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Abstract
Handling unreliable detections and avoiding identity switches are crucial for the success of multiple object tracking (MOT).
Ideally, MOT algorithm should use true positive detections only, work in real-time and produce no identity switches. To
approach the described ideal solution, we present the BoostTrack, a simple yet effective tracing-by-detectionMOTmethod that
utilizes several lightweight plug and play additions to improve MOT performance. We design a detection-tracklet confidence
score and use it to scale the similarity measure and implicitly favour high detection confidence and high tracklet confidence
pairs in one-stage association. To reduce the ambiguity arising from using intersection over union (IoU), we propose a novel
Mahalanobis distance and shape similarity additions to boost the overall similarity measure. To utilize low-detection score
bounding boxes in one-stage association, we propose to boost the confidence scores of two groups of detections: the detections
we assume to correspond to the existing tracked object, and the detections we assume to correspond to a previously undetected
object. The proposed additions are orthogonal to the existing approaches, and we combine themwith interpolation and camera
motion compensation to achieve results comparable to the standard benchmark solutions while retaining real-time execution
speed. When combined with appearance similarity, our method outperforms all standard benchmark solutions onMOT17 and
MOT20 datasets. It ranks first among online methods in HOTA metric in the MOT Challenge on MOT17 and MOT20 test
sets. We make our code available at https://github.com/vukasin-stanojevic/BoostTrack.

Keywords Multi-object tracking · Data association · Similarity measure · Detection confidence · Tracking-by-detection

1 Introduction

Multiple object tracking (MOT) is one of the most impor-
tant problem in computer vision and has applications in areas
of autonomous robotics [20, 50], autonomous driving [12,
24, 43, 52] and smart cities [8, 44, 52, 72]. The problem con-
sists of determining the position and identity of each object
of interest (e.g. pedestrian) for every frame of the video.
This is usually done in a tracking-by-detection paradigm, by
applying detection and tracking steps for every input frame.
Given a set of detections, the goal of the tracking step is
to assign detections to tracked objects. Due to occlusions,
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some objects cannot be detected even though they are still in
the scene. When an object reappears, it should not be recog-
nized as a new object but rather matched to an existing one.
Kalman filter [27] is usually used as a tracking algorithm
to overcome missing detections and occlusions and provide
estimates of the object state. The assignment problem can be
formulated as a bipartite matching task between the detec-
tions and tracklets and solved using the Hungarian algorithm
[28]. Intersection over union (IoU) is an effective measure of
similarity between the detections and existing tracklets and
can be used to create a cost matrix needed for the Hungar-
ian algorithm. To better deal with occlusions and crowded
scenes, appearance similarity is usually used in addition to
IoU or other motion cues. Computing appearance similar-
ity requires the extraction of visual features. However, using
high-quality feature extractors (e.g. FastReID [25]) increases
execution time and limits real-time application [1].

To reduce the number of false positives and ghost tracks,
low-confidence detections are usually filtered out, and only a
subset of detections is used for association. However, not all
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Fig. 1 Value of HOTA metric for various tracking methods on MOT17
and MOT20 test sets under private detection protocol. Blue circles rep-
resent online trackers

low-confidencedetections are false positives.ByteTrack [69]
uses a two-stage assignment where high-confidence detec-
tions are used in the first stage while remaining detections
and unassociated tracklets are used in the second. Following
a ByteTrack, several works have used low-confidence detec-
tions in the second assignment stage [1, 21, 30, 37, 58, 62].
On the other hand, using low-confidence detections in the
second stage to match with remaining tracklets can result
in identity switches (IDSWs). Suppose two objects bound-
ing boxes are highly overlapped and only one has a high
detection confidence score. In that case, we may assign that
detection to the wrong object (forcing the incorrect associ-
ation of the other detection in the second stage), but if we
used both detections in the first stage, we could match them
correctly [55].

Several papers [11, 13, 60] have adopted multiple-stage
association where more recently updated tracklets (or the
more confident ones) are associated first. Note that any
multiple-stage association can introduce identity switches.

Ideally, MOT algorithm should be online, operating in
real-time, the similarity measure should be discriminative
enough to enable correct match of all tracklet-detection pairs
in one-stage assignment, and all true positive and none of the
false positive detections should be used.

To approach the described ideal solution, in this paper, we
present the BoostTrack, a simple tracking-by-detection sys-
tem built on top of SORT [6] that uses several lightweight
plug-and-play additions that can significantly improve per-
formance.

To avoid two-stage assignment and still utilize low-
confidence detections, we propose to increase (boost) the
confidence of twogroups of low-confidence detection bound-
ing boxes:

1. the bounding boxes where we predict an object should
be,

2. counterintuitively, the bounding boxes where currently
tracked objects should not be.

When an object is partially occluded, its detected bound-
ing box confidence can be low, but the IoU between the
predicted position and the bounding box can be high.We pro-
pose to increase the detection confidence of such detections.
On the other hand, low-confidence detections positioned
where we do not predict an object should be could be a noise,
but can often be a new object that is only partially visible (e.g.
entering the scene or standing on the edge). We use Maha-
lanobis distance measure [38] to discover these outliers and
find that increasing the confidence of these detections also
improves the performance.

To utilize the benefits of multiple-stage assignment and
avoid its drawbacks, we introduce detection-tracklet confi-
dence, which can be used to scale any similarity measure and
implicitly favour high-confidence tracklet, high-confidence
detection pairs in a one-stage assignment.

IoU alone can lead to many identity switches in crowded
scenes, and recent algorithms use appearance features in
addition to IoU and other motion features. However, using an
additional visual embeddingmodule increases time complex-
ity, reducing FPS and the possibility of real-time application.
Wepropose three lightweight plug and play additions that can
improve association performance:

1. We use detection-tracklet confidence scores to scale IoU
and increase the similarity of high confidence detection-
tracklet pairs. High variance prediction giving high IoU
(or any other similarity measure) with relatively low con-
fidence detection should not have the same weight as the
low variance prediction, high confidence detection over-
lap.

2. Mahalanobis distance [38] can be used as a similar-
ity measure to account for estimated tracklet variance.
Admissible values depend upon the dimensionality of
the tracklet and the chosen confidence interval, and any
change requires a different scaling parameter. We intro-
duce a more robust way of using Mahalanobis distance
as a similarity measure.

3. To reduce the possibility of identity switches in crowded
scenes, we introduce shape similarity motivated by the
fact that a mismatch can happen due to the high IoU
overlap of moving objects. Still, the shape of the objects
(i.e. width and height) should remain relatively constant
in a short time frame.

In the rest of the paper, we refer to ourmethods for improving
the estimation of the detection confidence and improving the
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calculation of the similarity matrix as detection confidence
boosting and similarity boosting, respectively.

We demonstrate the effectiveness of proposed additions
on MOT17 [41] and MOT20 [14] datasets. It has become
a standard practice to apply camera motion compensation
(CMC) [1, 4, 16, 17, 37, 54] and interpolation of fragmented
tracks [1, 17, 67, 69] to MOT. By integrating CMC and
gradient boosting interpolation from [67], we achieve com-
parable results with state of the art methods, without using
time costly visual features and running at the speed of 65.45
FPS onMOT17 and 32.79 FPS onMOT20, on a desktopwith
one NVIDIA GeForce RTX 3090 GPU and AMD Ryzen 9
5950X 16-Core CPU. Furthermore, by adding visual embed-
ding to our system, which we refer to as BoostTrack+, at
the expanse of longer run-time (15.35 FPS on MOT17 and
3.05FPSonMOT20),we outperformall standard benchmark
solutions. BoostTrack+ ranks first among online methods in
HOTA score on theMOT17 test set and first among all meth-
ods in HOTA score on the MOT20 test set (see figure 1 for
visual comparison).

In summary, we make the following contributions:

• We introduce two confidence detection boosting tech-
niques to utilize low confidence detections in one-stage
assignment,

• We define detection-tracklet confidence and use it to give
more weight to high detection confidence - high track-
let confidence association pairs, avoiding the need for
multiple-stage association used in some previous works,

• We propose a novel way of incorporating Mahalanobis
distance and shape similarity to the similarity matrix,

• We perform a detailed ablation study on MOT17 and
MOT20 validation sets to show the effectiveness of
the proposed methods. Our appearance-free BoostTrack
method outperforms standard benchmark solutions and
achieves comparable performance with the most recent
methods on MOT17 and MOT20 test sets. Our Boost-
Track+ method ranks first among online methods in
HOTA score on both MOT17 and MOT20 test sets under
private detection protocol.

We give overview of our method in figure 2. The rest of
the paper is structured as follows: in section 2, we review
the related work focusing on various multiple-stage associa-
tion procedures, tracklet confidence, and different similarity
measures used in previous works. Section 3 introduces
detection-tracklet confidence and three proposed similarity
matrix boosting techniques. In section 4, we discuss our two
detection confidence boosting strategies - namely, increasing
the detection confidence of likely objects based on IoU and
increasing the detection confidence of unlikely objects based
on Mahalanobis distance. We discuss experiments, show the
results of the ablation study and compare our results with

benchmark methods in section 5. We conclude our work in
section 6.

2 Related work

2.1 Sort

Solving theMOT online using the Kalman filter for tracking,
IoU as a similarity matrix, and the Hungarian algorithm for
the assignment was first introduced in SORT [6]. SORT
uses a linear constant velocity model, and in every step, the
Kalman filter is used to predict the state of the tracklet:

x = [u, v, s, r , u̇, v̇, ṡ]T , (1)

where u, v, s, r represent the coordinates of the bounding
box center, area and aspect ratio, respectively, and u̇, v̇, ṡ
corresponding velocities (authors assume aspect ratio to be
constant).

Assignment cost is calculated as −1 · IoU(D, T ), and
only assignments with IoU greater than a specified threshold,
τI oU , are considered admissible.

2.2 Working with unreliable detections

Various strategies have been used to deal with unreliable
detections, i.e. to identify and discard false positive detec-
tions [46]. In [61], an SVM [7]model was trained to classify
detections into tracked or inactive class. In [42], all detec-
tions are used for the association, but the association is done
in a two-stage manner, associating first detections and track-
lets with greater similarity measure and associating the rest
in the second stage. Filtering out unreliable detections based
on detection confidence, i.e. thresholding, is the most com-
mon practice [17, 60, 65]. However, some low-confidence
detections can correspond to partially occluded objects, and
using these detections can increase performance.

In [51], high-confidence detections are used for trajectory
initialization and tracking, while low-confidence detections
are used for tracking only. ByteTrack [69] uses all detec-
tion boxes in a two-stage assignment where high-confidence
boxes are used in the first stage and the remaining boxes and
tracklets in the second. Following the ByteTrack, the same
two-stage assignment was adopted in several works (e.g. [1,
30, 37, 58, 62]). In [39] authors proposed an offline track-
ing algorithm that uses all detection boxes. LG-Track [40]
uses localization and classification confidence scores from
the detectors and divides detections into four groups based on
thresholds for the two scores. The association is performed
in four stages using different cost matrices, which are dif-
ferently scaled by detection confidence scores in different
association stages. ImprAsso [55] splits detections into high
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Fig. 2 Overview of our
BoostTrack method. We use
existing tracklets and detected
bounding boxes to increase
detection confidence scores
before filtering out low
confidence detections. We use
the remaining bounding boxes
to calculate the base (main)
similarity measure and to
improve it by adding our
lightweight similarity boost

and low confidence sets and calculates associating distance
for both sets, which are combined into a single matrix and
used in a single association step.

2.3 Tracklet confidence

Being a general term, tracklet confidence has been differ-
ently defined and used for different purposes in several prior
works [2, 3, 11, 13, 42, 63]. In [2], tracklet confidence is
defined as an intuitive measure of similarity between con-
structed and real object trajectory and used to split trackers
into low and high confidence groups, which are associated
differently based on the group they belong to. In [11], the
scene is split into k×k grid and both detections and predicted
bounding boxes are used as candidates for the association.
Tracklet confidence is defined and used to calculate the prob-
ability of the object being in a given area of the image and
to filter out unreliable predictions. Tracklet score is calcu-
lated based on detection scores in [3] and used as tracklet
termination criteria. In [42], tracklet confidence is designed
and used to detect occlusions. Since low confidence detec-
tion, in the case of a true positive, usually means the object
is partially visible or occluded, in [63], tracklet confidence
is defined as a measure of object visibility and predicted as
a part of object state. The difference between detection box
confidence and predicted tracklet confidence is used as an
additional similarity measure [63].

2.4 Similarity measures

Various improvements and additions to the IoU have been
proposed to improve matching performance. In [30] Gener-
alized IoU (GIoU) [48] is used. Normalized IoU is proposed
in [42] to include differences between bounding box size and
center. To account for object motion, a momentum term was

added to IoU in [9]. Width and height information are used
in several previous works, e.g. [32, 35, 65], and in [63],
Height Modulated IoU is introduced to incorporate height
similarity into IoU matrix explicitly.

Since DeepSORT [60], using appearance features to
associate detections with the tracklets has become a pop-
ular approach in tracking-by-detection MOT [1, 17, 57, 59].
Specifically, the cosine distance between visual embedding
vectors is used to construct the association costmatrix.Maha-
lanobis distance is used as a gating mechanism to discard
inadmissible associations. Since uncertainty increases when
the tracklet is not updated (due to occlusion or missing detec-
tion), the assignment is done in cascade, in increasing order
of the number of steps since the last update [60]. Following
a DeepSORT, a weighted sum of Mahalanobis distance and
cosine distance is used in several other works (e.g. [1, 17,
68]). In [33], Mahalanobis distance is smoothed by adding
α · I to the covariance matrix when calculating the distance.

2.5 Our approach

To the best of our knowledge, no prior work used detection-
tracklet confidence to implicitly prioritize high-confidence
detection or high-confidence tracklets in a single-stage asso-
ciation. In [35, 60], recently updated tracklets (i.e. the more
confident ones) are explicitly favoured in cascade matching,
and works [1, 30, 37, 42, 58, 62, 69] use two-stage matching
prioritizing high-confidence detections.

We adopted and modified shape similarity from [32]. In
[32] (and [65]), shape similarity (similarity between height
and width) is used in conjunction with Euclidian distance
and visual similarity to construct an association cost matrix
and it cannot be used as a standalone metric or addition to
the association cost. In our work, shape similarity is used
together with detection-tracklet confidence to create a stan-
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dalone addition to the similarity matrix designed to reduce
possible ambiguity arising from the IoU measure.

Prior works used Mahalanobis distance directly to define
the similaritymatrix [17, 68] or to discard inadmissible asso-
ciations [60]. In our work, we convert Mahalanobis distance
into probabilities, creating a more intuitive, robust, and uni-
versal metric.

In [63], Height Modulated IoU, velocity and confidence
cost are added to the appearance cost to create a final cost
matrix used for association. In our terminology, this can be
seen as boosting the appearance similarity by adding addi-
tional lightweight measures. In our work, we propose and
use different similarity measures.

In [55], one-stage association is performedusing all detec-
tion boxes and normalization parameter β is used to control
the association cost of low-confidence detections. Our detec-
tion confidence boosting strategy does not use all detection
boxes in the association step or require any change in creating
an assignment cost matrix but rather increases the confidence
of some boxes before filtering out low-confidence detections.
No priorwork, to our knowledge, explicitly targeted and used
detections that seem to be outliers. Our detection confidence
boosting method attempts to use more true positive detec-
tion bounding boxes without the need for sequence-specific
hyperparameter tuning used in some previous works (e.g. [1,
55, 69]).

3 Similarity matrix boost techniques

In this section, we introduce our similarity matrix boost
techniques. Proposed improvements are orthogonal to exist-
ing approaches and can be added to any similarity matrix
Sbase (e.g. Sbase can be calculated as IoU between detected
bounding boxes and existing tracklets) to improve assign-
ment performance.

Note, to use the similarity matrix as an assignment cost
matrix needed for the Hungarian algorithm [28], we need to
“reverse" the values, i.e. the greater the similarity between
a given detection-tracklet pair, the lower the corresponding
assignment cost. As in SORT [6], we obtain the assignment
cost matrix by multiplying the similarity matrix with -1.

3.1 Detection-tracklet confidence similarity boost

To benefit from hierarchical assignments that favour high-
confident detections [1, 30, 37, 58, 62, 69] or recently
updated tracklets [35, 60] and avoid the drawbacks of
such approaches, we design detection-tracklet confidence as
a scaling factor to favour high-confidence detection, high-
confidence tracklet pairs in one-stage assignment.

Let D = {D1, D2, . . . , Dn} and T = {T1, T2, . . . , Tm}
be the set of detections and set of tracklets, respectively,

and cd1 , cd2 , . . . , cdn and ct1 , ct2 , . . . ctm their corresponding
confidence scores. T1, T2, . . . , Tm are obtained as outputs of
Kalman prediction step.

Recently updated tracklets (i.e. active tracklets that were
recently assigned detection and executed Kalman update
step) should have more reliable state prediction and higher
confidence. Due to initial noisy predictions, new tracklets
should have less confidence. Let age(Tj ) and last_update(Tj )

be the number of steps since creation and the number of steps
since the last update of tracklet Tj , respectively. We define
tracklet confidence ct j as:

ct j =
{

βsini t−age(Tj ), if age(Ti ) < sini t
β last_update(Tj )−1, otherwise,

(2)

for j ∈ {1, 2, . . . ,m}. β ∈ (0, 1), is the tracklet confidence
decay hyperparameter, and sini t is the number of steps we
consider the tracklet as “new", i.e. having initial unreliable
predictions.

Note that detection confidence scores cd1 , cd2 , . . . , cdn are
available as the output of the detector.

We define detection-tracklet confidence of detection Di

and tracklet Tj , cdi ,t j , as a product cdi · ct j . To encourage
admissible associations only (e.g. IoU(Di , Tj ) ≥ τI oU ) we
set cdi ,t j to 0 for inadmissible associations. In summary, we
define cdi ,t j as

cdi ,t j =
{
cdi · ct j , if (Di , Tj ) is admissible

0, otherwise.
(3)

We define confidence matrix C as C = [cdi ,t j ]n×m .
Using the detection-tracklet confidence scores, we can

boost similarity matrix S by adding confidence scaled
IoU(D, T ):

Sboost = Sbase + λI oU · C � IoU(D, T ), (4)

where by � we denote element-wise matrix product, and
λI oU is a hyperparameter. Note that any similarity score can
be used in place of the IoU.

3.2 Mahalanobis distance similarity boost

Mahalanobis distance [38] is used as a similarity measure in
some previous works (e.g. [1, 17, 68]).

Note that the Kalman filter, here used as a state estimator,
provides rigorous and optimal performance guarantees that
do not rely on any assumptions on process or observation
noise other than the mean and the covariance are known,
and the Kalman filter is an optimal minimum mean square
error estimator [27]. However, if the process and observation
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noise are assumed to be Gaussian, then the estimated mean
and state covariance parameterize Gaussian distributions.

In that case, Mahalanobis distance values are chi-squared
distributed, and relevant values depend on the degrees of
freedom and chosen confidence interval boundary. Usually,
a 95% confidence interval and 4 degrees of freedom are used,
giving a range of admissible values of (0, 9.4877) and requir-
ing a relatively low weight factor λ = 0.02 [1, 17, 68]. In
3D MOT, detections are given as a tuple of 7 parameters,
and in both 2D and 3D MOT we may choose to use only the
box center for calculating Mahalanobis distance. However,
changing the confidence interval or the degrees of freedom
gives a different range of values andwould require a different
λ value.

On the other hand, only a relative difference between
Mahalanobis distance values is relevant for the assignment
task. From the perspective of a given tracklet, we can think of
Mahalanobis distances between the detections as unnormal-
ized probabilities. Motivated by this, we apply the softmax
function to normalize Mahalanobis distance. First, we clip
distances to amax limit value (e.g. 9.4877). Then,we subtract
each value from the limit value. Finally, we apply softmax,
and to avoid giving weight to inadmissible associations, we
set the similarity measure (i.e. “probability") to 0 for detec-
tions beyond the limit value. Note that we apply softmax for
each column of the similarity matrix. A pseudocode of our
procedure is illustrated in algorithm 1 in Appendix A.

After obtaining the SMhD similarity matrix in a described
way, we can boost the initial similarity measure Sbase by:

Sboost = Sbase + λMhD · SMhD(D, T ), (5)

where by λMhD we denote the weight of Mahalanobis dis-
tance similarity boost.

NormalizingMahalanobis distances provides greater robust-
ness to dimensionality changes (no need for changing the
weight, but only the clip threshold) and enables direct com-
parison with other similarity measures. In case when few
detection bounding boxes have a similar Mahalanobius dis-
tance to a given tracklet, softmax can effectively reduce
the impact of using Mahalanobius distance similarity and
make Sbase similarity more decisive (however, in case of
Sbase ambiguity, SMhD may provide new information and
enable correct assignment). Furthermore, adjusting softmax
temperature gives us more control in handling ambiguous
assignments. Note that we keep the temperature parameter
equal to 1 for simplicity.

3.3 Shape similarity boost

To avoid possible ambiguity from the other similaritymetrics
(e.g. IoU), we reintroduce the shape similarity metric. Con-
sider a scenariowhere two objects are highly overlapped (e.g.

pedestrians passing by one another). Corresponding tracklets
can have greater IoU with wrong detection boxes leading to
identity switch. However, in a short time frame, the objects’
shape (width and height) should remain relatively constant,
and using shape information could reduce possible ambigu-
ity.

We should not rely too much on the tracklet shape infor-
mation from a tracklet that was not recently updated. For
example, a person may move hands and can appear wider,
but only temporarily. Even the height can change due to the
object moving closer or farther away from the camera. On
the other hand, we should also consider detection confidence
because comparing shapes with unreliable detections could
reduce the reliability of the shape similarity. To account for
this, we scale shape similarity by detection-tracklet confi-
dence scores introduced in subsection 3.1. Let dsi, j be the
shape difference between the detection Di and the tracklet
Tj defined as

dsi, j = |Dw
i − Tw

j |
max(Dw

i , Tw
j )

+ |Dh
i − T h

j |
max(Dh

i , T h
j )

, (6)

where byw and h in superscript we denote width and height,
respectively.Wedefine our shape similaritymeasure between
detection Di and tracklet Tj as

Sshapedi ,t j
= cdi ,t j · exp( − dsi, j

)
. (7)

We can boost similarity measure Sbase by:

Sboost = Sbase + λshape · Sshape(D, T ), (8)

where λshape is a hyperparameter used as the weight of the
shape similarity.

Combining the three proposed similarity boost techniques
we get:

Sboost = Sbase + λI oU · C � IoU(D, T )

+ λMhD · SMhD(D, T )

+ λshape · Sshape(D, T ). (9)

4 Detection confidence boosting techniques

Not all low-confidence detections are false positives. In this
section, we describe our proposed methods of utilizing two
groups of low-confidence detections by boosting their confi-
dence score.
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Fig. 3 Detecting likely objects based on IoU value. Blue bounding
boxes represent tracklets. The red bounding box is the detection with
the original confidence score of 0.1748, which is increased based on
high IoU with the predicted bounding box

4.1 Detecting likely objects

When an object is partially occluded, sometimes it can still
be detected. Detection confidence of such partially visible
objects can be low, and their detected bounding boxes can be
discarded for having a confidence score below some thresh-
old τD . However, having a tracking module, i.e. Kalman
filter, enables us to predict where the object should be. If
the IoU score between the tracklet and the detection box is
high, we propose to increase the confidence of that detec-
tion box, enabling it to be used for later association. For each
detection box Di we can calculate IoU between the detection
box and all tracklets and increase the confidence of detection
Di , and obtain boosted confidence ĉdi using the maximum
value of calculated IoUs:

ĉdi = max
(
cdi , βc · max

j
(IoU(Di , Tj ))

)
. (10)

Hyperparameters βc and τD implicitly define the IoU thresh-
old for the detections to be used for the association, even if
the original detection confidence cdi is low. This way, we also
increase the confidence of some detections where cdi > τD ,
which we found to slightly increase the performance com-
bined with our detection-tracklet confidence from subsection
3.1.

Figure3 shows an example of a highly occluded per-
son with a low detection confidence bounding box (in red),
cd = 0.1748, that has a high IoU (0.949) with the predicted
bounding box. Our method increases the confidence of this
detection and uses it for association.

4.2 Detecting“unlikely" objects

Previous confidence boosting strategy aimed to increase the
detection confidence for detections where a tracked object is

Fig. 4 Detecting “unlikely” objects based on Mahalanobis distance.
Blue bounding boxes represent tracklets. The yellow bounding box is
the detection with the original confidence score of 0.2252, which is
increased based on the high Mahalanobis distance between all existing
tracklets

likely to be. However, some objects could never be detected
in the first place. They can be partially occluded during the
entire video or positioned on the edge of the scene and only
partially visible. We propose a method to detect some of
these objects. In particular, we note that false positive low-
confidence detections typically occur near the tracked objects
(with the exception discussed in the previous subsection).
If we detect an object far from where any tracked object is
supposed to be, we can assume that this detection is not result
of a motion and noise produced by currently tracked object.
Such outliers can actually be previously undetected objects.

Mahalanobis distance can be used to detect outliers [23].
As previously noted, Mahalanobis distance values are chi-
square distributed and values greater than a certain threshold
τMhD are considered outliers. We set the threshold τMhD to
13.2767, corresponding to a 99% confidence interval bound
for 4 degrees of freedom chi-square distribution.

For a givendetection Di ,we compute the distancebetween
Di and every tracklet Tj and consider Di outlier if the dis-
tance between Di and the closest tracklet is greater than
τMhD , i.e. if

min
j

(MhD(Di , Tj )) > τMhD . (11)

If a given detection Di is an outlier with respect to state
distributions of all currently tracked objects, we consider it
to correspond to the previously undetected object. However,
some of these outliers can still be false positives. To all detec-
tions where inequality (11) holds, we apply non-maximum
suppression with a threshold of τNMS = 0.3 to remove
overlapping detections and reduce the number of used false
positive detections. We provide details on the influence of
τNMS in Appendix B. We set the detection confidence of the
remaining detections to τD , allowing them to be used in the
association step.
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Figure 4 shows an example of a low detection confidence
bounding box (in yellow) with original detection confidence
cd = 0.2252. The closest Mahalanobis distance between
existing tracklets is 2178.23, and we assume it is unlikely
to be a false positive generated by currently tracked objects.
We increase the detection confidence of such detections.Note
that our method can increase the confidence of false positive
detections. Still, in the ablation study in subsection 5.3, we
show that the number of used IDs does not increase signifi-
cantly and that our method improves MOT performance.

5 Experiments

5.1 Datasets andmetrics

Datasets.Weuse standardMOTbenchmarkdatasets,MOT17
[41] and MOT20 [14], to conduct experiments. As in sev-
eral popular benchmarks [1, 17, 37, 69], we replace original
dataset detections with detections from YOLOX-X [22] and
conduct experiments under private detection protocol.

MOT17 contains static and moving camera videos of
pedestrians. Videos are filmed with different FPS settings
(ranging from 14 to 30 FPS) and split into training and test
sets. Following previous works [1, 17, 37, 69, 71], we con-
struct a validation set using the second half of each training
sequence and use it for the ablation study (note that using a
validation set is important because the detector and feature
extractor are trained on the first half of the training data).

MOT20 contains 8 sequences (4 for training and the
remaining 4 as the test set) of crowded scenes filmed with
a static camera. Similarly, we use the second half of each
sequence as the validation set.

Metrics.We evaluate tracking performance using widely
accepted metrics CLEAR metrics (we focus primarily on
MOTA, IDs, IDSWs) [5], IDF1 [49] and HOTA [36].
MOTA (Multi-Object Tracking Accuracy) is defined using
the number of false positives (FP), false negatives (FN), iden-
tity switches (IDSW) and the total number of ground truth
detections (gtDet) as:

MOTA = 1 − |FP| + FN| + |IDSW|
|gtDet| . (12)

Note that FP and FN are ID agnostic. As such, MOTA
does not penalize wrong associations heavily (only the
IDSW accounts for associations mismatch, but is insignif-
icant compared to |FP| + |FN|) and is mainly used as a
metric for detection performance. IDF1 metric computes the
matching on the id level and can be used to measure the
association performance. HOTA combines detection, asso-
ciation and localization accuracy and attempts to assess
the whole tracking performance. It is calculated as a geo-

metric mean between the detection accuracy (DetA) and
the association accuracy (AssA), integrated over different
localisation thresholds (approximated as a finite sum for
α ∈ {0.05, 0.1, . . . , 0.95}) [36].

Since our detection confidence boosting techniques can
introduce possible false positive detections and new iden-
tities, we explicitly monitor IDs and IDSWs in addition to
MOTA, IDF1 and HOTA when discussing the impact of our
confidence boosting methods.

5.2 Implementation details

Kalman filter. As in [17, 60, 68, 69], we define the state as
eight-dimensional vector x = [u, v, h, r , u̇, v̇, ḣ, ṙ ]T , where
by (u, v) we denote coordinates of the bounding box center,
height and aspect ratio of the bounding box, respectively,
while u̇, v̇, ḣ, ṙ represent their corresponding velocities. We
retain constant process and measurement noise from [6].1

MOT specific settings. Same as [6], we report track-
let state only in the case of 3 consecutive matches (i.e. the
Kalman updates) and use τI oU = 0.3 as criteria to discard
inadmissible associations. As in [9, 37], we set the detec-
tion confidence threshold τD to 0.6 for MOT17 and 0.4 for
MOT20. In previous works (e.g. [1, 60, 69]), unassociated
tracklets are kept for Amax = 30 frames. Since our detection
confidence boost techniques rely on the tracklet predicted
position, we keep tracklets alive for a longer period. Since
different sequences can have different frame rates, a fixed
value of 30 steps corresponds to different clock times (e.g.
2.14 seconds for the MOT17-05 sequence and 1 second for
the MOT17-09 sequence). We use sequence specific value
Amax = max(30, 2∗FPS), i.e. we keep unassociated trakelts
alive for at least 2 seconds. As in previous works (e.g. [19,
31, 37, 70]), we resize images from MOT17 and MOT20 to
1440 × 800 and 1600 × 896, respectively.

BoostTrack specific settings.As the base similarity mea-
sure, we use IoU, i.e. Sbase = IoU in equation (9).

We run a grid search to find values of λI oU , λMhD

and λshape. For each λ we tested values from the set
{0, 0.25, 0.5, 0.75, 1}. As the best trade-off between dif-
ferent metrics on MOT17 and MOT20, we choose values
λI oU = 0.5, λMhD = 0.25, λshape = 0.25. We observed
that any settingwhere lambdaMhD is not dominant improves
the performance compared to the baseline.

We tested various (β, sini t ) settings for (β, sini t ) ∈
[0.7, 0.95] × {0, 1, . . . 10} on the MOT17 validation set. We
found that any setting improves the performance of the base-
line and set β = 0.9, sini t = 7 for the best trade-off between

1 Theyused a 7-tuple as a state, andwe adapted it to the 8-tuple scenario.
We lower the variance of aspect ratio measurement noise to 0.01 as in
[60] and increase the processing noise variance corresponding to ṙ to
0.01.
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different metrics. We provide more details on the influence
of β and sini t in Appendix C.

We set the limit value for Mahalanobis distance for simi-
larity boost and outliers detection to 13.2767, corresponding
to a 99% confidence interval boundary for 4 degrees of
freedom chi-square distribution. For boosting the detection
confidence of likely objects, we set βc = 0.65 for MOT17
and βc = 0.5 for the MOT20 dataset, corresponding to the
required IoU of 0.923 and 0.8 for low-confidence detection
to surpass the threshold τD .

We evaluate results using TrackEval [26].
Additional modules. For the YOLOX-X [22], we use the

weights from [69]. We use Enhanced correlation coefficient
maximization from [18] for CMC and rely on implemen-
tation from [17]. We keep the same settings as in [17],
but resize the images to 350 pixels in width (and propor-
tional height). We use linear interpolation implementation
from [69] and do not set a maximum interval for interpola-
tion. Tracks with less than 25 detections are not interpolated
(default value from [69]), and we further improve interpola-
tion results by applying gradient boosting interpolation from
[67]. As in [1, 37, 69], we use FastReID [25] as a visual
embedding model, and apply Dynamic Appearance embed-
ding update from [37].Whenusing appearance similarity,we
add λapp · Sapp(Di , Tj ) to the overall similarity measure pro-
posed in equation (9), where Sapp(Di , Tj ) represents cosine
similarity between visual embedding vectors. To account for
a total weight of 2 for non-appearance similarity, we set
λapp = 3 to give more weight to the appearance similarity.
In addition to admissibility condition IoU(Di , Tj ) ≥ τI oU ,
we allow assignments between detection box Di and tracklet
Tj if

IoU(Di , Tj ) ≥ τI oU

2
∧ Sapp(Di , Tj ) ≥ 3

4
. (13)

Hardware.Werun all the experiments on the desktopwith
AMD Ryzen 9 5950X 16-Core CPU and NVIDIA GeForce
RTX 3090 GPU.

Software.Our implementation is developed on top of pub-
licly available codes [6, 17, 37, 67, 69].

5.3 Ablation study

Similarity boost To test the impact of each component
of the proposed similarity boost technique, we conduct
a detailed ablation study on MOT17 and MOT20 valida-
tion sets. Table 1 shows results for every combination of
proposed components: detection-tracklet confidence (DTC)
boost, Mahalanobis distance (MhD) boost and shape sim-
ilarity boost. The first row corresponds to the case where
S = IoU(D, T ) and represents the baseline. We set λI oU =
0.5, λMhD = 0.25, λshape = 0.25 (see BoostTrack specific

settings from subsection 5.2). DTC and Shape similarity
boost improve performance both as a standalone addition and
combined. Adding the MhD similarity boost alone slightly
decreases the overall performance, but combined with DTC
and Shape, it results in significant performance gain on
MOT17 and MOT20. We set λ values based on the grid
search and found that any setting where λMhD is not domi-
nant improves the performance. Since similarity boost should
improve the association performance, we consider IDF1 the
most important metric to show the advantage of the proposed
methods. We achieved +1.346 IDF1 on MOT17 and +0.953
IDF1 onMOT20 compared to the baseline. Note that we also
achieve improvement in other metrics.

Detection confidence boost. We test the effectiveness of
our detection confidence boost (DCB) techniques and show
results in table 2. We tested our detecting likely objects
(DLO) and detecting “unlikely" objects (DUO) strategies
combined with our similarity boost (SB) components (when
SB is used, we assume all three components, i.e. the last row
of table 1). In addition to previous metrics, we display the
total number of used IDs because boosting detection confi-
dence can introduce new identities. Note that MOT17 and
MOT20 validation sets contain 339 and 1418 ground truth
identities, respectively.

Our study shows that both DCB techniques improve the
MOT performance, both as standalone additions and com-
bined with our SB techniques. Since DCB introduces new
detections and SB aims to improve association, we discuss
improvements in HOTA [36] metric to summarize both
detection and association performance. Without SB, we get
+0.584 HOTA on MOT17 and +1.925 HOTA on MOT20. If
we include SB, we get an overall performance increase of
+1.546 HOTA on MOT17 and +2.327 HOTA on MOT20.
This shows that proposed boosting techniques complement
each other and can be used jointly. We also get a signifi-
cant increase in IDF1 and MOTA metrics. IDSW cannot be
trivially compared because the number of used IDs can be
significantly different.

Additional modules. As the standard practice, Boost-
Track uses cameramotion compensation (CMC) and interpo-
lation to connect fragmented tracks.Weuse gradient boosting
interpolation (GBI) from [67], but we also show results
obtained using linear interpolation (LI). Finally, we add
appearance similarity (AS) and show the effect of added com-
ponents on MOT17 and MOT20 datasets in table 3. We did
not include run-time speed in tables 1 and 2 because all
the experiments run at approximately the same FPS. Adding
CMC or AS affects execution speed, and we show FPS in
addition to previously used metrics. To make comparison
easier, we divide the table 3 into three parts. The first part
shows the results of addingCMC,GBI andAS to the baseline.
To distinguish between the fast appearance-free method and
the slower method that uses AS, we label the latter as Boost-
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Table 1 Ablation study on the
MOT17 and MOT20 validation
sets for different similarity boost
settings (best in bold)

Setting MOT17 MOT20
DTC MhD Shape HOTA MOTA IDF1 IDSW HOTA MOTA IDF1 IDSW

DTC MhD Shape HOTA MOTA IDF1 IDSW HOTA MOTA IDF1 IDSW

✗ ✗ ✗ 66.132 74.736 77.298 227 56.717 69.913 73.715 1120

✗ ✗ ✓ 66.768 75.003 78.575 182 57.202 69.953 74.471 1074

✗ ✓ ✗ 65.953 74.491 77.289 250 56.041 69.639 72.766 1488

✗ ✓ ✓ 66.345 74.839 77.901 209 57.015 69.831 74.175 1248

✓ ✗ ✗ 66.27 74.89 78.111 188 57.076 69.959 74.157 1095

✓ ✗ ✓ 66.526 74.988 78.553 181 57.116 69.964 74.227 1101

✓ ✓ ✗ 66.419 74.916 78.022 199 57.31 69.928 74.612 1134

✓ ✓ ✓ 66.831 74.951 78.644 175 57.414 69.962 74.668 1114

Table 2 Ablation study on the MOT17 and MOT20 validation sets for different detection confidence boost settings (best in bold)

Setting MOT17 MOT20
SB DLO DUO HOTA MOTA IDF1 IDs IDSW HOTA MOTA IDF1 IDs IDSW

✗ ✗ ✗ 66.132 74.736 77.298 440 227 56.717 69.913 73.715 1894 1120

✗ ✗ ✓ 66.343 74.817 77.575 443 223 56.723 69.915 73.731 1902 1125

✗ ✓ ✗ 66.361 74.897 77.367 445 222 58.628 73.299 75.211 2039 1243

✗ ✓ ✓ 66.716 74.938 77.716 457 219 58.642 73.271 75.225 2063 1246

✓ ✗ ✗ 66.831 74.951 78.644 424 175 57.414 69.962 74.668 1868 1114

✓ ✗ ✓ 67.117 75.029 79.104 428 171 57.429 69.966 74.698 1870 1116

✓ ✓ ✗ 67.134 75.125 78.987 428 170 59.054 73.339 75.969 2024 1230

✓ ✓ ✓ 67.678 75.014 79.854 442 167 59.044 73.319 75.921 2041 1230

Track+ and show the results of BoostTrack and BoostTrack+
in the second and third parts of the table, respectively.

Adding gradient boosting interpolation greatly improves
results on MOT17, and we achieve 70.647 HOTA (+2.969),
79.8 MOTA (+4.786) and 82.323 IDF1 (+2.469). By using
CMC combined with GBI, we achieve 71.63 HOTA, 80.692
MOTA and 83.959 IDF1 on the MOT17 validation set,
retaining real-time execution speed of 65.45 FPS. Adding
appearance similarity further improves the performance, and
we get +0.781 HOTA and +1.426 IDF1with a slight decrease
in MOTA (−0.022).

OnMOT20, GBI results in +2.553 HOTA, +4.155 MOTA
and +1.476 IDF1 improvement. Since videos in MOT20
are filmed with a static camera, using CMC has no signif-
icant impact on performance. Adding appearance similarity
further improves the performance: +0.834 HOTA, +0.289
MOTA, +1.504 IDF1, at the expense of increased computa-
tion time (3.05 FPS).

In the case of the MOT17, our proposed additions effec-
tively replace the need for AS, while adding AS increases
the performance further. AS has a more significant impact
on association performance in crowded scenes fromMOT20,
and adding our techniques slightly reduces HOTA and IDF1
values (−0.008 HOTA and −0.349 IDF1) but increases
MOTA value (+0.504 MOTA). For a fair comparison, we

keep the same ratio of non-AS and AS when adding AS to
the baseline (no SB+DCB) and set τAS = 1.5.

5.4 Comparison with benchmarkmethods

We show the evaluation results on the MOT17 and the
MOT20 test sets under private detection protocol in tables
4 and 5, respectively.

On the MOT17 and the MOT20 test sets our fast non-
appearance BoostTrack method shows comparable perfor-
mance. On the MOT17, BoostTrack ranks fourth among
online methods in HOTA metric, while on the MOT20 it
shows comparable results (note that it still outperforms stan-
dard benchmarks solutions such as StorngSORT [17] or
ByteTrack [69]).

Our BoostTrack+ method effectively outperforms stan-
dard benchmark solutions on both datasets. Among online
trackers, BoostTrack+ ranks first in HOTA and second in
IDF1 metric on the MOT17 test set. BoostTrack+ ranks first
in HOTA metric among all methods and first in IDF1 met-
ric among online methods. Our method achieves comparable
results in MOTA metric on both datasets.
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Table 3 Ablation study on the MOT17 and MOT20 validation sets for different additional modules

Setting MOT17 MOT20
SB+DCB CMC LI GBI AS HOTA MOTA IDF1 IDSW FPS HOTA MOTA IDF1 IDSW FPS

✗ ✓ ✗ ✗ ✗ 67.881 75.266 80.628 133 67.09 57.053 69.936 74.199 1093 40.40

✗ ✓ ✗ ✓ ✗ 70.788 80.182 83.299 102 67.09 61.229 77.018 77.183 804 40.40

✗ ✓ ✗ ✗ ✓ 68.75 75.296 82.165 111 15.68 58.225 70.008 76.225 961 3.28

✗ ✓ ✗ ✓ ✓ 71.79 80.258 84.802 83 15.68 62.688 77.227 79.437 718 3.28

✓ ✗ ✗ ✗ ✗ 67.678 75.014 79.854 167 340.00 59.044 73.319 75.921 1230 49.79

✓ ✗ ✓ ✗ ✗ 70.348 79.803 82.303 154 340.00 61.016 77.208 77.247 923 49.79

✓ ✗ ✗ ✓ ✗ 70.647 79.8 82.323 148 340.00 61.597 77.474 77.397 911 49.79

✓ ✓ ✗ ✗ ✗ 68.526 75.454 81.396 116 65.45 59.231 73.363 76.108 1225 32.79

✓ ✓ ✓ ✗ ✗ 71.364 80.635 83.927 97 65.45 61.261 77.184 77.437 891 32.79

✓ ✓ ✗ ✓ ✗ 71.63 80.692 83.959 97 65.45 61.846 77.442 77.584 882 32.79

✓ ✓ ✗ ✗ ✓ 69.352 75.624 82.971 112 15.35 59.91 73.427 77.357 1110 3.05

✓ ✓ ✓ ✗ ✓ 72.15 80.566 85.342 87 15.35 62.075 77.46 78.934 805 3.05

✓ ✓ ✗ ✓ ✓ 72.411 80.67 85.385 81 15.35 62.68 77.731 79.088 781 3.05

Table 4 Comparison with other MOT methods on the MOT17 test set
(best in bold). We mark offline methods with ’*’

Method HOTA MOTA IDF1 IDSW

FairMOT [68] 59.3 73.7 72.3 3303

MOTR [66] 62.0 78.6 75.0 2619

ByteTrack [69] 63.1 80.3 77.3 2196

QuoVadis [15] 63.1 80.3 77.7 2103

FineTrack [47] 64.3 80.0 79.5 1272

StrongSORT++* [17] 64.4 79.6 79.5 1194

BASE* [29] 64.5 81.9 78.6 1281

Deep OC-SORT [37] 64.9 79.4 80.6 1023

BoT_SORT [1] 65.0 80.5 80.2 1212

SparseTrack [34] 65.1 81.0 80.1 1170

MotionTrack [45] 65.1 81.1 80.1 1140

LG-Track [40] 65.4 81.4 80.4 1125

StrongTBD [53] 65.6 81.6 80.8 954

PIA2 [56] 66.0 82.2 81.1 1026

ImprAsso [55] 66.4 82.2 82.1 924

SUSHI* [10] 66.5 81.1 83.1 1149

BoostTrack (ours) 65.4 80.5 80.2 1104

BoostTrack+ (ours) 66.4 80.6 81.8 1086

6 Conclusions

In this paper,we presented three techniques for improving the
similarity measure between detections and tracklets and two
for increasing the confidence score of low-score detection
bounding boxes. Our method uses simple one-stage associ-
ation and, combined with camera motion compensation and
gradient boosting interpolation, achieves comparable perfor-
mance with state-of-the-art methods onMOT17 andMOT20

Table 5 Comparison with other MOT methods on the MOT20 test set
(best in bold). We mark offline methods with ’*’

Method HOTA MOTA IDF1 IDSW

FairMOT [68] 54.6 61.8 67.3 5243

ByteTrack [69] 61.3 77.8 75.2 1223

QuoVadis [15] 61.5 77.8 75.7 1187

SuppTrack* [70] 61.9 78.2 75.5 1325

UTM [64] 62.5 78.2 76.9 1228

StrongSORT++* [17] 62.6 73.8 77.0 770

MotionTrack [45] 62.8 78.0 76.5 1165

BoT_SORT [1] 63.3 77.8 77.5 1313

LG-Track [40] 63.4 77.8 77.4 1161

SparseTrack [34] 63.5 78.1 77.6 1120

BASE* [29] 63.5 78.2 77.6 984

FineTrack [47] 63.6 77.9 79.0 980

StrongTBD [53] 63.6 78.0 77.0 1101

Deep OC-SORT [37] 63.9 75.6 79.2 779

SUSHI* [10] 64.3 74.3 79.8 706

ImprAsso [55] 64.6 78.6 78.8 992

PIA2 [56] 64.7 78.5 79.0 1023

BoostTrack (ours) 63 76.4 76.5 992

BoostTrack+ (ours) 66.2 77.2 81.5 899

datasets while operating in real-time. Adding appearance
similarity further increases the performance of our method,
and our BoostTrack+ ranks the best online method in HOTA
score for MOT17 and MOT20 datasets.
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Appendix A CalculatingMahalanobis
distance similarity

In subsection 3.2, we described our method of calculat-
ing Mahalanobis distance similarity. The pseudocode of the
described procedure is given in algorithm 1.

Algorithm 1 Calculating Mahalanobis distance similarity
matrix.
1: procedure MhDist(D, T , dmax ) � D = {D1, D2, . . . Dn},

T = {T1, T2 . . . , Tm}
2: MhD_raw = compute_mahalanobis_dist(D, T )
3: mask = 0n×m
4: for each (i, j) do
5: if MhD_raw[i, j] > dmax then
6: mask[i, j] = 1
7: end if
8: end for
9: MhD_raw[mask] = dmax
10: MhD_raw = dmax − MhD_raw � Resulting values are in

range (0, dmax ).
11: MhD = 0n×m
12: for j=1 to m do
13: MhD[ :, j] = softmax(MhD_raw[:, j])
14: end for
15: MhD[mask] = 0 � For pairs (Di , Tj ) with original

MhD_raw[i, j] > dmax .
16: return MhD
17: end procedure

Appendix B NMS threshold

As noted in subsection 4.2, we apply non-maximum sup-
pression to all detection boxes where equation (11) holds.
We tested various τNMS settings on theMOT17 validation set
and show the results in table 6. The first row of the table rep-
resents a baseline while the rest show results of applying our
technique for detecting “unlikely" objects for specified τNMS

value. We observe that τNMS = 0.3 gives the best trade-off
between different metrics and used IDs and use τNMS = 0.3
in our experiments in section 5. Note that any τNMS set-
ting improves the performance compared to the baseline in
terms ofMOTAmetric. This indicates that more true positive
detection boxes are being used when we apply our technique
for boosting the detection confidence of “unlikely" objects.

Table 6 Effect of τNMS on the performance on MOT17 validation set

β HOTA MOTA IDF1 IDs IDSW

/ 66.132 74.736 77.298 440 227

0.0 66.03 74.797 77.004 441 226

0.1 66.03 74.795 77.003 441 226

0.2 66.335 74.791 77.509 443 225

0.3 66.343 74.817 77.575 443 223

0.4 66.375 74.814 77.581 448 225

0.5 66.377 74.825 77.58 448 225

0.6 66.337 74.806 77.491 453 229

0.7 66.064 74.778 77.099 449 232

0.8 66.064 74.778 77.099 449 232

0.9 66.064 74.778 77.099 449 232

1.0 66.064 74.778 77.099 449 232

Appendix C Influence of detection-tracklet
confidence hyperparameters

We choose tracklet confidence decay β and sini t values based
on the results on the MOT17 validation set. We tested var-
ious settings for β ∈ [0.7, 0.95] and sini t ∈ {0, 1, . . . 10}.
Table 7 shows values of HOTA, MOTA and IDF1 metrics
for different tracklet confidence decay β and sini t ∈ {0, 7}.
We show results without detection confidence boosting, cam-
era motion compensation and interpolation for λI oU =
0.5, λMhD = 0 and λshape = 0.25. We set λMhD = 0
because Mahalanobis distance boost is not affected by β and
sini t . The first line of the table corresponds to the baseline.
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Table 7 Effect of β and sini t on the performance on MOT17 validation
set

sini t = 0 sini t = 7

β HOTA MOTA IDF1 HOTA MOTA IDF1

0 65.958 74.75 77.048 65.958 74.75 77.048

0.7 66.298 75.019 78.396 66.375 75.062 78.574

0.75 66.413 75.031 78.471 66.385 75.064 78.529

0.8 66.467 75.025 78.477 66.442 75.047 78.557

0.85 66.441 75.031 78.288 66.52 75.062 78.5

0.9 66.38 74.96 78.161 66.528 74.99 78.558

0.95 66.483 74.901 78.239 66.606 74.923 78.562
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