing data of the original U-net, VGG16/U-net
and the proposed model, trained with the same dataset and parametriza-
tion

Architecture Encoder/Decoder IoU

U-net 0.86

VGG16 / Unet 0.82

Proposed model 0.84

It’s worth noting that, although all the models provide
robust results in sky segmentation defining the horizon line,
they are unable to classify the sky as separate class. This is
due to dataset’s lack of color variety on the ground features
and the large black shadows presented on the ground. Thus,
because the images are synthetic, there is no a meaningful
difference between the sky and the large black areas on the
ground. Nevertheless, a refined synthetic rover-based dataset
or a datasetwith real lunar landscape images,would solve this
issue, improving the classification results of all the models.

Regarding the inference-time, the models were tested on a
large set of images with a size of 480× 480 in three different
computing setups: (a) a GPU-enabled conventional desktop
machine, (b) CPU-only conventional desktop machine and
(c) a CPU-only embedded system with quite low resources.
The corresponding results are presented in the Table 5 and
Fig. 11.

As observed in Table 5 and Fig. 11, the proposed model
achieves quite less inference time compared with the U-net
and VGG16 / U-net while the difference in performance-
time is increased among the models when the computing
resources are reduced. Regarding theGPU-enabledmachine,
the proposed model achieves 43 ms and 23.25 FPS, while

the VGG16/U-net provides 52 ms (19.23 FPS) of inference-
time and U-net about 100 ms (10 FPS) which is twice the
time compared with the proposed model. In the CPU-only
machine, the proposed model provides inference-time in a
level of 100 ms (10 FPS) while the VGG16 / U-net and
U-net models perform predictions with 640 ms (1.56 FPS)
and 850 ms (1.17 FPS) inference-time respectively, six and
nine times more than the proposed model. Concerning the
Raspberry Pi 4 with 4GB of RAM embedded system, the
proposed model achieves an inference-time about 1080 ms
(0.92 FPS) which is quite satisfactory since to the best of our
knowledge, this embedded system provides the lowest com-
puting resources on the market, especially in deep learning.
Instead, the VGG16/U-net and U-net models provide 11,120
ms (0.09 FPS) and 19,680 ms (0.05 FPS) inference-time,
proving that the proposed model is about 11 and 20 times
faster in the Raspberry Pi 4 embedded system compared with
the VGG16/U-net and U-net models respectively.

5 Conclusions

In summary, an encoder-decoder architecture for semantic
segmentation was developed, aiming to reinforce the safety
of rover navigation on the lunar surface. The main goal of
this study was the implementation of a semantic segmenta-
tion model for the lunar surface, capable of being utilized by
embedded systems with low computational resources.

To achieve this goal, a deep learning architecture based
on U-net neural network was developed, since U-net is
able to provide respectable results, trained with limited size
of datasets [21]. To reduce the computational cost of U-
net, a modified MobileNetV2 neural network was used as
the encoder, while a lighter version of U-net decoder were
implemented in order to accelerate the segmentation stage.
The proposed architecture was fed with a publicly available
dataset which includes rover-based synthetic images from
the lunar surface. Although it contains several limitations and
drawbacks, including lack of color variations, and low accu-
racy in labeling of features, to the best of author’s knowledge,
it is the only available dataset of the lunar surface focused on
deep learning models’ training.

As a result, the proposedmodel achieves satisfactory accu-
racy in scene segmentation, in synthetic images and in real
rover-based images of the lunar surface while it includes
significantly less trainable parameters thanU-net based alter-
natives. The proposed architecture was evaluated compared
with the originalU-net, withVGG16/U-net andwith the orig-
inal MobileNetV2/Unet neural networks which were trained
under the same parametrization. The trainable parameters
and weights file size of the models proved that the proposed
architecture is about 140 times smaller than the original U-
net, 110 times than the VGG16/U-net and 36 times smaller

123



Lunar ground segmentation using a modified U-net neural network Page 13 of 14    50 

Table 5 Comparison in terms of
inference time (in milliseconds
and FPS) of the original U-net,
VGG16/U-net and the proposed
model in a desktop GPU-enabled
and CPU-only conventional
desktop computer and in a
CPU-only embedded system
with low resources

Inference time per image Conventional machine
/GPU-enabled

Conventional machine
/ CPU-only

Embedded
system / Rasp. Pi
4

ms FPS ms FPS ms FPS

U-net 100 10 850 1.17 19,680 0.05

VGG16/U-net 52 19.23 640 1.56 11,120 0.09

Proposed model 43 23.25 100 10 1080 0.92

than the original MobilenetV2/U-net while it provides quite
close accuracy in terms of IoU with the original U-net
and outperforms the U-net based alternatives. Moreover, the
models were tested in three different computing setups, two
conventional machines (GPU-enabled and CPU-only) and
an embedded system with low computing resources, prov-
ing that the proposed model is quite faster than U-net and
VGG6/U-net in all computing systems and especially in the
embedded system.

However, due to the aforementioned drawbacks of the
dataset, the proposed model could further be improved espe-
cially in classification but also in segmentation task adding
more classes such as, sandy regions, bedrocks, craters, etc.,
using a more qualitative dataset with synthetic or even better
with real rover-based lunar images. Given that a qualita-
tive dataset from the lunar surface will be available in the
near future due to the planned missions of NASA’s Artemis
program, the proposed architecture is able to provide a sig-
nificant potential in lunar scene understanding, ensuring safe
and precise navigation, and to contribute in groundbreak-
ing discoveries, expanding the scientific understanding of
the Moon.
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