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Abstract
Hyperspectral (HS) measurement is among the most useful tools in agriculture for early disease detection. However, the cost
of HS cameras that can perform the desired detection tasks is prohibitive-typically fifty thousand to hundreds of thousands of
dollars. In a previous study at the Agricultural Research Organization’s Volcani Institute (Israel), a low-cost, high-performing
HS system was developed which included a point spectrometer and optical components. Its main disadvantage was long
shooting time for each image. Shooting time strongly depends on the predetermined integration time of the point spectrometer.
While essential for performing monitoring tasks in a reasonable time, shortening integration time from a typical value in the
range of 200ms to the 10ms range results in deterioration of the dynamic range of the captured scene. In this work, we
suggest correcting this by learning the transformation from data measured with short integration time to that measured with
long integration time. Reduction of the dynamic range and consequent low SNR were successfully overcome using three
developed deep neural networks models based on a denoising auto-encoder, DnCNN and LambdaNetworks architectures as
a backbone. The best model was based on DnCNN using a combined loss function of �2 and Kullback–Leibler divergence
on images with 20 consecutive channels. The full spectrum of the model achieved a mean PSNR of 30.61 and mean SSIM of
0.9, showing total improvement relatively to the 10 ms measurements’ mean PSNR and mean SSIM values by 60.43% and
94.51%, respectively.
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1 Introduction

Modern agriculture presents diverse challenges, which can
be dealt with using engineering resources–developing smart
tools to enlarge process efficiency, building automated sys-
tems, developing control and monitoring systems, and more
[1]. Plant diseases, one of the main problems in agricultural
cultivation that can lead to large losses of whole crops, can
be mitigated through early detection of disease development
and an agrotechnical point-wise response.A common tool for
monitoring changes in the chemical composition of plants is
hyperspectral (HS) measurements; these can detect the typi-
cal response spectrum of a specific disease as well as general
chemical changes indicating strain, insufficiency and disease
in vegetativemedia [2, 3]. The appropriate treatment can then
be given at the source, before the problem spreads.

HS measurements for agricultural needs are usually con-
ducted in the range of 350–2300nm [4].HS sensors placed on
satellites or airplanes can be used to capture the spectrometry
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of wide areas [5]. HS cameras designed for the more local
capture of spectrometric details are also available, but their
current high cost prevents their integration into agricultural
monitoring [6].

While shooting times for environmental scenery with a
standard RGB digital camera are on the order of 10ms or
even 1ms, HS cameras that rely on whiskbroom, pushbroom
and spectral scanning techniques are often characterized by
shooting times on the order of minutes, depending mostly
on the set integration time. This long shooting time results in
lengthy technical imaging procedures and limits the shooting
of dynamic scenes. For the sake of shortening acquisition
time, in this work, we aimed to shorten the integration time.

Shortening integration time becomes evenmore important
when measuring outdoors, as the light source for spectral
measurements is not stable mostly due to cloud motion
changing sun illumination of the inspected field. Therefore,
shortening the integration time increases the temporal uni-
formity of illumination during the measurements. From the
other hand, shortening the integration time results in ineffi-
cient use of the camera’s dynamic range, and a lowering of
the signal-to-noise ratio (SNR). Since this results in a noisy
image, it can be possibly corrected by means of a denoising-
based algorithm.

Noise in an image can originate from many sources,
denoising algorithms mitigate additive noises resulting from
various sources such as acquisition noise, compression noise,
and transmission noise [8]. A noisy image can be described
as follows:

y = x + n (1)

where y is the noisy image, x is the object and n is the additive
noise.

The main challenge in denoising is preserving fine details
in the image such as edges and textures that share similar
fine details [8]. Many algorithms were previously suggested
to confront the denoising problem, one may tackle it as an
inverse problem, which generally requires descriptive infor-
mation of the model and prior knowledge [9]. Benesty et al.
used Wiener filtering for denoising in the frequency domain
[10]. Tomasi et al. used bilateral filtering to estimate the
pixel’s value from its neighbors [8, 11].

Relying on prior knowledge of the object’s characteristics,
authors used various regularization forms for denoising. In
one case,where the smoothness of natural objects is assumed,
Rudin et al. suggested using a total variation (TV) prior for
denoising [8, 12], while TV resulted in good edge preserva-
tion, textures tend to be over-smoothed [8].

Denoising methods based on using local kernels have dis-
advantages. These local kernels rely on nearby information
and thus tend to fail when noise level arises—the local sup-
port becomes too noisy to grasp information from [8]. To

meet that authors suggested incorporating non-local informa-
tion such as a non-local means (NLM) [8, 13] for denoising.
The approach of NLM was successfully extended to BM3D
proposed by Dabov et al. [8, 14]. As mentioned above, the
main difficulty in denoising is the similarity between the
noise to the fine details in the object; therefore, authors often
search for methods where noise and image are separable.
Since the spatial characteristics of the object and the noise
are different, another existing technique for filtering the addi-
tive noise is training a dictionary to decompose the object,
and use it for extracting the original object [8]. Aharon et
al. performed denoising of an image using sparse represen-
tation with a K-SVD [15]. In another work, authors show
that wavelet transform is useful for denoising purposes by
transforming the image to a wavelet domain, filtering it and
transforming it back [8, 16].

In recent years, a number of denoising works using
convolutional neural network schemes (CNN) have been
introduced. Seung et al. [8, 17], suggested a 5 layers CNN
schema for denoising natural images. Chen et al. suggested a
Generative adversarial network for denoising [18, 19]. Zhang
et al. introduced the DnCNN, a deep neural network (DNN)
for denoising [20]. Zheng et al. suggested a denoising schema
for HS data in the specific case where only part of the spectral
bands is contaminated with noise, in that case, one can use
information from nearby channels to recover the information
in the noisy channel [18, 21].

In previous works, authors assumed that a noisy image is
composed of a summation of the pure object and an addi-
tive noise, as described in (1). In this work we show that this
assumption is not the case when extremely lowering the inte-
gration time to a level of an underutilized dynamic range of
the imaging sensor.We pose a newproblem inwhich in a very
low integration time the signal suffers from a quantization
problem. Following the success of deep learning methods
for denoising in a wide variety of fields [8, 18, 19, 21–24],
and specifically in the field of spectrometry [25, 26], our
suggested solution is based on state-of-the-art DNN back-
bones, while extending the structures to support recovering
the dynamic range of HS measurements, using a combined
loss function of �2 and Kullback–Leibler divergence.

We will show that a drastic shortening in the integration
time—by a factor of 20—can be compensated for by means
of a neural network algorithm. We show that neural network
algorithms can enhance HS data measured at a very short
integration time in two critical aspects: restoring the signal’s
dynamic range and denoising using our unique captured HS
images.

The rest of the paper is organized as follows: Sect. 2
describes the dataset-acquisition procedure using our HS
scanner prototype; Sect. 3 presents the proposed method;
Sect. 4 shows the experimental results; Sect. 5 presents the
discussion, and Sect. 6 concludes.
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2 Materials andmethods

2.1 The low-cost HS system

In response to the HS cameras’ cost problem, a low-cost HS
system (Fig. 1a) was developed at the Agricultural Research
Organization (ARO) Volcani Institute in Israel to accomplish
desired missions while maintaining high performance [27,
28]. Replacing the typical pushbroomHScamerawith a point
spectrometer resulted in three important advantages for agri-
cultural needs: (a) the spectral device’s cost was reduced to
the range of thousands of dollars; (b) the same system can be
used with various point spectrometers, covering the spectral
range from ultraviolet to shortwave infrared; (c) the spectral
resolution of a point spectrometer is one order of magni-
tude more sensitive than that of a typical HS camera (e.g.,
3000 spectral measures vs. 200), resulting in the detection
of much narrower spectral responses associated with chem-

ical changes in plants, and phenomena such as sun-induced
fluorescence.

As shown in Fig. 1b, the system consists of optical ele-
ments (prisms, focusing lens and optical fibers) and mechan-
ical elements (a motor for the scanning operation and a
spectrometer). The resolution of the captured spatial HS
image is in H × L × W, while each pixel’s spectrum is mea-
sured independently and serially, which means that it takes
H · L iterations to measure the overall scene’s spectrum.
In each iteration, the prisms rotate to the desired location,
which is equivalent to the desired pixel to be captured in the
final image (the scanning method is illustrated in Fig. 1c).
Then, each pixel’s spectrum is captured by propagation of
the light rays through the prisms, focusing lens and finally,
the spectrometer. The spectrum measurement is achieved by
the spectrometer which takes the focused light ray, diffracts
it to its wavelength components and focuses them onto a lin-
ear array of detectors [20]. In this work, we used an Ocean

Fig. 1 HS system description. a The system’s physical components.
Yellow arrow indicates the direction of light entry. b Schematic drawing
of the scanning system. Light rays pass through motorized prisms and
are split between the focusing optics and RGB review camera; the light
is transmitted into two optional silicon charge-coupled device (CCD)

spectrometers via bifurcated fiber optics. c A selected region of interest
is sampled by a sequence of field points, each with its unique instan-
taneous field of view (iFOV) which is space- and wavelength-variant,
and therefore is determined individually depending on the instantaneous
optical configuration of the scanner
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Insight FLAME-T-XR1 CCD spectrometer which covers
the desired spectrum. It works in the wavelength range of
195.5–1054.1nm (3648 wavelengths per sample) and the
A/D resolution of each pixel is 16 bit (pixel value ranges
in [0, 216 − 1]). The optic fibers chosen for this system
were Ocean Insight type VIS–NIR, in accordance with the
wavelength range. The RGB review camera was also part of
the system but was only used in the initialization stage for
prism-calibration check. The system was controlled through
a laptop.

The system was extensively studied and tested. Vari-
ous numerical simulations were developed that supported
the prototype’s design. An extensive lab comparison of
the proposed system’s spectral measurements to a point-
spectrometer’s measurements showed a normalized sum of
absolute difference equal to 4.22% or less. The system was
additionally tested on a few field study cases. For more
details, the reader is referred to [7].

Overall, the HS system allows scanning a wide field of
view while the obtained HS cubes are normalized in post-
processing using a “white-balance” process [7, 29]. At the
data-acquisition stage, for each set of scene images, a white
target (WT) made of polystyrene, in the same orientation
as that of the scanned field, was captured (Fig. 2a). Ideally,
the final normalized images, which are the input images for
our models, are obtained by dividing the HS image by the
WT image. The rationale is that when a scene is captured by
the HS system, the actual input into the spectrometer is the
light rays reflected from the scene’s object, which depend
on both the light source spectrum and the reflection of the
object.Our interest is in the reflection coefficient itself (R(λ)).
The theoretical reflection from a white object is 1 for all
wavelengths (λ), which means that in this case, the input
to the spectrometer will be the light source. The mentioned
division of the HS image by the WT image will produce the
scene’s pure reflection, as shown in (2). An example of a final
result from the white-balancing process [29] is presented in
Fig. 2b.

HSnorm(λ) = IHS(λ)

IWT (λ)
≈ Isun(λ) · R(λ)

Isun(λ) · 1 = R(λ) (2)

2.2 Dynamic range and SNR

The total shooting time of our low-cost HS prototype is com-
posed of two factors: the total rotation time of the prisms
and the predetermined integration time (exposure time) of
the spectrometer, which is the dominant contributor. For
instance, for a 45 × 90 image at an ideal integration time of
200ms, the shooting time is 15:41 min; of this, 13:30 min are
wasted as a result of the long integration time. The scanning

Fig. 2 Illustration of white-balance process (2). a Capturing white
object. bNormalization process in which the outdoor scene’s HS image
is divided by the white object’s HS image

time spent on the mechanical motion could be significantly
shortened by adopting awell-optimized off-the-shelf double-
wedge prism, thus our focus here is to find a solution based
on DNN that compensates for shortening of the integration
time.

The outdoor light source is the sun. The high spectral res-
olution, on the order of 1 nm, typical of HS measurements
results in low illumination. Thus, the long integration time is
unavoidable because a lower exposure time reduces utiliza-
tion of the dynamic domain and significant noise is obtained
in the resulting spectrum, characterized by the SNR. In gen-
eral, the resultant HS measurements are a combination of
the pure signal and the system noise: the pure signal can be
thought of as the “real” and expected spectrum obtained from
themeasurement, while the system’s noisemostly consists of
detector noise, some parts of which are influenced by the set
integration time. The main components of the system noise
are photon shot noise (3), dark current shot noise (4), and
read noise [30, 31]. Overall, the SNR of ameasurement is the
relation between the number of “pure signal” electrons gen-
erated and the total effective noise, as presented in (5) [32].
In (3)–(6), λ is the wavelength, QE is the quantum efficiency
of the detector which depends on the device’s structure and
wavelength, Φ is the photon flux, tI is the integration time,
ID is the average dark current and σR is the read noise.

σS(λ) = √
QE(λ) · Φ · tI (3)

σD = √
ID · tI (4)

SN R(λ) = QE(λ) · Φ · tI√
QE(λ) · Φ · tI + ID · tI + σ 2

R

(5)

S(λ) = QE(λ) · Φ · tI (6)

Several inferences can be made from (5). First, the SNR
increases with integration time. This relation also affects the
resulting dynamic range. By definition, the signal (6) is the
numerator of (5), and thus as the integration time increases,
more photons are absorbed in the detector which yields
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Fig. 3 Experimental demonstration of differences between used inte-
gration times. a Histogram of total normalized datapoints measured
with tI = 10 ms. b Spectral image example at wavelength 601.94 nm
measured with tI = 10 ms. c Histogram of total normalized datapoints
measured with tI = 200 ms. d Spectral image example at wavelength
601.94 nm measured with tI = 200 ms

greater use of the dynamic range and a better distinction
between the detected wavelengths (see Fig. 3a, c). However,
it should be noted that the detector limits the number of elec-
trons that a pixel can hold without becoming saturated [30].
Secondly, at short integration times, the dark current noise (4)
is a more significant factor in the SNR value (5), whereas at
long integration times, the noise measurements are expected
to be dominated by photon shot noise.

Figure3b, d give a visual demonstration of the resulting
differences between the use of a long and short integration
time in spatial measurements. Observing the figures, we see
that the captured pixels’ intensities for long tI are ideally
spread across the spectrometer’s dynamic range, maximiz-
ing its utilization. On the other hand, the captured intensities
of a short tI are grouped in a much smaller dynamic range,
directly causing loss of data. The loss in dynamic range
results in a nonlinear relationship between the measurements
with short and long integration times. Figure4 shows a typi-
cal scatter plot of thesemeasurements. Indeed, the gray levels
of the two measurements are nonlinearly related because for
a single tI = 10 ms datapoint, there can be various corre-
sponding tI = 200 ms datapoint options. The mission of the
models is a regression task, to learn successful manipulation
of the noisy input data so that they will be equal to their
corresponding target data. Thus, our challenge consists of
restoring the information lost due to the system’s use of a
low dynamic range while overcoming the generated noise.

Following (6), the spectrometer’s output is quantified and
contains noise, thus the pixel’s intensity can be formulated
as:

Fig. 4 Scatter plot of the total adjusted input-target pairs of datapoints

I (λ) = Q(α · S(λ) + n(λ)), (7)

where n is the additive noise, Q() is the A/D quantization
function of the spectrometer and 0 ≤ α ≤ 1 is the relative
amplitude, so that:

α = tI
tImax

(8)

where tImax is the ideal maximal integration time for full
utilization of the dynamic range without causing saturation
of the measurements. Our goal is to minimize the difference
of a measurement taken at tI < tImax compared to tImax .
The relative error is:

err(λ) =Q(S(λ)tImax + n(λ)tImax )

− Q(α · S(λ)tI + n(λ)tI ) (9)

There are two main contributors to the result of (9): the
appearance of noise (n(λ)) and the utilization of dynamic
range. In our problem, the low signals resulting in poor
dynamic range are the significant factor in the equation, since
they most influence the quantization error. Our goal is to find
a NN {} function to minimize this error. The loss function
L() under general ‖ ‖p norm is:

L (
I (λ)tI

) =argminθ‖Q(S(λ)tImax + n(λ)tImax )

− NN {Q(α · S(λ)tI + n(λ)tI ); θ}‖p, (10)

where θ is the network parameters vector.
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2.3 Dataset description

Aunique datasetwas collected throughourHS system,where
each measurement of HS cube was 30 × 40 × 3648 (H × L
× W). Each measurement contains various outdoor scenes,
including agricultural fields, trees, houses, grass and more.
Previouswork [27, 28] indicated that typical outdoor imagery
with the low-cost HS scanner shows good dynamic and SNR
performances with an integration time of 200 ms. To signif-
icantly reduce the integration time, we set our input images’
integration time to 50 ms and 10 ms. Thus, for the model’s
training stage, each scene was sampled with three different
integration times: 200 ms, 50 ms and 10 ms, with shooting
times of 15:41, 5:34 and 2:52 min, respectively. The succes-
sive measurements resulted in a set of three HS images per
captured scene.

The image of tI = 200 ms served as the deep learning
models’ target to be learned, whereas the images of tI = 50
ms and 10 ms served as the low-quality inputs to the model.
The work focused on restoring the 10 ms dataset, which is
the most challenging one. Thus, for the sake of algorithm
development, we used sets that included pairs of HS cubes
measured in integration times of 10 ms and 200 ms.

The dataset was divided into training, validation and test
sets.A total of 56HScubeswere used for the training (44) and
validation (12) sets. The images were captured at the ARO
Volcani Institute. A separate field experiment was conducted
to create the test set and contained three HS cubes of agricul-
tural fields. The experiment was intentionally performed in a
different area of the country (at ARO’s Gilat Research Cen-
ter in the Negev desert, Israel) to ensure that our models are
modular and that their performance is not influenced by a dif-
ferent location for the image capture. A stand was designed
to hold the HS system in the back of a pickup truck, as shown
in Fig. 5. To enrich the data, data augmentation was used on
the training dataset, including random horizontal and vertical
flips.

All of the data were normalized in a two-step preprocess-
ing. First, the data were white-balanced, as formulated in
(2). Then, the data were normalized to [0, 1], relatively to
the dynamic range 216.

An important issue to consider was retaining the best pos-
sible alignment between the images within the sets, due to
dynamic changes in the environment, such as light intensity,
which vary with time. Therefore, the measuring method cap-
tured each pixel’s spectrum for the three integration times
serially, by performing an adaptation to the system’s base
code.

2.4 Computation considerations

Only partial use was made of the captured wavelength range
due to lack of quantum efficiency and data measurements

Fig. 5 Test dataset creation experiment at Gilat Research Center. The
unique structure of the HS system was designed to be placed on a stand
in a pickup truck to shoot the scene

Fig. 6 The general DNN architecture. The DNN takes as input M adja-
cent channel layers of the low-quality HS cube that support each other’s
process, and outputs M reconstructed high-quality layers. The detailed
DNN architectures are described in the following subsections and are
illustrated in Figs. 7, 8 and 9

at the spectrum edges; we therefore used the spectral bands
between 404 and 701.1 nm. The image spatial resolution
chosen for the dataset creation was 30 × 40, where each
pixel is composed of 1220 spectral measurements, so that
the HS cube’s total shape was 30 × 40 × 1220. This ten-
sor size could not be input into the models all at once due
to the random-access memory (RAM) restrictions, and we
therefore decided to perform a separate training for each 20
adjacent channels; this was found experimentally to be the
best number of channels in terms of final performance and
memory usage, as will be further explained in Sect. 4. Thus,
the input’s shape was 30 × 40 × 20.

The experiments for the deep learning models’ training
were performed on a desktop computer using Windows 10
with Intel®CoreTM i7-10700 CPU, 64 GB of RAM, and an
Intel®UHD Graphics 630 graphics processing unit (GPU)
card. The algorithms were implemented using PyTorch
1.11.0.

3 Proposedmethod

Whereas in the RGB images the contents of red, green
and blue may differ spatially, HS data suggest a continuous
change in spatial content between adjacent layers. In (9),
we showed that a part of our problem is quantization of the
noise contribution. Bearing that in mind, we can exploit the
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deep learning denoising scheme designed for RGB images
as a backbone for restoring the dynamic range of the HS
data, while using adjacent layers of the HS cube to support
eachother’s process. Thegeneral architecture of the proposed
scheme is presented in Fig. 6, where M is the total number of
input andoutput channel layers used andwas chosen such that
M · �λ is much smaller than the spectrometer’s bandwidth.

The section is organized as follows: Sect. 3.1 presents an
introduction to the involved backbone models; Sects. 3.2–
3.4 elaborate on the modifications and implementation of
each backbone, the elaboration accompanied by a graphical
figure and a table composed of the network layers, Sect. 3.5
discusses about the loss functions, and Sect. 3.6 provides the
pseudo-code of the models’ training phase.

3.1 Backbone DNNmethods

To create a denoising scheme for the HS cube, three back-
bone models were used: denoising auto-encoder (DAE) [33],
DnCNN [22] and LambdaNetworks [24]. As already noted,
the models’ inputs and outputs are of the same shape (30
× 40 × 20, H × L × W), where the inputs are the images
of tI = 10 ms and the outputs are learned from the ground-
truth images of tI = 200 ms. The models’ final design was
obtained through an extensive “pre-experiment” on each of
the models’ architectural parameters, such as number of lay-
ers and convolutional layer parameters (depth size, kernel
size, etc.). The models performed a regression task under
supervised learning. The following subsections detail our
designed architectures.

3.2 Implementing the DAE algorithm on HS data

Our suggested HS-DAEmodel uses the concept of DAE [33]
and is composed of two main parts: encoder and decoder.
Each part consists of seven layers. As can be seen in Fig. 7,
the encoder part takes the input matrix and reduces its spa-
tial size while increasing its depth from layer to layer. Then
the encoder’s output (the “latent matrix”) is entered as input
to the decoder part that performs the opposite operation of
increasing the input’s spatial size while decreasing its depth
till the matrix size reaches that of the original input matrix.
The output uses a skip-connection of the input with the last
layer. The HS-DAE model’s layers are detailed in Table 1,
all in all the model is composed of 78.7 × 106 parameters.

3.3 Implementing the DnCNN algorithm on HS data

The HS-DnCNN model is structured almost exactly as
designed in the original article [22]. As shown in Fig. 8, the
HS-DnCNN contains an overall 17 convolution layers which
keep the input’s spatial size constant along the layers. The
first layer doubles the input channels’ sizes, which are also

Table 1 HS-DAE architecture overview

SN Name Input size Output size

0 Input – 30 × 40 × 20

1 ConvBlock1 30 × 40 × 20 28 × 38 × 40

2 ConvBlock2 28 × 38 × 40 26 × 36 × 80

3 ConvBlock3 26 × 36 × 80 24 × 34 × 160

4 ConvBlock4 24 × 34 × 160 22 × 32 × 320

5 ConvBlock5 22 × 32 × 320 20 × 30 × 640

6 ConvBlock6 20 × 30 × 640 18 × 28 × 1280

7 ConvBlock7 18 × 28 × 1280 16 × 26 × 2560

8 TrConvBlock1 16 × 26 × 2560 18 × 28 × 1280

9 TrConvBlock2 18 × 28 × 1280 20 × 30 × 640

10 TrConvBlock3 20 × 30 × 640 22 × 32 × 320

11 TrConvBlock4 22 × 32 × 320 24 × 34 × 160

12 TrConvBlock5 24 × 34 × 160 26 × 36 × 80

13 TrConvBlock6 26 × 36 × 80 28 × 38 × 40

14 TrConv2D 28 × 38 × 40 30 × 40 × 20

15 Output 30 × 40 × 20 30 × 40 × 20

All of the convolution layers use kernels of size 3 × 3 with stride = 1
and padding = 0
ConvBlock = ReLU(BatchNorm2D(Conv2D(input)))
TrConvBlock = ReLU(BatchNorm2D(TrConv2D(input)))
Output = Sigmoid(Input + layer14)

Table 2 HS-DnCNN architecture overview

SN Name Input size Output size

0 Input – 30 × 40 × 20

1 Conv2D + ReLU 30 × 40 × 20 30 × 40 × 40

2-16 ConvBlock 30 × 40 × 40 30 × 40 × 40

17 Output 30 × 40 × 40 30 × 40 × 20

The kernels are sized 3 × 3 with stride = 1 and padding = 1
ConvBlock = ReLU(BatchNorm2D(Conv2D(input)))

kept constant till the last layer that reduces them back to the
original size. The HS-DnCNN model’s layers are detailed in
Table 2, all in all themodel is composed of 0.23×106 param-
eters. The structure of the output layer depends on the loss
function used: if it is the combination of Kullback–Leibler
(KL) divergence and some other function such as �1 or �2 (as
will be further discussed in section 3.5), the output equals
Sigmoid(BatchNorm2D(Conv2D(layer16))). Otherwise, the
output equals Conv2D(layer16), as also appears in the orig-
inal article [22].

3.4 Implementing the LambdaNetworks algorithm
on HS data

LambdaNetworks [24] is a newapproach for self-attention
mechanisms [34] that bypasses the expensive memory
requirements of attention maps. While even local self-
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Fig. 7 HS-DAE architecture. Green—input, yellow—convolution layer, blue—transposed convolution layer, orange—batch normalization + acti-
vation function (ReLU), purple—output with added sigmoid function

Fig. 8 HS-DnCNN architecture. Green—input, yellow—convolution layer, blue—convolution layer + batch normalization, orange—activation
function (ReLU), purple—output whose design depends on the used loss function

Fig. 9 HS-LambdaNetworks architecture. Green—input, brown—LambdaNetworks block, yellow—convolution layer + batch normalization,
orange—activation function (ReLU), purple—output with added sigmoid function

attention is a highly demanding task for a standard computer,
the LambdaNetworks model finds the solution by fitting the
image with a linear transformation—the lambda layer. This
layer needs to be computed only once and can be thought
of as a reduced-size attention map. The lambda layer con-
tains information about all of the pixels and the relationship
between the pixels in the image. Originally, the model was
produced for missions of classification, object detection and

image segmentation. We assumed that use of the described
concept of attentionmapmight also be beneficial for dynamic
range reconstruction and denoising missions.

TheproposedHS-LambdaNetworksmodel uses theLamb-
daNetworks model as a main component in the total archi-
tecture (Fig. 9). The first layer is the LambdaNetworks block
that takes the HS image input and produces a matrix with a
larger channel size of 2560.This block is structured exactly as
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Table 3 HS-LambdaNetworks architecture overview

SN Name Input size Output size

0 Input – 30 × 40 × 20

1 LN-Block 30 × 40 × 20 30 × 40 × 2560

2 ConvBlock1 30 × 40 × 2560 30 × 40 × 2000

3 ConvBlock2 30 × 40 × 2000 30 × 40 × 1440

4 ConvBlock3 30 × 40 × 1440 30 × 40 × 880

5 ConvBlock4 30 × 40 × 880 30 × 40 × 320

6a BN(Conv(layer5)) 30 × 40 × 320 30 × 40 × 20

6b BN(Conv(layer1)) 30 × 40 × 2560 30 × 40 × 20

7 Output 30 × 40 × 20 30 × 40 × 20

The kernels are sized 1 × 1 with stride = 1 and padding = 0
ConvBlock = ReLU(BatchNorm2D(Conv2D(input)))
COutput = Sigmoid(layer6a + layer6b)

presented in the original article [24]; however, we treated the
context and input matrices mentioned in the original article
as the same input matrix (our HS cube). Then, convolution
layers are activated and reduce the image’s channel sizes till
the original channel size is obtained. Along the layers of our
model, the spatial size of the features remains the same. In
addition, as also can be seen in Fig. 9, a skip-connection was
used at the output. The HS-LambdaNetworks model’s layers
are detailed in Table 3, all in all the model is composed of
4.6 × 106 parameters.

3.5 Loss functions

In general, in regression tasks such as image denoising, the
commonly used function losses are �1-loss and �2-loss [35].
Equations (11) and (12) represent the formulas for �1 and �2,
respectively:

L�1 = 1

N

N∑

i=1

| yi − f (xi ) | (11)

L�2 = 1

N

N∑

i=1

(yi − f (xi ))
2 (12)

where N is the total number of pixels, y is the target value,
x is the input value and f (x) is the model’s output value.

In our work, we experimented with several combinations
of loss functions, including the standard ones and a less
conventional one-the KL divergence (DKL ) loss [36]. The
DKL loss (13) is a similarity function which consists of
two parts:

∑
x∈X p(x) log p(x) is the negative of Shannon’s

entropy loss [37] and −∑
x∈X p(x) log q(x) is the measure

of inaccuracy proposed by Kerridge [38]. Overall, the loss
function measures the discrepancy between the two distribu-
tions, where low values express high similarity.

DK L(P‖Q) = −
∑

x∈X
p(x) log q(x) +

∑

x∈X
p(x) log p(x)

=
∑

x∈X
p(x) log

(
p(x)

q(x)

)
(13)

where X is the probability space and {p(x), q(x)} are the
probability distributions. In our problem, we treat X as the
total number of pixels and {p(x), q(x)} as the target (ground-
truth) and model output pixel values, respectively. The DKL

loss aims to quantify the similarity between each pair of
{p(x), q(x)} corresponding measurements. Before applying
the DKL component on the output, the pixelswereSoftmaxed
along the channel’s dimension.

The loss functions were applied on the last layer. In
addition, they were applied pixel-wise and the results were
averaged over a number of batches.

Algorithm 1 Training phase algorithm
1: Input: Imgs = Training HS Images
2: Output: best_model = Best Trained Model
3: preprocess_imgs ← Preprocess Imgs including white-balancing

and normalization
4: train_imgs, val_imgs ← Split preprocess_imgs to training and

validation datasets
5: best_mean_val_psnr ← 0
6: epochs ← Number of epochs
7: for epoch in range(epochs) do
8: for train_imgs_batch in train_imgs do
9: train_input_imgs, train_target_imgs ←

train_imgs_batch
10: train_output_imgs ← model(train_input_imgs)
11: train_loss ← loss_func(train_output_imgs ,

train_target_imgs)
12: Apply backpropagation based on train_loss
13: end for
14: mean_val_psnr ← 0
15: for val_imgs_batch in val_imgs do
16: val_input_imgs, val_target_imgs ← val_imgs_batch
17: val_output_imgs ← model(val_input_imgs)
18: val_loss ← loss_func(val_output_imgs, val_target_imgs)
19: val_psnr ← convert_to_psnr_func(val_loss)
20: mean_val_psnr ← mean_val_psnr + val_psnr
21: end for
22: mean_val_psnr ← mean_val_psnr/len(val_imgs)
23: if mean_val_psnr > best_mean_val_psnr then
24: best_mean_val_psnr ← mean_val_psnr
25: best_model ← model
26: end if
27: end for

3.6 Pseudo-code

As previously elaborated, our proposed method includes a
use of a DNN with three different options of backbones,
where their input is a low integration captured HS cube and
their output is a reconstructed high-quality HS cube. The
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training phase of these models could be generalized into the
pseudo-code described in Algorithm (1).

4 Experimental results

4.1 Evaluationmetrics

In image denoising and restoration tasks, a variety of eval-
uation metrics can be used. We chose to analyze our results
according to the peak-signal-to-noise ratio (PSNR) and struc-
tural similarity index measure (SSIM), where each metrics
describes a different facet of the measure. For the inference
stage, the models’ final weights were saved according to the
highest achieved mean PSNR of the validation dataset.

The PSNR [39] is an interpretation of the mean squared
error (MSE). A higher PSNR value indicates higher image
quality and is defined by:

PSN R = 10 · log10(P2
DR/MSE) (14)

where PDR is the peak dynamic range value in the data and
MSE is the exact L�2 shown in (12). The SSIM [40] is a
quality metric used to measure the similarity between two
images ( f and g in (15) and (16)). It is designed bymodeling
any image distortion as a combination of three factors: loss
of correlation (s( f , g)), luminance distortion (l( f , g)) and
contrast distortion (c( f , g)). Like the PSNR, a higher SSIM
value indicates higher image quality and is defined by:

SSI M( f , g) = l( f , g) · c( f , g) · s( f , g) (15)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

l( f , g) = 2μ f μg + C1

μ2
f + μ2

g + C1

c( f , g) = 2σ f σg + C2

σ 2
f + σ 2

g + C2

s( f , g) = σ f g + C3

σ f σg + C3

(16)

where C1, C2 and C3 are small positive constants, μ f and
μg are the means of the compared images and σ f and σg are
the standard deviations of the compared images.

4.2 Training hyperparameters

The three proposed models were trained using the Adam
optimizer [41] with its default PyTorch parameters. Table 4
presents the global hyperparameters used for training.

Table 4 Global hyperparameters

Batch size Learning rate Learning rate decay Epochs

4 0.001 0.99995 4000

Table 5 Test of number of input channels

Number of channels PSNR SSIM Parameters (M)

1 28.09 0.76 6.38 × 10−4

4 29.89 0.88 0.001

10 30.05 0.89 0.06

20 30.63 0.89 0.23

50 30.47 0.9 1.44

100 30.67 0.88 5.76

4.3 Optimal input’s channel size

Before testing our models with the various existing hyperpa-
rameters,wehad to choose the number of channels thatwould
be input to the models. We wanted to perform the training on
the whole spectrum, which consists of 3648 channels. How-
ever, as mentioned above, it must be divided into parts since
the hardware has a RAM limitation and cannot handle this
channel size. The influence of channel number on PSNR and
SSIM scores was determined with the DnCNN model, using
a combined loss function of L�2 + DKL and weight decay of
10−4. The channels were input as adjacent channels around
the wavelength of 601.94nm. Table 5 shows the results of
the experiment.

Various factors were considered to choose the optimal
number of channels. Performance and especially PSNR cer-
tainly topped the list, but the cost of the usedmodels’ number
of parameters was also significant. As the chosen number of
channels increases, so does the RAM used, as well as the
training time. In addition, more parameters affect obtaining
a generalized “solution” and gaining more overfitting. Alto-
gether, it was decided to choose 20 channels as a decent
trade-off between the above considerations.

4.4 Testing the proposedmodels

4.4.1 Comparisons of proposed models’ performances

The models were tested with various selected combinations
of the following loss functions and weight decays:

Loss ∈ {L�1 ,L�1 + DK L ,L�2 ,L�2 + DK L}

Weight decay ∈ {5 · 10−4, 10−4, 5 · 10−5}
where we can define the "outer product" of Loss⊗Weight
decay as the total combination options examined. The final
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Table 6 Average test results of the proposed models in the wavelength range of 599.5–604.1 nm

Model name Parameters (M) Loss function Weight decay Inference time (sec) PSNR SSIM

HS-DAE 78.7 �1 10−4 0.84 29.25 0.87

HS-DAE 78.7 �1+DKL 10−4 0.84 28.95 0.9

HS-DAE 78.7 �2 5 × 10−4 0.84 28.83 0.83

HS-DAE 78.7 �2+DKL 5 × 10−4 0.84 29.16 0.89

HS-LambdaNetworks 4.6 �2 5 × 10−5 7.1 27.43 0.83

HS-LambdaNetworks 4.6 �2+DKL 10−4 7.1 28.64 0.88

HS-DnCNN 0.23 �1 10−4 0.52 29.18 0.88

HS-DnCNN 0.23 �1+DKL 10−4 0.52 29.31 0.88

HS-DnCNN 0.23 �2 10−4 0.52 29.7 0.88

HS-DnCNN 0.23 �2+DKL 10−4 0.52 30.63 0.89

Fig. 10 Qualitative results of top-performing models at wavelength 601.94 nm

best performance results of our experimental models are
described in Table 6 for the training wavelength range of
599.5–604.1 nm. The PSNR and SSIM values are the aver-
age of each channel’s calculated PSNR and SSIM. For the
reference, the input tI = 10 ms images’ PSNR and SSIM
values were 18.71 and 0.41, respectively. According to the
results, the three models significantly improved the tI = 10
ms images’ performances. The biggest improvement was
achieved with the HS-DnCNN model using a combined loss
function of L�2 + DKL , which also has the shortest infer-
ence time of only 0.52 s. Moreover, addition of the DKL loss
seemed beneficial and improved the total results, except in

the case of the HS-DAE model using the L�1 loss function
which indeed resulted in a worse PSNR but a better SSIM
value (the best tested SSIM).

Figure10 provides a visual demonstration of the top per-
formance of the testedmodels. In general, the total qualitative
results showed a significant improvement over the tI = 10
ms data. In the small details, it can be noted that HS-DnCNN
usingL�1 + DKL and HS-DAE usingL�2 + DKL are slightly
better than the others, especially in the darker areas. Because
our specific leading interest was to achieve an accuratemodel
followed by a small MSE, we chose the HS-DnCNN model
using L�2 + DKL as the leading model for further work due
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Fig. 11 Cross-wavelength performance analysis. a Full-spectrum
PSNR performance graph. Red (thin) and blue (thick) curves repre-
sent the tI = 10 ms input images and the network’s output images,
respectively. b Full-spectrum SSIM performance graph. Red (thin) and

blue (thick) curves represent the tI = 10 ms input images and the net-
work’s output images, respectively. c Full-spectrumPSNRperformance
histogram of the network’s output images. d Full-spectrum SSIM per-
formance histogram of the network’s output images

Table 7 Test results for the HS-DnCNN model in the full wavelength
range

Data type Mean PSNR Mean SSIM

Input 19.08 0.46

Output 30.61 0.9

to its best quantitative performance results while requiring a
small number of parameters.

4.4.2 Full spectrum analysis

Further performance analysis was conducted based on the
model that functioned best. The PSNR and SSIM values for
the whole trained wavelength spectrum are shown in Fig. 11.
As can be seen, the model’s output statistics are not constant
along the wavelength axis and their changes are highly corre-
lated to the corresponding tI = 10ms input data statistics–the
PSNR correlation coefficient is 0.735 and the SSIM corre-
lation coefficient is 0.717. The model’s PSNR and SSIM
performance is detailed in Table 7, showing total improve-
ment of the PSNR and SSIM values by 60.43% and 94.51%,
respectively.

5 Discussion

The experiments were focused on achieving the best possible
pixel-reconstruction accuracy. This was done by saving the
models’ weights according to the best PSNR scores during
the training phase. The training could also be implemented
differently for other goals, such as achieving the best visual
results. In that case, the models’ architectures may be pre-
served while adjusting the loss functions to the appropriate
mission [35], e.g., using a combined loss function of SSI M
+ DKL and saving the model’s weights accordingly to the
best achieved SSIM scores.

The DKL component was found to be a beneficial addition
to the total loss function. Adding it forced the models to
accomplish a depth-similarity between the output values and
the ground-truth values.

As shown in the final test performance in Table 6, the three
models yielded positive results but the HS-LambdaNetworks
model functioned worse than others. Even though the perfor-
mance expectations from this model were higher, it may be
less suitable for restoration of the dynamic range of the signal
and noise reduction.
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6 Conclusion and future work

Many of previous works treat and define a noisy image as
the summation of the pure image and an additive noise, and
their suggestions of enhancing the image quality are based on
extracting the ground truth image from the noisy image. In
this work we show that when working with an HS system in
a very low integration time the problem of denoising is more
complicated. In this case, the dynamic range of the captured
image occupies only a small portion of the system’s dynamic
range, which consequently results in deteriorating image’s
quality. A major part of the non-typical achieved noise in the
resulted image appear due to a quantization problem that the
captured signals suffer from.

Based on the partial similarity between our problem to
classical denoising problems, this paper suggests three usable
state-of-the-art denoising DNN backbones to obtain signal
recovery: HS-DAE, HS-LambdaNetworks and HS-DnCNN.
To boost the total signal recovery performances, we sug-
gest to include an additional component of DKL in the cost
function. The proposed method was demonstrated on unique
measurements taken by a previously suggested HS scanning
system, showing our capabilities to accelerate its scanning
time with a reduction of the integration time by factor of 20.

The results show a successful proof of concept for
dynamic range reconstruction and noise reduction of HS
imageswith low defined integration time. The three proposed
models significantly improved the tI = 10 ms images’ per-
formance, while showing rapid inference times ranging from
0.52 to 7.1 s, which provides a fast-paced image processing.
Though the methods were implemented in the field of agri-
culture, the architectures are modular and may be trained
over any HS datasets in various areas for shortening system
shooting times.

Best results were obtained with HS-DnCNN while using
the combined loss function of L�2 + DKL . The HS-DnCNN
requires the smallest number of parameters which is ben-
eficial for small datasets such as available in real world
HS imaging. Typical results present a very high recovery
with mean PSNR of 30.61 and mean SSIM 0.9, showing
total improvement relatively to the 10 ms measurements’
mean PSNR and mean SSIM values by 60.43% and 94.51%,
respectively. The model also achieved the shortest inference
time among the three models of 0.52 s.

Our model’s training phase requires large datasets; in
our next phase we intend to collect more data to improve
the total performances. In addition, our work shows that
processing series of spectra together brings supportive infor-
mationwhich improves signal recovery, the next phase of this
research will deeper the investigation of supporting data.
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