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Abstract
By conditioning on unit-level predictions, anchor-free models for action proposal generation have displayed impressive
capabilities, such as having a lightweight architecture. However, task performance depends significantly on the quality of
data used in training, and most effective models have relied on human-annotated data. Semi-supervised learning, i.e., jointly
training deep neural networks with a labeled dataset as well as an unlabeled dataset, has made significant progress recently.
Existing works have either primarily focused on classification tasks, which may require less annotation effort, or considered
anchor-based detection models. Inspired by recent advances in semi-supervised methods on anchor-free object detectors,
we propose a teacher-student framework for a two-stage action detection pipeline, named Temporal Teacher with Masked
Transformers (TTMT), to generate high-quality action proposals based on an anchor-free transformer model. Leveraging
consistency learning as one self-training technique, the model jointly trains an anchor-free student model and a gradually
progressing teacher counterpart in a mutually beneficial manner. As the core model, we design a Transformer-based anchor-
free model to improve effectiveness for temporal evaluation. We integrate bi-directional masks and devise encoder-only
Masked Transformers for sequences. Jointly training on boundary locations and various local snippet-based features, our
model predicts via the proposed scoring function for generating proposal candidates. Experiments on the THUMOS14 and
ActivityNet-1.3 benchmarks demonstrate the effectiveness of our model for temporal proposal generation task.

Keywords Temporal proposal generation · Semi-supervised learning · Anchor-free model · Transformer network

1 Introduction

High-quality temporal action proposals are crucial for a suc-
cessful two-stage action localization pipeline on long-term
video sequences. Deep learning models achieve remarkable
performances in the temporal action proposal generation task
using either boundary-based [1, 2] or proposal-based [3]
approaches within a fully-supervised setting. Complemen-
tary characteristics of these two techniques motivate the
introduction of joint models with improved performance [3–
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5]. Despite advances in deep learning architectures for
temporal action proposals, the performance usually relies on
human-annotated data as it scales up with growing labeled
data. However, only relatively limited data is available in the
video domain compared to that in image datasets.

Semi-supervised learning (SSL) algorithms aim to learn
prediction functions jointly from labeled and unlabeled
observations. Inspired by the advances in rapidly developed
semi-supervised image classification models [6, 7], recent
studies [8–11] show promising results on semi-supervised
object-detection with limited labeled data compared to that
of fully-supervised versions. To our knowledge, there are few
recent approaches adapted and applied to semi-supervised
action detection and proposal generation tasks on untrimmed
videos. Available action models [12, 13] are designed on top
of anchor-based models, where the former [12] investigates
the SSL approach using the Boundary Sensitive Network
(BSN) model [2] and the latter [13] applies the SSL on the
Boundary Matching Network (BMN) model [4]. However,
anchor-free models have been receivingmore attention in the
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Fig. 1 Overview of Temporal Teacher with Masked Transformers (TTMT). The teacherstudent framework consists of two steps: Build-in Stage
and Mutual Learning Stage. The backbone model is based on a multiscale transformer architecture.

fully-supervised setting with a few recent studies proposed
for action detection [14, 15] with the promise of achieving
competitive accuracy and computational efficiency. There-
fore, targeting anchor-free semi-supervised action models
looks like a future trend in the field as well.

Particularly, semi-supervised techniques are not well
explored on anchor-free models for temporal action proposal
generation. Focusing on a two-stage detection pipeline as
in [12, 13], we aim to propose an anchor-free model within
a semi-supervised training methodology. Following the
teacher-student framework [16] as a semi-supervised tech-
nique, we introduce an anchor-free temporal proposal gen-
eration model to achieve comparable performance with that
of fully-supervised anchor-based [3–5] and semi-supervised
anchor-based models [13]. Recently, Unbiased Teacher
v2 [11] evaluates a new pseudo-labeling semi-supervised
approach on anchor-free object detectorswith extensive anal-
ysis. Following the observations on object detectors from the
study, we investigate the performance of our semi-supervised
and anchor-free approach for action proposal generation. An
SSL-based anchor-free model [17] has been recently intro-
duced for temporal action detection, but direct comparison
is not reasonable as this work is proposed in a one-stage
detection pipeline. One-stage pipelines are often powered
by a refinement stage, since they directly target the action
detection task, e.g. [17]. Instead, our work neither requires
an extra refinement stage nor uses an existing one, and it
focuses mainly on a two-stage pipeline that places more
emphasis on the task of creating a proposal. As one advan-
tage, two-stage pipelines with good proposal candidates can
be flexibly integrated for strengthening various downstream
tasks in different granularities, e.g. action recognition on a
coarse scale or human-object interaction detection on a fine

scale.As another advantage, they are less dependent on action
categories than one-stage pipelines and can be easily fine-
tuned into new action categories, also with greater potential
for class-incremental scenarios. In particular, we perform
action recognition in the second stage of the pipeline as a
downstream task by adding a simple pre-trained action clas-
sifier, i.e., UntrimmedNet [18], to rescore extracted proposals
for classification as in [3–5]. With a two-stage pipeline, our
proposal generation model can be integrated with proposal
refinement techniques such as P-GCN [19] for action detec-
tion as was previously effective in [20].

Our semi-supervised approach, shown in Fig. 1, is a
teacher-student framework that follows the training method-
ology fromLiu et al. [21].Ourmodel observes a set of labeled
videos and a set of unlabeled ones in a two-step training
pipeline. The first step of the training mechanism, i.e., the
burn-in phase, draws on labeled data during the first itera-
tions of training using our anchor-free backbone model as
the Student, while the second step, i.e., the mutual learning
phase, makes use of both labeled and unlabeled videos using
the teacher-student framework with the competing Teacher
and Student built on the same anchor-free backbone for the
rest of the training. Our teacher-student framework contains
both snippet-based classification and regression objectives
on supervised and unsupervised data with pseudo-labeling
to support strong integration with the snippet-based anchor-
free backbone predictions.

The backbonemodel, i.e., theMaskedTransformermodel,
is based on the detection of multiple per-snippet-based local
clues on video sequences via an encoder-only Transformer
architecture designed in our recent study [22]. The tradi-
tional Transformer model [23] supports the detection of
entities along with their pairwise relationships. Because it
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explores local snippet-based features at multiple levels of
detail, a multiscale Transformer can be a good video pro-
cessing technique for anchor-free models. There exist recent
models for multiscale image classification and our strategy
is to extend one of these models, namely Improved Mul-
tiscale Vision Transformers (MViTv2) [24], for the video
action proposal generation task. Our model improves the
pooling attention [24] by using bi-directional masks to better
model temporal ordering [25]. Using the proposed Masked
Transformermodel, we primarily aim to demonstrate that our
anchor-free model can be integrated into a semi-supervised
teacher-student framework with performance comparable
to that of both fully- and semi-supervised anchor-based
models [3–5, 12, 13]. Next, we aim to demonstrate how
our teacher-student framework can be applied to temporal
sequences by both snippet-based classification and regres-
sion through consistency regularization and pseudo-labeling,
taking into account the localization uncertainty in bound-
ary estimations. Mean teacher models are mostly examined
for classification scenarios. Instead, our semi-supervised
model is based on a teacher-student framework with multiple
snippet-based classification and regression functions formu-
lated specifically for our snippet-based anchor-free design.

We demonstrate that our end-to-end trainable anchor-
free Transformer-based generator network, called Tempo-
ral Teacher with Masked Transformers (TTMT), achieves
promising performance when compared to the state-of-
the-art models on action proposal generation. We validate
our model with experiments on the THUMOS14 [26] and
ActivityNet-1.3 [27] datasets. Experiments reveal that our
anchor-free Transformer-basedmodel is a good candidate for
video processing as it performs as well as the proposal-based
models. The generated proposals are highly overlappingwith
the ground truth and have accurate boundary localization.
The main contributions of our study are (i) a new teacher-
student model with an encoder-only Transformer model
for anchor-free temporal action proposal generation, (ii) a
Masked Transformer model with a temporal extension of
pooling attention unit [24] via bi-directional masks for tem-
poral encoding, and (iii) an improved anchor-freemodel with
uncertainty-aware boundary estimations.

2 Background

The target of our work is on semi-supervised two-stage
action localization pipeline on untrimmed video sequences.
Although the literature is dense on studies of action detec-
tion with robust one-stage and two-stage detection models,
we here discuss the recent studies on the two-stage detec-
tion models. For a robust two-stage pipeline, high-quality
proposal generation means better capturing the ground-truth
segments with highly confident foreground action regions

and accurate boundaries [2, 4, 28]. Most existing studies
focus on fully-supervised models for action localization,
while few recent ones aim for semi-supervised models.

2.1 Fully-supervisedmodels

Existing proposal generation models in fully-supervised set-
tings can be categorized as anchor-based and anchor-free
approaches. Anchor-based approaches can be categorized
as top-down and bottom-up approaches. While the for-
mer group relies on the sliding window or the Faster
R-CNN [29] strategies to extract proposal-level regions
as candidate segments [30], the latter is based on detect-
ing boundary-level features for extracting candidates [2,
28]. Temporal Unit Regression Network (TURN) [31] gen-
erates proposals via decomposition into short units and
employs regression to adjust boundaries from the sliding
windows. Temporal Action Grouping (TAG) [28] connects
high-scoring regions by a watershed algorithm. Boundary
Sensitive Network (BSN) [2] detects local boundaries and
evaluates proposal confidence scores within a region. On
the other hand, Complementary Temporal Action Proposal
(CTAP) [1] jointly uses sliding windows and grouping-
basedmethods for high-quality proposals.Another approach,
Snippet Relatedness-based Generator (SRG) [32], represents
long-range dependencies among snippets by a score map.

Both proposal-level and boundary-level features are criti-
cal for obtaining high-quality proposals with precise bound-
aries [1, 5]. Complementary characteristics of these features
are the key motivations for many joint models integrat-
ing proposal- and boundary-level features, e.g. BMN [4]
and MGG [5]. One recent model, Boundary Content Graph
Neural Network (BC-GNN) [33], uses a graph neural net-
work for the interactions of boundaries and content of
proposals. Another model, Relaxed Transformer Decoder
(RTD-Net) [34], proposes a transformer-based architecture
for temporal proposal generation inspired by a recent trans-
former object detection framework DETR [35].

In addition to anchor-based models, more recent studies
focus on anchor-free approaches. Anchor-Free Saliency-
based Detector (AFSD) [14] proposes a saliency-based
refinement module that gathers boundary features, and
ActionFormer [15] uses multiscale Transformers. Contrary
to these studies aiming for single-stage action detection, we
target anchor-free models for proposal generation within
two-stage action detectors and we devise an SSL-based
model.

2.2 Semi-supervisedmodels

A powerful technique for training models on both labeled
and unlabeled data is semi-supervised learning (SSL). A
popular class of SSL methods produces artificial labels for
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unlabeled data and trains a model to predict the artificial
label when unlabeled data is inputted. The majority of the
recent SSL methods typically consist of pseudo-labeling and
consistency regularization approaches. Pseudo-labeling [36]
uses the model itself to obtain predictions for unlabeled data.
Besides, consistency regularization [37] leverages the idea
of obtaining similar predictions when the models are fed
with the perturbed data. Early approaches apply exponential
moving average (EMA) of model parameters [16] or self-
ensembling [38] when producing artificial labels.

SSL for image classification has been rapidly devel-
oped with promising results in recent years. Existing SSL
image classification works [7, 39] apply input augmenta-
tions and consistency regularization on unlabeled images.
Inspired by these works, several semi-supervised object
detection works have been proposed to exploit similar ideas
to train object detectors in a semi-supervised manner [8,
40]. Despite the significant improvement, there are still two
remaining issues: (i) there are few studies on SSL-based
proposal generation and action detection models, (ii) prior
works are mainly focused on anchor-based models [12, 13].
Both models, [12, 13], adopt the Mean Teacher framework
in the semi-supervised temporal action proposal task. We
devise an alternative teacher-student framework based on our
anchor-free masked Transformer network with a lightweight
uncertainty-aware proposal refinement component.

One recent SSL-based study [17] introduces an anchor-
free one-stage approach to action detection. The study inte-
grates a two-stream model based on a standard Transformer
backbone into a semi-supervised model via pseudo-labeling
applied to both classification andmaskpredictions. Similarly,
we offer a teacher-student framework, but unlike [17], our
proposed SSL-based framework relies on a new anchor-free
masked Transformer network and our framework integrates
pseudo-labeling not only for the classification of various
snippet-based features but also for boundary regression. Our
framework leverages the relative uncertainties between the
Teacher and Student to select the boundary-level pseudo-
labels [11]. Moreover, a direct comparison is not reasonable
since we are proposing a two-stage pipeline contrary to Nag
et al. [17], which is a one-stage model.

3 Masked transformer pyramidmodel

Core models replicated under the proposed teacher-student
framework are Transformer-based. The Transformers were
first introduced for languagemodeling on text sequences [23]
with its support on learning long-range dependencies via
the self-attention mechanism. Following the success in
NLP [41], attention mechanisms later became an integral
part of many vision tasks, including image recognition,
object detection, video understanding, text-image synthesis

and visual question answering [42, 43]. In particular, we
use a multiscale encoder-only Transformer network intro-
duced in our previous study [22] designed for directional
temporal dependency modeling on long-range video snippet
sequences.

Based on the Masked Transformer network that reveals
the local clues in multiple scales besides interactions among
snippets, we aim to extract proposal candidates within a
pyramid structure. In this section, we first describe the
encoder-only Transformer architecture with a bi-directional
multi-head attention unit and then give the details of pyramid
architecture.

3.1 Multiscale encoder-only transformers

Our core model is based on a multiscale transformer archi-
tecture. For the multiscale purpose, we exploit the pooling
attention units devised as the self-attention blocks by Multi-
scale Vision Transformers (MViTv2) [24]. In MViTv2, the
pooling attention has been originally proposed as part of a
Vision Transformer model for image classification, object
detection and video recognition tasks. In this work, we inte-
grate it to process 1D sequences of snippet embeddings
extracted using a pre-trained CNN model and we leverage
it for temporal proposal generation task.

Multiscale Transformer architecture comprises the con-
cept of stages. Each stage consists of multiple transformer
blocks with specific time resolution and channel dimension.
Reducing the sequence length from input to output of the
network stages, the architecture gradually expands the chan-
nel width via pooling attention units. For an input sequence,
F ∈ R

T×D , a Transformer block packs it into query, key and
value matrices, Q, K , V , with a pooling attention unit as

Q = PQ(FWQ), K = PK (FWK ), V = PV (FWV ), (1)

where WQ , WK and WV ∈ R
D×D . The pooling attention

unit first projects input F using WQ , WK and WV and then
applies pooling operators (P) that are 1× 3 convolution lay-
ers. The pooling operator can reduce the time resolution, i.e.,
the sequence length, using a convolutional stride.

Following the pooling operators, the standard (i.e., unma
sked) version of the multi-head attention block is applied as

Z ′ = QK�
√
D

+ Er ,

Attn(Q, K , V ) = so f tmax(Z ′)V , (2)

where Er is the relative position embedding along temporal
axes. Later, we apply the residual pooling connection and
add the pooled query tensor to the output sequence, Z =
Attn(Q, K , V ) + Q.
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Fig. 2 Bi-directional pooling
attention unit proposed as one
extension of the attention unit
from [24] with integrated
directional masks

3.2 Bi-directional multi-head attention

In this work, we integrate a directional mask into the pooling
attention unit and introduce a bi-directional version of the
attention unit to model temporal ordering in attention output
[25]. Given a mask M ∈ R

T×T , we first apply dot product
attention among Q and K with a scaling factor as in Eq. (2)
and then add with the mask component as

Z ′
i j =

D∑

d=1

(Qid Kd j )/
√
D + Er

i j + Mi j , (3)

where i and j are snippet indices. If Mi j = −∞, then Z ′
i j =

−∞. This implies the Attni j turns into zero in Eq. (2), since
softmax output results in 0.

For the bi-directional version, we use two masks—one
for modeling forward ordering and the other for modeling
backward ordering, M f and Mb, respectively, as

M f
i j =

{
0 i < j,

−∞ otherwise
, (4)

Mb
i j =

{
0 i > j,

−∞ otherwise
. (5)

We apply forward and backward masks as in Eq. (3) to
compute Z ′ f and Z ′b outputs respectively, andmultiply byV .
The final Attn matrix is then merged with a simple addition
operation as

Attn(Q, K , V ) = so f tmax(Z ′ f )V
+ so f tmax(Z ′b)V . (6)

Figure 2 illustrates the details of the pooling attention unit
with bi-directional mask extension. Note that the proposed

attention model can be generalized to various other mask
structures.

3.3 Transformer-based pyramid architecture

In the proposed multiscale transformer architecture, while
the bottom stages perform fine-scale evaluation, the higher
stages perform coarse-scale evaluation on video sequences.
The architecture is converted into a simple pyramid structure
with attachments of lateral connections. In this structure, the
bottom-up pathway consists of multiple stages each having
a various number of blocks. The last block of each stage
doubles the channel width Di while reducing the sequence
length Ti by a factor of two using the bi-directional pooling
attention unit (see Sect. 3.2). The last block output of a stage
corresponds to a level sequence map. The top-down pathway
integrates sequence maps iteratively via lateral connections
to form a pyramid network [44]. In each iteration, a coarse-
scale sequence map is upsampled by a factor of two using
the nearest neighbor and added to the previous bottom-up
map that is filtered using a 1×1 convolutional layer. The
merged map is smoothed using a 1×3 convolutional filter
into Pi ∈ R

Di×Ti (we fix the numbers of channels Di to
1024 in this paper). This process continues until the finest
resolution map is constructed.

All levels of the pyramid use shared network heads
including classifiers and regressors as in a traditional image
pyramid. Our network heads consist of (i) snippet-based
prediction branches including {actionness, centerness, start-
boundary, end-boundary}, (ii) boundary regression branch,
and (iii) localization uncertainty branch. Given a feature map
Pi , the head of actionness predicts the actionness score, pna ,
the head of centerness measures the centerness score, pnc ,
while the heads of start- and end-boundary classifiers esti-
mate the scores of being a start and an end position, pns
and pne for the snippet n, respectively. The prediction heads
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are designed using two linear layers. Besides, there exists
a boundary regression branch with two linear layers that
returns a pair of relative distance estimations, vn = (ln, rn),
from a snippet n to start and end boundaries. Finally, our
network has a localization uncertainty branch to estimate
uncertainties [45] for predicted relative distances, σ n =
(σ n

l ,σ
n
r ), with a linear layer attached to the first linear layer

of the boundary regression branch.
Given a ground-truth segment at an interval [s∗, e∗], the

snippets are defined as positive within this interval for the
actionness, i.e., snippet n within a ground-truth segment has
an actionness value of pn∗

a = 1. Adapting the centerness
formulation for temporal segments from FCOS [46], snippet
n at location t within a ground-truth segment has a centerness

value on the same interval as pn∗
c =

√
min(ln∗,rn∗)
max(ln∗,rn∗) where l

n∗

and rn∗ are distances of snippet n to start and end boundaries,
ln∗ = t − s∗ and rn∗ = e∗ − t (otherwise the centerness
value is zero). Corresponding start and end boundary labels
are defined as positive within intervals [s∗ −τ ∗, s∗ +τ ∗] and
[e∗ − τ ∗, e∗ + τ ∗], respectively, with an extra offset τ ∗ =
(e∗−s∗)/10. Following FCOS [46], positive snippets, that lie
within a ground-truth segment, are participated in boundary
regression and uncertainty prediction using vn∗ = (ln∗, rn∗).

4 Teacher-student framework

The teacher-student framework is borrowed by many deep
neural network models for semi-supervised learning [16] to
reduce over-fitting with a large number of learning parame-
ters and to train robustmodelswithmore abstract invariances.
The framework jointly trains a student and a teacher model
in a mutually beneficial way in which the student model
learns and updates the teacher model using exponential mov-
ing average (EMA) [16]; while the teacher model generates
targets to train student model. In this section, we describe the
stages in the training process of the proposed teach-student
framework; burn-in and mutual learning stages, respectively.

4.1 Burn-in stage

In a teacher-student framework, good initialization is impor-
tant, since the teacher generates targets to be used by the
student for learning.We utilizeBurn-in training strategy [21]
to optimize the student model weights θ using supervised
data and supervised loss.

Let Pi ∈ R
Di×Ti be the feature map at layer i of pyramid

network with feature dimension Di and length Ti . Once we
have ground truth labels at each location t on the featuremap,
we train our student model on supervised data with a fixed

number of epochs using the following supervised loss

Lsnip
sup = 1

Ns

(∑

n

�a(p
n
a , p

n∗
a ) +

∑

n

�c(p
n
c , p

n∗
c )

+
∑

n

�s(p
n
s , p

n∗
s ) +

∑

n

�e(p
n
e , p

n∗
e )

)

+ 1

Nps

(∑

n

111n�diou(v
n, vn∗)

+
∑

n

111n�unc(v
n, σ n, vn∗)

)
, (7)

where we predict the actionness score, the centerness score,
and the start-end boundary scores and regress the target
segment intervals assuming each snippet location as an
anchor point. 111n indicates that the n-th snippet is a pos-
itive instance within a ground-truth segment interval, and
pna , p

n
c , p

n
s , p

n
e , vn and σ n show the prediction outputs of

corresponding network heads. Ns and Nps are the numbers
of all locations and positive locations in a batch, respec-
tively. �a is defined as a cross-entropy loss, while �c, �s
and �e are binary cross-entropy losses with logits. �diou is
a temporal Intersection-over-Union (tIoU) based loss that is
computed using predicted boundary distances vn = (ln, rn)
and ground-truth boundaries vn∗ = (ln∗, rn∗), where we
adapt the Distance-IoU loss [47] for temporal segments as

�diou =1 − t I oU + d(v, v∗)
a2

,

t I oU = min(l, l∗) + min(r , r∗)
max(l, l∗) + max(r , r∗)

,

d(v, v∗) =|r − l − r∗ + l∗|/2 ,

a =max(l, l∗) + max(r , r∗) , (8)

where d(·, ·) is the Euclidean distance between the centers
of the predicted and the ground truth segments and a is the
length of the shortest enclosing segment covering the two
segments.

The localization uncertainty branch is jointly trained with
the boundary regression branch using �unc that is the negative
power log-likelihood loss (NPLL) [45] as

�unc = η ·
[( ∑

k∈{l,r}
(
(k∗ − k)2

2σk2
+ log σ 2

k

2
)
)

+ 2 log 2π

]
, (9)

where η is either 1 or tIoU score between the predicted and
the ground-truth boundaries v = (l, r) and v∗ = (l∗, r∗),
respectively. k ∈ {l, r} and σk is the predicted uncertainty
for left or right direction.

After 15 epochs in Burn-in stage, we copy the trained
weights θ for both the teacher and the student models, (θt ←
θ, θs ← θ).
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4.2 Mutual learning stage

In the mutual learning stage, the student and teacher models
are jointly training using the EMA [16] strategy. Consistency
learning as one self-training technique constrains model out-
puts to be comparable using transformed unlabeled data with
some randomness. Therefore, the technique has been well-
adopted for the SSL as reducing dependency on limited
labeled data. We apply consistency regularization on both
supervised and unsupervised data splits.

On supervised data, while the student model continues
to learn using Lsnip

sup , the teacher model generates targets for
student models on augmented copies of the data. Alongside
Lsnip
sup , a regularization loss is used with two components,

Lsimcls
sup and Lsimreg

sup , respectively, given as

Lsimcls
sup = 1

Ns

(∑

n

�con(p
nt
a , pnsa ) +

∑

n

�con(p
nt
c , pnsc )

+
∑

n

�con(p
nt
s , pnss ) +

∑

n

�con(p
nt
e , pnse )

)
,

(10)

where �con is the mean square error loss to compare the
softmax activations over the actionness predictions and the
sigmoid activations over the centerness, the start- and end-
boundary predictions by the student and teacher models, pns�
and pnt� , respectively. Ns is the number of augmented snip-
pet copies in the batch. Besides, there exists a regression part
with �

simreg
sup given as

�
simreg
sup =

{
�diou(v

nt , vns) if σ nt + δ ≤ σ ns

0 otherwise
,

Lsimreg
sup = 1

Ns

∑

n

�
simreg
sup (vns, vnt , σ ns, σ nt ) , (11)

where δ ≥ 0 is a smallmargin between the localization uncer-
tainties of teacher and student models and we set it to 0.01.
Following Liu et al. [11], we first remove the boundaries
where the student model has small localization certainty, e.g.
σ ns ≤ 0.5. Then, the loss between the boundary predictions
of the student and the teacher models are compared using
�diou given in Eq. (8) if the teacher certainty is higher than
the student certainty value.

When we have unsupervised data as well, we follow a
similar methodology with consistency regularization, but
each batch contains both supervised and unsupervised data.
Consistency regularization is also applied to unsupervised
data predictions of teacher and student models using Eqs.
(10) and (11). Finally, the objective function is extended as
follows

L = Lsnip
sup + wclsLsimcls

sup + wregLsimreg
sup

+ wusup(wclsLsimcls
usup + wregLsimreg

usup ) , (12)

where we have used three weights, wcls , wreg and wusup ,
respectively.

Our model leverages two kinds of augmentations, weak
and strong augmentations, on supervised data aswell as unsu-
pervised data. The student model is trained using strongly
augmented data while the teacher model is trained using
weakly augmented one. In all of our experiments, weak aug-
mentation is a snippet-dropping strategy with a probability
of 5% on input videos of the teacher model, i.e., 5% of the
feature channels are dropped. For strong augmentation, we
apply both (i) the snippet-dropping strategywith a probability
of 20% and (ii) the temporal shifting operations on randomly
chosen μ of feature channels [13, 48] on input videos of the
student model.

5 Proposal inference inmultiple scales

During inference, we follow similar inference steps and use
the scorig function from our previous study [22]. We gen-
erate lists of proposals from feature maps and merge the
lists. For a feature map Pi , we first extract the candidate pro-
posal locations and then score these candidateswith a scoring
function. Later, we prune proposals via non-maximum sup-
pression (NMS) and select top M candidates.

To extract candidate locations, i.e., start and end bound-
aries, we compute two vectors for each boundary type: gs
and ge that are the boundary estimates via the boundary
regression and uncertainty branches, and g′

s and g′
e that are

the boundary estimates via the snippet-based start- and end
boundary prediction branches. Given a snippet n at loca-
tion t on a video test instance, the boundary regression
and uncertainty branches return estimate vn =(ln, rn) with
uncertainty scoresσ n = (σ n

l , σ n
r ), respectively. These values

are translated into start boundary scores using a probabil-
ity density function of N (sn, σ n

l ) within a neighborhood
[sn − τ ′, sn + τ ′] where sn = t − ln and τ ′ is a small margin.
We similarly generate end boundary scores within a neigh-
borhood [en − τ ′, en + τ ′] where en = t + rn . Translating
start and end scores for all snippets, the final start and end
score vectors, gs and ge, are built as the maximum of all start
and end scores at each location, respectively.

Concurrently, the start-end boundary heads return vectors
of predictions with scores pns and pne of a snippet n.We prune
these vectors by setting scores to zero at locations that are
not peak and having scores lower than a threshold value.
Then, we obtain two vectors of boundary estimates, g′

s and
g′
e for start and end, respectively. A value pns is a peak if
pns > pn−1

s , pns > pn+1
s and pns > thr (similarly for pne ).
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Lastly, a snippet is in start set, S, if gs(n) + g′
s(n) > 0 and

in end set, E , if ge(n) + g′
e(n) > 0, respectively. Having the

boundary start locations S and end locations E , we generate
|S| × |E | candidate proposal locations.

Given a proposal candidate m with snippets Xm =
{x1, . . . , xc, . . . , xn}where x1, xc, xn are the start, center and
end points of the proposal candidate, x1 ∈ S and xn ∈ E ,
we devise a scoring function with three components. scmaction
is the average of actionness scores of all proposal snippets.
Next, scmcenter is computed over the centerness scores of the
start, center and end snippets, where the score is high for a
proposal with low centerness scores on the boundaries and a
high centerness score in the middle. Finally, scmbound is com-
puted over the start and end scores of the start, center and
end snippets, where the score is high for a proposal with
low start-end boundary scores in the center and high bound-
ary scores in the edges. Then, we combine the scores with
equal weights as scm = scmaction + scmcenter + scmbound and the
components are given as

scmaction = 1

|Xm |
∑

x∈Xm

pxa ,

scmcenter = 4

√
pxcc (1–px1c )(1–pxnc )(pxcc / max

x∈Xm
pxc ),

scmbound = 4
√
px1s pxne (1–pxcs )(1–pxce ). (13)

After generating candidate proposals, we prune redundant
ones using non-maximum suppression (NMS) or soft-NMS
to achieve higher recall rates [2, 49].

6 Experimental evaluation

Our goal is to demonstrate the robustness and performance
of our method, i.e., TTMT, on the task of generating accurate
action proposals on two benchmark datasets, the THU-
MOS14 [26] and ActivityNet-1.3 [27]. Detailed ablation
comparisons on the THUMOS14 dataset are also presented
to analyze the model.

6.1 Datasets

THUMOS14 [26]. The dataset includes 1010 and 1574
videos of 20 action categories in the validation and test splits,
respectively. Among these videos, 200 validation videos and
212 test videos have temporal annotations of actions. Fol-
lowing the previous studies [1, 2], we conduct our training
on the validation set and performance evaluation on the test
set.
ActivityNet-1.3 [27]. The dataset consists of 19, 994 long-
term untrimmed video sequences in 200 action categories.
The dataset splits into training, validation and testing subsets

with 10, 024, 4, 926 and 5, 044 video samples, respectively.
Each video sequence contains one ormore actionswith anno-
tated segment intervals. We train our model on the training
set and evaluate on the validation set.

6.2 Visual encodings and training settings

Given an untrimmed video, it is represented as a sequence
of T ′ snippets encoded using pre-trained CNN models,
F ′ ∈ R

T ′×D′
. For the THUMOS14, we use feature encod-

ing precomputed by [20] based on TSN pre-trained model
on Kinetics [50]. We split each video sequence during infer-
ence with overlapped windows of size 128 and stride 64. For
the ActivityNet, we used the Slowfast features precomputed
by [13]. We scale the feature length to T ′ = 128 for all
videos.

Following Ji et al. [12] and Wang et al. [13], we split
the training data with available labels into labeled and unla-
beled subsets. We have three data settings represented as
TTMT@M% where M ∈ {100, 90, 60} and M% of the
training data is reserved as labeled data for supervised learn-
ing within the temporal teacher pipeline, e.g. TTMT@60%
means that our model is trained following the proposed
teacher-student framework using 60% of available data as
labeled in supervised training and 40% of data as unlabeled
in unsupervised training.We obtain predictions of the student
and teacher models concurrently. Since we have observed
that the teacher model outperforms the student model, we
report the teacher results throughout the experiments. The
predictions are from the best student and teacher models that
are the oneswith the lowest validation loss. For both datasets,
the learning rate of 10−4 is used with a weight decay of 10−9.
We use the Adam optimizer during training.

For the THUMOS experiments, we use the weight combi-
nation of wcls = 6, wreg = 0.005 in TTMT@100% training
setting (where wusup = 0), and wusup = 1 in TTMT@60%
and @90% training settings. For the ActivityNet experi-
ments, we use the weight combination of wcls = 6, wreg =
0.05 in TTMT@100% training setting (where wusup = 0),
and wusup = 1 in TTMT@60% and @90% training set-
tings. For temporal augmentation, we have experimented
with various snippet-droppingpercentages and temporal shift
parameters. Based on our empirical observation, we report
our results for the randomly chosen μ = 64 of feature chan-
nels where half of the channels move forward, and the other
half of them move backward by a shift amount of 1.

6.3 Proposal generation

Following previous works [1, 2, 4, 5], proposal generation
task is evaluated by means of Average Recall (AR) and Area
Under Curve (AUC) metrics. AR is evaluated under various
tIoU thresholds in the range [0.5, 0.95] for the ActivityNet
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Table 1 Evaluation of the
model TTMT@100% in various
Transformer settings on the
THUMOS14 dataset

#Blocks (B) AR@50 AR@100 AR@200 AR@500 AR@1000

B[5] 45.03 52.96 60.12 67.11 67.58

B[6] 44.90 52.55 59.69 66.81 67.83

B[7] 45.92 53.49 60.39 66.90 67.77

B[8] 45.97 53.12 60.03 66.75 67.53

B[9] 44.97 52.56 59.26 66.85 67.97

B[10] 45.90 52.93 59.57 66.50 67.24

B[11] 45.56 52.76 59.85 66.54 67.35

B[7 + 1] 44.20 52.04 59.15 66.28 66.99

B[7 + 2] 46.16 53.25 60.53 66.55 67.14

B[7 + 3] 45.80 53.20 59.90 66.34 67.19

B[8 + 1] 45.99 53.18 60.59 67.13 67.69

B[8 + 2] 46.47 53.94 60.47 67.24 68.17

B[8 + 3] 46.41 53.14 59.81 66.53 67.34

#Blocks (B) column specifies the number of blocks in each stage of the transformer model. The channel width
value of the first stage is set 1024 and the head value of the first stage is set 8 in transformer models. Bold
marks the highest score

and in the range [0.5, 1.0] for the THUMOS14 with a step of
0.05. TheAUC is calculated usingARunder variousAverage
Number of Proposals (AN) as AR@AN, where AN varies
from 0 to 100 for the ActivityNet and from 0 to 1000 for the
THUMOS14.

6.3.1 Proposal generation on THUMOS dataset

We first examine the pyramid setting of the core transformer
architecture to see its effect on the performance of model
TTMT@100% in the proposal generation task. Following an
incremental strategy,we experimentwith up to three stages of
a pyramid with various block numbers and report two-stage
results since we have not observed further improvement with
more stages.

Table 1 shows the AR@AN performances with AN vary-
ing from 50 to 1000 on the test set with NMS pruning
(threshold is set to 0.83). Using a single stage Transformer
network with a number of blocks B in range [1, . . . , 11],
the initial channel depth of 1024 and the head number of
8, we observe that while the model TTMT@100% with
B[8] shows the highest performance of 45.97 AR@50, the
model TTMT@100% with B[7] shows better performance
at higher AR values. We build the pyramid iteratively and
extend the models B[7] and B[8] with a second stage.
Adding a second stage to the pyramid, we observe that the
model TTMT@100% with B[7+2] over B[7] and the model
TTMT@100% with B[8+2] over B[8] gain improvement in
AR@50, and TTMT@100% with B[8+2] outperforms all
other single-stage models we have tested so far. Evaluations
on the THUMOS datasets show that the second stage of res-
olution can help to improve AR performances, as we expect
from a pyramid structure.

We also conduct a set of experiments to search for weight
combinations,wcls andwreg given inEq. (12), over themodel
TTMT@100% with B[8+2]. The plot in Fig. 3 shows that
increasingwcls in consistency regularization has a significant
effect in performance, while the variation in wreg has aminor
effect.
Comparisons with semi-supervisedmodels Selecting the best
transformer settings on TTMT@100%, we examine the per-
formances of the models TTMT@60% and TTMT@90%
with B[8] and B[8+2] where models use less supervision
due to fewer labeled data than supervised models. Reported
in Table 2, we have been outperforming [12, 13], except
[13] in AR@1000. The performance improvement at low
recall values are more important and we particularly out-
perform others in AR@50 and AR@100. For instance, we
achieve better than [13] by +1.87@60% and +4.91@90% in
AR@50, respectively. Moreover, model B[8+2] outperforms
modelB[8] inAR@50due to itsmultiscale nature at 90%and
60% settings aswell.We have observed slightly lower perfor-
mance than [13] only in AR@1000 with −1.94 @60% and
−1.35@90%. Both Ji et al. [12] and SSTAP [13] are teacher-
student frameworks, but they rest on anchor-based models as
the core architecture.While the former is built on theBSN [2]
proposal generation model, the latter is built on the BMN [4]
model. Using an anchor-free model, we achieve better per-
formance in AR metrics except AR@1000, but improving
performance at low AR values is important.
Comparisons with fully-supervised models. Similarly, we
examine the performance of our model TTMT@100% with
some related fully-supervised approaches. TTMT@100% is
trained using all the available labeled data and only the super-
vised loss components from Eq. (12), i.e., wusup = 0.0.
Table 3 reports our results, in comparison to other studies.We
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Fig. 3 Evaluation of the model
TTMT@100% with B[8+2] in
various weight combinations
{wcls ,wreg}

Table 2 Comparison of
semi-supervised baseline
models with our proposal
generation models TTMT@60%
and TTMT@90% that use less
number of labeled data on the
THUMOS14

Semi-supervised models AR@50 AR@100 AR@200 AR@500 AR@1000

Ji et al.@60% [12] 37.42 46.71 53.96 61.01 65.10

SSTAP@60% [13] 39.42 48.02 55.03 – 67.07

SSTAP@90% [13] 40.12 49.22 55.86 – 68.21

TTMT@60% B[8] 40.93 49.14 55.77 64.18 65.13

TTMT@60% B[8 + 2] 41.29 49.03 55.13 62.83 64.51

TTMT@90% B[8] 44.32 52.15 59.23 66.20 66.86

TTMT@90% B[8 + 2] 45.03 52.50 59.09 66.01 66.80

Table 3 Comparison of
fully-supervised baseline
models with our proposal
generation model TTMT on the
THUMOS14

Models AR@50 AR@100 AR@200 AR@500 AR@1000

CTAP [1] 32.49 42.61 51.97 – –

BSN [2] 37.46 46.06 53.21 60.64 64.52

MGG [5] 39.93 47.75 54.65 61.36 64.06

BMN+SNMS [4] 39.36 47.72 54.70 62.07 65.49

DBG+SNMS [3] 37.32 46.67 54.50 62.21 66.40

BC-GNN+SNMS [33] 40.50 49.60 56.33 62.80 66.57

TCANet [51] 42.05 50.48 57.13 63.61 66.88

RTD-Net [34] 41.52 49.32 56.41 62.91 –

CPN [52] 39.90 49.98 58.22 66.47 70.20

SSTAP@100% [13] 41.01 50.12 56.69 – 68.81

TTMT@100% B[8] 45.97 53.12 60.03 66.75 67.53

TTMT@100% B[8 + 2] 46.47 53.94 60.47 67.24 68.17

TTMT@90% B[8 + 2] 45.03 52.50 59.09 66.01 66.80

TTMT@60% B[8 + 2] 41.29 49.03 55.13 62.83 64.51

Best scores are in bold

have observed better results than the other fully-supervised
methods except in AR@1000. In AR@1000, the perfor-
mance of model TTMT@100% with B[8+2] is lower than
[13] by −0.64 and [52] by −2.03, respectively.

6.3.2 Proposal generation on ActivityNet dataset

On the ActivityNet dataset, we perform the same iterative
strategy to check the pyramid settings as we perform for the

THUMOS dataset. Examining model TTMT@100% with B
in range [1, . . . , 11], the initial channel depth of 1024 and
the head number of 8, we observe that B[1] and B[4] show
comparable and the best performances. Increasing pyramid
stages, we have observed no improvement thus we do not
report the performance here. Performance in AR and AUC
metrics are reported in Table 4 with comparison to some
state-of-the-art studies. Most state-of-the-art results except
models of Ji et al. [12] and SSTAP [13] are taken in fully-
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Table 4 Comparison with some
state-of-the-art fully-supervised
and semi-supervised
anchor-based models on the
ActivityNet

Models AR@1 (val) AR@100 (val) AUC (val)

CTAP [1] – 73.17 65.72

BSN [2] 32.17 74.16 66.17

MGG [5] – 74.54 66.43

BMN [4] – 75.01 67.10

DBG [3] – 76.65 68.23

BC-GNN [33] – 76.73 68.05

TCANet [51] 34.55 76.08 68.08

RTD-Net [34] 33.05 73.21 65.78

Ji et al.@60% [12] – 75.07 66.35

BMN∗@60% [4] – 74.42 66.47

SSTAP@60% [13] – 75.20 67.23

BMN∗@100% [4] – 75.01 67.10

SSTAP@100% [13] – 75.54 67.53

TTMT@60% B[4], η=1 in Eq. (9) 33.70 74.80 66.48

TTMT@100% B[1], η=1 in Eq. (9) 33.69 75.13 66.61

TTMT@60% B[4], η=tIoU in Eq. (9) 33.42 74.69 66.63

TTMT@100% B[1], η=tIoU in Eq. (9) 33.66 75.20 66.70

BMN∗ results are from Wang et al. [13]
Best scores are in bold

supervised setting where there is also no teacher-student
framework. Besides, all the models reported in Table 4
including Ji et al. [12] and SSTAP [13] are anchor-based.
Our model TTMT@100% results in better performance than
CTAP [1], BSN [2], MGG [5] and BMN [4], while both
TTMT@100% and TTMT@60% show competitive per-
formance with anchor-based semi-supervised models Ji et
al. [12], and SSTAP [13]. Both Ji et al. [12] and SSTAP [13]
are teacher-student frameworks, and they rely on anchor-
based BSN [2] and BMN [4] architectures, respectively.

We report the ActivityNet results for two settings in which
we modify the η in �unc [see Eq. (9)] and set η=tIoU or η=1.
The results are similar with minor variations.
Computational analysis With our current implementation,
we have analyzed the average network inference time using
anNvidia Tesla P100 graphics card on a sample of 600 videos
from the ActivityNet Dataset. Following Lin et al. [2, 4] and
Tan et al. [34], we exclude the computation of the backbone
feature extractor, since it is pre-computed. As mentioned in
Sect. 3.3, the depth of channels, i.e., Di , has been set to
1024 and the network inference took an average of 0.0018s
for the model TTMT@100 B[1]. In this study, we inherited
theMViTv2 implementation. The standard attention unit has
quadratic complexity in computing and memory [23]. Some
recent works aim to reduce quadratic time complexity to
make transformers more efficient with linear time [53, 54].
Although our proposed bi-directional mask strategy for for-
ward and backward computations is slightly lower, doubling

the attention units still maintains the same computational
complexity.

Number of parameters is another measure of model com-
plexity. Since our architecture includes pooling-layers within
the pooling attention unit, the total number of learnable
parameters is related to Di . If Di is set to 256, the total
number of learnable parameters for the model TTMT@100
B[1] is 4.8M. If Di is set to 1024, then the total number for
the same model is 25.7M. As we stated in Sect. 3.3, we use
Di = 1024 in all our experiments on both benchmarks. The
BMN [4] model that is integrated into SSTAP [13] includes
a 5.7M total number of learnable parameters when the chan-
nel depth is set to 256. Additionally, a Transformer-based
model RTD-Net contains a total of 32.1M learnable param-
eters. However, we refrain from making a direct comparison
because various architectures rely either on various submodel
structures at different network depths or on various hyperpa-
rameters, and the tuning of these parameters acts differently
on performance in each model.

6.4 Ablation studies on THUMOS dataset

A set of ablation studies are conducted to further investigate
the proposed teacher-student transformer network.We exam-
ine (i) the impact of teacher-student training over traditional
fully-supervised training, (ii) the impact of uni-directional
and bi-directional masks on the proposal generation task,
(iii) the impact of each component in the scoring function,
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Table 5 Evaluation of the core
model on the THUMOS14
dataset in comparison with the
model integrated into the
teacher-student framework

Models AR@50 AR@100 AR@200 AR@500 AR@1000

Masked transformer@100%B[8] 41.64 48.50 54.63 62.70 62.91

Masked transformer@100%B[8 + 2] 41.09 48.46 54.87 63.04 64.58

TTMT@100% B[8] 45.97 53.12 60.03 66.75 67.53

TTMT@100% B[8 + 2] 46.47 53.94 60.47 67.24 68.17

Bold marks the highest score
Best scores are in bold

Table 6 Evaluation of different
mask integrations within the
model TTMT@100% with
B[8 + 2] on the THUMOS14
dataset

Mask Structures AR@50 AR@100 AR@200 AR@500 AR@1000

None (original pooling unit) 45.65 52.62 59.51 66.18 66.97

Bidirectional-GL 46.28 53.17 60.00 66.51 67.22

Bidirectional-G 46.47 53.94 60.47 67.24 68.17

Bidirectional-L 45.88 53.15 59.94 66.49 67.07

Backward-G 41.89 49.63 56.25 64.76 66.28

Forward-G 44.22 51.64 58.38 65.92 67.33

Best scores are in bold

and (iv) the impact of two pathways for extracting candidate
boundaries.

6.4.1 Impact of teacher-student framework

Under the same evaluation settings, we examine the perfor-
mance of the core encoder-only Masked Transformer model
introduced in Sect. 2 without the integration into the teacher-
student framework. We have conducted the experiments for
B[8] and B[8+2], keeping the setting we have used in model
TTMT@100% (i.e., the student model in the build-in stage
has the equivalent setting to the core model as well). As
reported inTable 5,weobtain significant improvementwithin
the TTMT framework over the core Transformer model in
all AR metrics, e.g., the model TTMT@100% with B[8+ 2]
improves by 5.38 in AR@50 over B[8 + 2]. In TTMT, we
have two competing models where the teacher model (EMA
model) is trained smoothly over the student model weights,
and we apply pseudo-labeling and consistency regulariza-
tion. It shows that the integration into the teacher-student
framework helps in improving the performance of the core
model.

6.4.2 Impact of bi-directional masks

To see the impact of the masking strategy introduced
in Sect. 3.2, we examine the performance of the model
TTMT@100% with B[8+2] using different mask structures.
We explore the TTMTmodel using: None, Bidirectional-GL,
Bidirectional-G, Bidirectional-L, Backward-G and Forward-
G mask structures. The None is equivalent to using the
original pooling attention unit [24] without any mask. The
Bidirectional-G and Bidirectional-L are based on using a

bi-directional pooling attention unit with two local (L) and
two global (G) masks, respectively, in forward and back-
ward directions. While the masks in Bidirectional-G cover
the whole video, the masks in Bidirectional-L cover themax-
imum of T/2 of the neighborhood of the entities and disable
the interactions between rest of the snippets (i.e., M f

i j is

−∞ as well, if i < ( j − T /2) and Mb
i j is −∞ as well,

if i > ( j + T /2)). We also experiment on the Bidirectional-
GL that includes 4 branches in the pooling attention unit
with four masks of two local (L) and two global (G) masks
in forward and backward directions.

Given in Table 6, we have observed that the Bidirectional-
Goutperformother cases in allARmetrics, bothBidirectional-
G and Bidirectional-L are better than None case, and also G
masks result in better performance than L masks. Investigat-
ing, the uni-directional versions of the pooling attention unit,
results show that both the Bidirectional-G and Bidirectional-
L have better performance than the uni-directional Forward-
G and Backward-G versions (uni-directional versions con-
tain a global mask in a specific direction). It suggests using
bi-directionmasks over uni-directional ones for video evalua-
tionwhen the offline evaluation setting is possible.Moreover,
the results verify the benefits of the masked Transformer
models for temporal video evaluation.

6.4.3 Impact of scoring function

To see the impact of each component of the scoring function
given in Eq. (13), we examine the individual components as
well as their combinations. Table 7 presents the AR perfor-
mances and we see that the combined score has a significant
improvement over other combinations. A weighting strategy
can also be applied at this level of the inference to improve
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Table 7 Evaluation of the
proposed scoring function with
actionness scaction , centerness
sccenter and boundary scbound
components with the model
TTMT@100% with B[8 + 2] on
the THUMOS14 dataset (see
Sect. 5)

scaction sccenter scbound AR@50 AR@100 AR@200 AR@500 AR@1000

� 12.21 21.18 36.45 57.31 61.09

� 33.87 44.34 53.96 63.89 64.86

� 34.96 46.48 53.49 62.21 63.95

� � 41.16 49.45 57.01 65.92 67.34

� � 44.72 51.57 56.99 65.07 66.43

� � � 46.47 53.94 60.47 67.24 68.17

Best scores are in bold

Table 8 Evaluation of g and g′
on the proposed model
TTMT@100% (see Sect. 5)

Models AR@50 AR@100 AR@200 AR@500 AR@1000

B[8] gs , ge 45.97 52.27 58.4 63.75 63.84

B[8] g′
s , g

′
e 47.78 53.87 56.29 56.29 56.29

B[8] gs + g′
s , ge + g′

e 45.97 53.12 60.03 66.75 67.53

B[8 + 2] gs , ge 47.31 53.43 58.95 64.66 64.73

B[8 + 2] g′
s , g

′
e 48.29 53.84 56.95 56.95 56.95

B[8 + 2] gs + g′
s , ge + g′

e 46.47 53.94 60.47 67.24 68.17

Best scores are in bold

Table 9 Comparison of the detection result withmAP@tIoU in various
tIoU values [20]

Models 0.7 0.6 0.5 0.4 0.3

TURN+UNet [1] 6.3 14.1 24.5 35.3 46.3

BSN+UNet [2] 20.0 28.4 36.9 45.0 53.5

MGG+UNet [5] 21.3 29.5 37.4 46.8 53.9

BMN+UNet [4] 20.5 29.7 38.8 47.4 56.0

DBG+UNet [3] 21.7 30.2 39.8 49.4 57.8

BC-GNN+UNet [33] 23.1 31.2 40.4 49.1 57.1

G-TAD+UNet [20] 23.4 30.8 40.2 47.6 54.5

Ji et al. [12] @100%+UNet 21.9 32.2 41.7 51.2 57.9

SSTAP@100%+UNet [13] 22.8 32.8 42.3 51.5 58.4

TTMT@100% B[10]+UNet 24.2 34.7 45.2 52.6 60.0

TTMT@100% B[8]+UNet 22.6 32.4 42.7 50.8 58.3

TTMT@100% B[8 + 2]+UNet 23.3 33.0 43.5 51.9 60.2

Our proposals are trained using the visual encoding and the video-level
classification results from the G-TAD
Best scores are in bold

performance, but we have here simply added the computed
scores and obtained convincing results.

As can be seen from the combined results, each compo-
nent of the scoring function contributes effectively to the
overall score. This emphasizes that our snippet-based struc-
ture requires a well-designed scoring function with powerful
components and thus will perform better. The function we
introduce here gives good results on our snippet-based pre-
diction structure, removing some parts will cause a decrease
in performance.Moreover, a better designed scoring function

can further improve performance, while a poorly designed
one can degrade it.

6.4.4 Impact of branches on boundaries

As we discuss in Sect. 5, we compute the boundaries of can-
didate proposals via two pathways, g and g′, respectively.
We conduct a set of experiments to see the impact of each
pathway on the boundary predictions and report the inference
performances in Table 8. We observe that boundary estima-
tion via g′ has benefits over g in AR@50 andAR@100while
g results in better inference in higher AR metrics.

6.5 Temporal action localization

Toexamine the performance for action detection,MeanAver-
age Precision (mAP) is calculated with tIoU threshold values
in the range [0.3, 0.7] with a step of 0.1 for the THUMOS14
dataset. Following other two-stage detection pipelines [2, 4],
wefirst create the top200proposals usingourmodel onTHU-
MOS14, and we then use UntrimmedNet (UNet) model [18]
to get video-level classification results and keep the top-2
class for each video. Finally, we compute a detection score
for each proposal using the proposal score by our TTMT
network and the classification score by UNet. In particular,
the final scores for the top-2 action categories of each pro-
posal are calculated by a simplemultiplication of the proposal
scores (see Eq.(13)) and UNet scores. Comparative results
are shown in Table 9. Using the same classifier, i.e., UNet,
we can observe that our TTMT@100% model outperforms
many state-of-the-art anchor-based architectures (e.g. [2, 5,
13]) in high tIoU settings.

123



   36 Page 14 of 15 S. Pehlivan et al.

7 Conclusion

In this paper, we incorporate a new anchor-free proposal
generation model into a teacher-student framework for a
semi-supervised two-stage detection pipeline. We apply the
pseudo-labeling techniques for classification and regres-
sion to improve generated proposals and integrate relative
teacher-student uncertainties for selecting effective pseudo-
labels in the proposed anchor-free model.We further provide
a detailed evaluation of the Masked Transformer net-
work within the teacher-student framework. The proposed
Transformer-based model is designed for modeling temporal
ordering with a lighter structure compared to anchor-based
alternatives and the architecture can be extended with many
local predictors by just simply integrating them into the pyra-
mid network branch.

We show how our transformer-based anchor-free SSL
method can achieve comparable performance with the state-
of-the-art anchor-based methods, besides many architectural
benefits. We find that our model benefits from uncertainty
estimations and that a good scoring function for merging
local estimates is necessary for a good performance.
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