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Abstract
Recent 3D registrationmethods aremostly learning-based that either find correspondences in feature space andmatch them, or
directly estimate the registration transformation from the given point cloud features. Therefore, these feature-based methods
have difficulties with generalizing onto point clouds that differ substantially from their training data. This issue is not so
apparent because of the problematic benchmark definitions that cannot provide any in-depth analysis and contain a bias toward
similar data. Therefore, we propose a methodology to create a 3D registration benchmark, given a point cloud dataset, that
provides amore informative evaluation of amethodw.r.t. other benchmarks.Using thismethodology,we create a novel FAUST-
partial (FP) benchmark, based on the FAUSTdataset, with several difficulty levels. The FP benchmark addresses the limitations
of the current benchmarks: lack of data and parameter range variability, and allows to evaluate the strengths and weaknesses of
a 3D registrationmethodw.r.t. a single registration parameter. Using the new FP benchmark, we provide a thorough analysis of
the current state-of-the-art methods and observe that the current method still struggle to generalize onto severely different out-
of-sample data. Therefore, we propose a simple featureless traditional 3D registration baseline method based on the weighted
cross-correlation between two given point clouds. Our method achieves strong results on current benchmarking datasets,
outperforming most deep learning methods. Our source code is available on github.com/DavidBoja/exhaustive-grid-search.

Keywords Featureless 3D registration · Baseline · Benchmark creation methodology · Benchmark difficulty assessment

1 Introduction

3D point cloud registration is the task of finding the rotation
and translation that aligns the source point cloud to the par-
tially overlapping target point cloud. It arises as a subtask
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in many different computer vision applications such as: 3D
reconstruction [1], object recognition and categorization [2],
shape retrieval [3], robot navigation [4] and is still an active
research area [5, 6].

The typical registration pipeline consists of several steps:
detecting features by finding salient points or patches of the
point clouds, extracting features by describing those detected
points or patches,matching features byfinding the correspon-
dences between the features of the point clouds, removing
outlier correspondences by satisfying a specific criteria, and
estimating the transformation by using only confident corre-
spondences to find the alignment with the highest inlier ratio.
These steps can be learning-based or handcrafted as in the
traditional approaches.

The most recent advances have been inspired by the
successes of deep learning and the development of novel
architectures convenient for point cloud processing, such as
PointNet [7] and KPConv [8]. Most of the learning-based
approaches follow the typical pipeline by first extract-
ing point cloud features [9–12] and then either applying
RANSAC for creating feature-based matches [13–15] and
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filtering out the bad matches [16–18] or learning the whole
registration pipeline end-to-end [19–21]. These methods
achieve remarkable performance on public benchmarks [13,
22–24], even on very difficult examples with an overlap
smaller than 30% [14].

A big limitation, however, of the state-of-the-art methods,
which is typical for deep-learning-based methods [25–27],
is that the model performance drops on benchmark data that
differ from their training data. Most recent methods answer
the generalizability question by training on the 3DMatch
dataset [13] and evaluating their generalization capabilities
on the KITTI [22] or ETH [23] benchmarks. As we argue in
Sect. 4.1, however, these benchmark datasets lack data vari-
ability, where the datasets are biased toward similar data onto
which the feature extraction pipeline can focus on. Addition-
ally, as we show in Sect. 4.1, the current benchmarks have
a restricted range of the registration parameters (rotation,
translation and overlap), therefore providing less informa-
tion about the actual quality of a method. Moreover, none of
the benchmarks provide the option to assess the quality and
robustness of a 3D registration method w.r.t. a single regis-
tration parameter. Therefore, none of the current benchmarks
canprovide an adequate in-depth analysis on the performance
and generalization of a 3D registration method.

To address these limitations, we propose a methodology
for creating a 3D registration benchmark, starting from a
point cloud dataset. The methodology improves on the cur-
rent benchmarks by allowing an in-depth analysis toward
concrete registration parameters and providing a bigger range
of variability in the registration parameters. We provide
the methodology steps by creating a new version of the
FAUST-partial (FP) benchmark [28] based on the FAUST
[29] dataset, but the process can be extended to any point
cloud dataset, including the already mentioned 3DMatch,
KITTI and ETH benchmark datasets. By using the human
body point clouds from the FAUST dataset, however, we
address the bias in the current benchmarks which are mostly
comprised of similar objects, providing a substantially differ-
ent point cloud distribution than the current datasets.We start
by creating 3 different settings for the FP benchmark, where
each setting changes the difficulty (easy, medium or hard)
for one of the 3 following parameters: rotation range, trans-
lation range, or overlap range; whilst fixing the remaining
two. By fixing two out of three registration parameters, we
can isolate the analysis of the quality of a particular 3D reg-
istration method to a single parameter, which is not possible
with the current benchmarks. The three difficulty levels of the
newly created benchmark datasets provide a bigger variety
of parameter ranges for all the three registration parameters,
which allows for determining the robustness of a method
toward that parameter. We compare in detail the newly cre-
ated benchmark with the existing benchmarks and conclude
that the FP benchmark provides a much more detailed analy-

sis, allowing to answer questions related to the generalization
onto different point cloud distributions and different registra-
tion parameters. This comparison additionally provides us
with a general methodology for assessing the difficulty of a
3D registration benchmark based on the registration param-
eter range.

Using the newly created FP benchmark, we carry out a
thorough analysis of the state-of-the-art methods in Sect. 4
and address the research gap for a more thorough and recent
survey (evaluation) of 3D registration methods. Our analysis
suggests that most methods are very sensitive to an overlap
decrease, somewhat sensitive to a larger rotation range, and
not sensitive at all to a larger translation range.

To address the generalization downside of the current
feature-based methods, we further propose a straightforward
featureless traditional 3D registration method to use as a
baseline for comparing with the state-of-the-art methods.We
extend the work from [28], that is based on a grid search
of the quantized rotation SO(3) and translation R

3 spaces.
The best transformation candidate is selected as the solution
with the maximum cross-correlation between the voxelized
source and target point clouds. Thus, we name the method
exhaustive grid search (EGS). The EGS shows competitive
performance, outperformingmost traditional and deep learn-
ing methods, as well as achieving state-of-the-art results on
the ETH benchmark and several FP benchmarks. The results
suggest that the learning-based methods, although remark-
able on many public benchmarks, are still not robust enough
to be applied to any 3D data. On the other hand, our EGS
method performs consistently, regardless of the data distri-
bution and regardless of its parameter choices, providing a
robust method with higher applicability (see Sect. 5.6).
In summary, we:

• Propose a new 3D registrationmethodwhich performs an
exhaustive search of the rotation and translation spaces
and selects the transformation candidate based on the
maximum weighted cross-correlation between the vox-
elized point clouds;

• Provide a methodology to create a 3D registration bench-
mark, starting from an existing 3D point cloud dataset,
that provides amore informative evaluationw.r.t. existing
benchmarks and allows to asses the difficulty of existing
3D registration benchmarks;

• Using the newly proposedmethodology, generate a novel
FAUST-partial (FP) 3D registration benchmark, which
addresses the bias toward similar data in the current
benchmarks, provides greater parameter range variabil-
ity than observed in the current benchmarks, and allows
to evaluate the strengths and weaknesses of a 3D regis-
tration method w.r.t. a single registration parameter;

• Thoroughly evaluate the generalization performance of
a great number of state-of-the-art methods under a com-
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mon set of 3D registration metrics and benchmarks and
analyze in detail the influence of three registration param-
eters;

2 Related work

We divide the related works into traditional and deep learn-
ing methods. Along with the standard optimization-based
and handcrafted feature-based traditional methods, we addi-
tionally overview the cross-correlation and Fourier-based
methods, since the EGS uses the cross-correlation computed
in the Fourier domain as a guiding signal for the registra-
tion. Between the deep learning methods, we distinguish the
feature learning, robust estimation learning and end-to-end
learning methods.

2.1 Traditional methods

Optimization-based The most popular traditional registra-
tion method is the iterative closest point (ICP) algorithm.
The algorithm selects a subset of points as correspondences,
calculates the optimal transformation between the clouds
using SVD, and iterates until convergence. The original
implementations used point-to-point [30] and point-to-plane
[31] distances for finding the tentative correspondences, but
many other strategies have been proposed [32–35]. GO-ICP
[33] proposes a branch-and-bound scheme and claims the
global optimality of the algorithm. The 4-point congruent
sets (4PCS) algorithm [36] and its variants [37, 38] are based
on the idea that there exist sets of four coplanar points whose
alignment corresponds to the alignment of the point clouds.
To select the correspondences, RANSAC is used, and ICP is
applied for refinement.
Cross-correlation based We single out related methods
that use the cross-correlation to find the 3D alignment. [39]
determines the 3D rotation using a sensor (accelerometer or
magnetometer) attached to the 3D scanner, followed by a
3D cross-correlation between the voxelized point clouds to
determine the translation. A group of works [40–42] uses
the 2D cross-correlation between the reprojected 3D data to
a 2D space to either determine the correspondences or the
final registration.

Differently, our approach uses the 3D cross-correlation
to determine both the 3D rotation and translation in order
to align the point clouds. Additionally, our method does not
mix 2D and 3D information, but rather uses only the 3D
information of the given point clouds to align them. To the
best of our knowledge, there are no works that explicitly use
the 3D cross-correlation to determine both the rotation and
translation to register two point clouds.
Fourier-based We overview related works that use the
Fourier domain to compute the 3D registration between two

point clouds. [43] uses the Fourier domain to align slices (2D
images) of 3D brain MRI volumes by searching for only a
single rotation angle along the Z-axis that obtains the biggest
cross-correlation. A set of works [44–49] find the 3D align-
ment completely in the frequency domain by leveraging the
fact that the magnitude of the Fourier transform of the dis-
placed voxelized point cloud decouples the rotational from
the translational component of the 3D alignment. The trans-
lational component is then found using the phase correlation
or phase matching.
Differently, our method is 3D-based (not 2D) and does not
find the rotation in the Fourier domain. Instead, we find the
rotation by sampling the SO(3) space, which increases the
rotation estimation robustness since the Fourier rotation the-
orems used in these works are only valid in the continuous
case; introducing numerical issues if discretized. Moreover,
these methods perform significantly worse when the point
clouds do not (nearly) completely overlap.
Handcrafted feature-based These methods first extract
potential correspondences between the point clouds using
the computed features and then find the transformation using
RANSAC. Similar to the image keypoint-based methods
such as SIFT [50], 3D feature-based methods focus on
keypoint detection [51–53] and their distinctive description
[54–62]. Fast global registration [63] refines the initial cor-
respondences computed using the FPFH [55] descriptor and
optimizes the Black-Rangarajan duality between robust esti-
mation and line processes to estimate the 3D alignment.

Differently, ourmethod does not require any features, key-
points, or their description to estimate the transformation.
Instead, it exhaustively searches the rotation and translation
spaces, avoiding the common pitfalls of the feature-based
methods, and increasing its generalization capabilities.

2.2 Deep learningmethods

Feature learning Instead of handcrafting distinctive fea-
tures, keypoint detection and description can be learned.
3DMatch [13] transforms patches into volumetric voxel grids
of truncated distance function (TDF) values and processes
them through a 3D convolutional network [64, 65] to output
local descriptors. Followed by 3DMatch and the popularity
of deep learning, many other works propose to learn keypoint
detection [14, 15, 66, 67] and description [27, 68–75]. Most
of these works are learned by optimizing some version of the
contrastive loss [76, 77] between the descriptors of matching
and non-matching points and then by applying RANSAC to
select the final correspondences and find the transformation.
Robust estimation learning Instead of creating even better
features for the process of registration, these methods focus
on removing outliers from a given set of features or corre-
spondences, prior to estimating the rotation with RANSAC,
GC-RANSAC [78] or CG-SAC [79]. [80] classifies the given
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correspondences into inliers or outliers and computes the
transformation from the given inliers. [17] uses triplets of
correspondences to cast a vote in the 6D Hough space to
vote for a particular transformation. [16] selects the trans-
formation with the most inliers from a list of transformation
estimations computed by using the confidence of each given
correspondence. [81] removes outliers fromgiven correspon-
dences by using a two-stage branch-and-bound algorithm
to find a simpler (1+2) and (2+1) degrees of freedom for
the rotation and translation, respectively. [82] finds con-
sistent correspondences between two sets of features by
building the adjacency matrix of a graph whose nodes repre-
sent the potential correspondences and weights on the links
the pairwise agreements between the potential correspon-
dences. [18] uses non-local channel spatial attention layers
to obtain more reliable contextual information and uses the
work from [82] to find consistent correspondences. [83] pro-
poses a decoupled approach to solve in cascade for the scale,
rotation and translation of a truncated least squares registra-
tion formulation using given correspondences. [84] considers
a second-order spatial compatibility measure to compute the
similarity between correspondences. From these, they find
reliable initial correspondences that form consensus sets,
based on which a rigid transformation can be found. [85]
jointly learns the FCGF [68] features along with the outlier
removal. [86] learns a matching matrix to match DGCNN
[87] rectified virtual point features, after which they use Pro-
crustes to solve for the transformation matrix.
End-to-end registration learning There are many recent
approaches that learn not only feature description, but also the
subsequent matching step, thus learning end-to-end. The first
group of thesemethods [9–12, 88–91], pioneered by the deep
closest point [9], follow the ICP idea by (iteratively) estab-
lishing soft correspondences and then applying weighted
SVD to obtain the transformations. The second group of
methods [19–21, 92, 93], represented by PointNetLK [19],
use the PointNet architecture [7] or similar global descrip-
tion strategy to iteratively regress the transformation based on
the global feature vectors. The third group of methods [94–
97] use mechanisms of self-attention and cross-attention to
densely back-propagate the encoded superpoint features and
choose thefinal transformation fromcandidates of superpoint
matches.

2.3 Generalization to other datasets

Several recent methods [16, 27, 71, 72] attempt to generalize
to datasets other than training. All of these methods demon-
strate a significant performance retention on novel datasets
when, for example, evaluating 3DMatch-trained models on
KITTI [16, 27, 71]. However, most of the results [15, 27,
71, 72] only show that the computed descriptors have a high
registration recall by presenting the feature-matching-recall

metric, never actually evaluating the quality of the 3D reg-
istration. As will be seen, many methods still struggle to
generalize when encountered with completely unseen data.

2.4 3D registration surveys

Recent survey papers on3Dpoint cloud registration [98–102]
provide a grouping of the traditional and learning methods,
a detailed overview of the key elements of each method,
the current benchmarks used in the literature and the differ-
ent evaluation metrics used. Additionally these papers also
present the results for some of the methods. However, most
of the results have been gathered from previous papers. Since
there are multiple benchmarks with multiple metrics, the
gathered results are mostly comprised of only a few meth-
ods. Therefore, the current literature is lacking of an in-depth
analysis on the results of the current state-of-the-art 3D reg-
istration methods. In order to work toward the goal of a
fully robust and generalizable method, a thorough compari-
son is necessary. We provide a detailed analysis of 33 of the
current state-of-the-art methods on three established bench-
marks (3DMatch, KITTI and ETH) and our newly created FP
benchmark. For comparison, the survey papers mention only
10 (or less depending on the paper) out of the 33 methods we
compare.

3 Method description

Let X ∈ RN×3 be the source point cloud and Y ∈ RM×3 the
target point cloud. The goal of rigid 3D registration is to find
the homogeneous transformation T ∈ SE(3) that best aligns
X to Y. The rigid transformation T is composed of a rotation
component R ∈ SO(3) and a translation component t ∈ R3.

To find the correct rotation and translation, we perform an
exhaustive search over the parametrization of the rotation and
translation spaces (also called the search space). We divide
our method into 3 consecutive steps: pre-processing, cross-
correlation and estimation, as shown in Fig. 1. Optionally,
an additional refinement step can be added to further refine
the results. In this section, we first introduce the search space
parametrization and the general pipeline, whereas in Sect. 5
wediscuss the results of the different tested strategies for each
of the 4 steps. The final estimation of the rigid transformation
is provided in Eq.12.
Search space parametrization To parametrize the SO(3)
space, we first create a geodesic polyhedron {3, 5+}4,0 com-
prised of 162 vertices [103], each lying on a unit 2-sphere
equidistant with its neighbors. These vertices are used as a
uniform sample of S2. Next, for each point on the 2-sphere,
we uniformly sample S

1 using an angle step S. Each com-
bination of a point on S

2 (denoted as axis) and point on
S
1 (denoted as angle) creates an angle-axis representation
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Fig. 1 The proposed pipeline. Themethod is divided into 3 consecutive
steps: pre-processing, cross-correlation and estimation, after which an
optional refinement step can be added. The pre-processing step prepares
the initial data and outputs N voxelized source volumes and one target
volume. The cross-correlation step performs the 3D cross-correlation
over each source volume and the target volume. The cross-correlation
volumes CCi (x, y, z) are heatmaps that should indicate higher (indi-

cated in yellow on the volumes) or lower (indicated with purple on
the volumes) matching between the source Xi and target Y volumes at
the corresponding voxels. White spaces are present because the cross-
correlations values are clipped so only the upper cross-correlation range
is visible. Finally, the estimation step finds the solution from the out-
put volumes by using the maximal cross-correlation from all the given
volumes

of a rotation. This results in N = 162 × (360/S) non-
unique rotations that can be converted to rotation matrices
Ri , i = 1, . . . , N . The non-uniqueness of the rotations fol-
lows from having opposite axes present in the sampling of
S
2. We remove these duplicate rotation matrices by itera-

tively rejecting the ones where the norm of their difference
equals 0. Note that this step is only computed once, prior to
any registration.

The translation space is inherently parameterized by the
voxelization process of the given point clouds. The possible
translations hence correspond to the centers of the source
point cloud voxels and are therefore dependent on the vox-
elization resolution (V R). More details are provided in the
next few sections.

Pre-processing First, we center and rotate the source point
cloud X around the origin using the N precomputed rotation
matrices Ri :

Xi = Ri (X − tcenterX ) (1)

tcenterX = 1

N

N∑

i=1

X[i, :] ∈ R
3 (2)

obtaining Xi , i = 1, . . . , N , where [:, :] indicates the row
and column-wise indexing.

Next, wemake all the point clouds coordinates positive by
translating their minimal bounding box point into the origin:

Xi = Ri (X − tcenterX ) + tpositX (3)
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Y = Y + tpositY (4)

where

tpositX = −
⎡

⎣
minX[:, 1]
minX[:, 2]
minX[:, 3]

⎤

⎦ tpositY = −
⎡

⎣
min Y[:, 1]
min Y[:, 2]
min Y[:, 3]

⎤

⎦ ∈ R
3

(5)

and min indicates the minimal element of an array. This step
is performed to facilitate the voxelization process.

We then voxelize each sourceXi and target Y point clouds
with a voxel resolution of V R cm.We experimentwith differ-
ent voxelization resolutions and strategies and discuss them
in more depth in Sect. 5. Generally, voxelizing a point cloud
results in a 3D grid volume where a value of 1 represents that
a point from the point cloud is present in that specific grid
box (voxel), whereas a value of 0 represents that there are
no points from the point cloud present in that specific grid
box (voxel). Instead of having a 3D grid with ones and zeros,
we set a value of PV (positive voxel) for the filled voxels
and a value of NV (negative voxel) for the empty ones. This
results in N voxelized source volumes Xi and one voxelized
target volume Y:

Xi (x, y, z), Y(x, y, z) =
{
PV , if voxel (x, y, z)filled

NV , if voxel (x, y, z)empty
(6)

Cross-correlation For each source volume Xi , we perform
a 3D cross-correlation with the target volume Y. Essen-
tially, the central voxel of the target volume is translated over
each voxel of the source volume where the cross-correlation
can be computed by multiplying the overlying voxel val-
ues of the two volumes and summing them together. This
results in N cross-correlation volumes CCi (x, y, z) with
the same 3 dimensions as the source volume. The volumes
can be thought of as discrete heatmaps where higher val-
ues should represent higher degrees of matching between
the voxelized point clouds. Prior to the cross-correlation,
each source volume is padded in order for the target vol-
ume to slide all over the source volume. We mark with P =
[nleft, nright, nbottom, ntop, nfront, nback] ∈ R

6 the padding
applied to each source volumeXi , where the values represent
the number of voxels padded to the left, right, bottom, top,
front and back of the volume, respectively. We experiment
with different padding sizes and choices in Sect. 5. We make
use of the Fourier domain to accelerate the computation of the
cross-correlation. Both volumes are first transformed into the
Fourier space using the FFT algorithm [104], after which the
cross-correlation simplifies to a matrix multiplication [105].
The output is then transformed back with an inverse FFT.
More details are given in Sect. 5.6.

Estimation We estimate the rotation matrix R̂ that aligns
(rotation-wise) X to Y using one of the N precomputed rota-
tion matrices Ri . We select the matrix Ri that corresponds
to Xi with the maximal cross-correlation value from the
CCi (x, y, z) volumes. More concretely, we use the index

i∗ = argmax
i

CCi (x, y, z) (7)

to select the estimated rotation matrix R̂ = Ri∗ . To estimate
the translation, we find the voxel with the maximal cross-
correlation value from CCi∗ . Then, we translate the central
voxel of the target volume Y to the just found voxel of the
CCi∗ volume. Since the CCi∗ volume corresponds to the
source Xi∗ volume, we essentially translate the central voxel
of the target volume to the voxel of the source volume with
the maximal cross-correlation. More concretely, we find the
index of the voxel with the maximal cross-correlation value
with

(x∗, y∗, z∗) = argmax
x,y,z

CCi∗(x, y, z). (8)

Then, to translate the central voxel of the target volume to it,
we use the translation:

test =
(

− Ycv︸︷︷︸
target
volume
central
voxel

︸ ︷︷ ︸
move to
origin

−
⎡

⎣
P[0]
P[2]
P[4]

⎤

⎦

︸ ︷︷ ︸
padding

displacement

+
⎡

⎣
x∗
y∗
z∗

⎤

⎦

︸ ︷︷ ︸
max cc
voxel

+
⎡

⎣
0.5
0.5
0.5

⎤

⎦

︸ ︷︷ ︸
move to
center of
voxel︸ ︷︷ ︸

move to (x∗,y∗,z∗)

)
× VR

(9)

where each value is multiplied by the voxel resolution VR to
transform from voxel indices to Euclidean coordinates. The
central voxel of the target volume can be computed as:

Ycv =
⎡

⎣
�Vx/2�
�Vy/2�
�Vz/2�

⎤

⎦ (10)

where Vx , Vy, Vz are the number of voxels of Y along the 3
dimensions. Intuitively, the central voxel along a dimension
is the middle voxel if the number of voxels is odd, and one
on the left of the "middle point" if it’s even.

Following all of the steps above, the rigid registration can
be summarized as:

(
R̂

(
X − tcenterX

))
+ tpositX ∼

(
Y + tpositY

)
− test (11)

where ∼ indicates that the left and right parts are aligned.
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Since the final rigid transformation needs to align X to Y,
Equation (11) can be rewritten as:

(
R̂

(
X − tcenterX

))
+ tpositX + test − tpositY ∼ Y (12)

Therefore, the final rotation and translation estimations
are:

R̂ = Ri∗ , t̂ = −R̂ tcenterX + tpositX + test − tpositY (13)

Refinement Since the rotation and translation spaces are
discretized, the initial alignment can be further refined. We
derive the numerical and analytical rotation and translation
upper boundsRBandTB in AppendixA. It can be concluded
from these bounds that the rough initial alignment provides a
good initialization for a fine registration algorithm.We exper-
imentwith different refining strategies in Sect. 5.4. In the final
case, we use generalized ICP [106] to refine the initial solu-
tion since it provided slightly better results. We run i = 500
iterations with an adaptive distance threshold based on the
q-th quantile of the nearest neighbor distances between the
two point clouds. Using an adaptive threshold provides more
robustness to the method, since the point clouds from differ-
ent benchmarks have very different resolutions. As we show
in Table 8, however, the final results vary only slightly for
different threshold values of i and q, which make the EGS
independent of the refinement strategy.

4 Experiments

We evaluate the traditional and deep learning state-of-the-
art methods trained on 3DMatch [13] and compare them
to the EGS method. We use three established benchmarks:
3DMatch [13], ETH [23] and KITTI [22]; and create a novel
FAUST-partial benchmark based on the FAUST dataset [29].
These benchmarks test the generalization abilities in terms
of different sensormodalities (RGB-D, laser scanner), differ-
ent environments (indoor, outdoor), resolution (6mm to 5cm)
and completely different structure (from indoor objects to
human bodies). Implementation details for all the compared
methods are listed in Sect. 6.

4.1 Benchmarks

3DMatch The 3DMatch [13] benchmark dataset contains 46
training, 8 validation and 8 test indoor scenes. Each scene is
fragmented into multiple 3D scans that need to be aligned.
The scenes represent indoor scans of various rooms such as
offices, hotel rooms, kitchens, laboratories, etc. The bench-
markhas been createdby joining several existingbenchmarks
into one.Hence, it shows thebiggest variability in termsof the

rotation, translation and overlap parameters. Following stan-
dard practice [12–14, 94, 95], we evaluate our EGS method
on the 8 test scenes and align all fragments with a minimum
overlap of 30%, including the neighboring benchmark pairs
that the original benchmark excluded.
KITTI The KITTI [22] benchmark dataset is comprised of
11 sequences of outdoor driving scenarios obtained by a lidar
scanner. Compared to 3DMatch, the fragments are much
larger, have lower resolution and a different structure. Fol-
lowing common practice [14, 14, 15, 68, 71, 95], we evaluate
our EGS method on scenes 8 to 10 using pairs which are at
least 10m away from each other. The ground-truth transfor-
mation matrices are refined using ICP [14, 15, 27, 95] since
the ground-truth alignment parameters are obtained using the
imperfect GPS coordinates of the moving vehicle.
ETH The ETH [23] benchmark dataset consists of 4
scenesmostly comprised of outdoor vegetation. Compared to
3DMatch, the fragments are larger, have lower resolution and
have more complex geometries. Following common practice
[71, 72, 108],weuse only point cloudswith anoverlap greater
than 30%.
FAUST-partial The state-of-the-art learning methods that
train on the 3DMatch dataset usually test their generalization
capabilities [12, 16, 71, 72, 95, 108] on the KITTI or ETH
benchmarks. We argue that the data from these benchmarks
are comprised of many similar flat objects, such as walls,
tables or floors that make the generalization process easier
for a method. When encountered with completely unseen
data however (such as 3D human scans), the methods have
difficulty generalizing. Additionally, as we show in Figs. 3,
4 and 5, the existing benchmarks lack parameter range vari-
ability and do not provide any insights into the robustness of
a method w.r.t. a single registration parameter.

To improve the generalization testing of a 3D registration
method, we propose a methodology for creating a novel 3D
registration benchmark, starting from a point cloud dataset.
The methodology improves on the current benchmarks by
providing larger 3D registration parameter variability, and
more informative evaluations. We indicate the methodology
steps by creating a novel FAUST-partial benchmark based on
the FAUST [29] dataset, but the process can be extended to
any point cloud dataset, including the already seen 3DMatch,
KITTI and ETH benchmark datasets.

The FAUST [29] dataset is comprised of 100 human
body scans. We divide each scan into multiple overlapping
fragments that need to be aligned. The steps to create the frag-
ments are illustrated in Fig. 2.We begin bymoving each scan
so the xz-plane acts as the floor. We do this by moving the
minimal bounding box point of the scan to the origin. Next,
we create a regular icosahedron centered at the center ofmass
of each scan. A regular icosahedron contains 12 points that
lie on a unit sphere around its center, each equidistant from
its neighbors. We scale the icosahedron to a 1.5-m-radius
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Fig. 2 FAUST-partial benchmark generation. For a given scan from the
FAUST [29] dataset, we translate its minimal bounding box point to the
origin. Next, we surround the scan with a regular icosahedron. Each
point of the icosahedron acts as a viewpoint used to create a partial scan

using the hidden point removal algorithm [107]. For two partial scans
with a desired overlap, we use a random rotation and translation from
the desired ranges to obtain a registration pair for the FAUST-partial
benchmark

Table 1 The 9 FAUST-partial
benchmark dataset versions Easy Medium Hard

va
ry

ro
ta
ti
on

F
P
–R

rotation [−15◦, 15◦] [−45◦,−15◦〉 ∪ 〈15◦, 45◦] [−180◦,−45◦〉 ∪ 〈45◦, 180◦]
translation [0m, 1m]
overlap [60%, 100%]
dataset name FP–R–E FP–R–M FP–R–H

va
ry

tr
an

sl
at
io
n

F
P
–T

rotation [−15◦, 15◦]
translation [0m, 1m] 〈1m, 5m] 〈5m, 10m]
overlap [60%, 100%]
dataset name FP–T–E FP–T–M FP–T–H

va
ry

ov
er
la
p

F
P
–O

rotation [−15◦, 15◦]
translation [0m, 1m]
overlap [60%, 100%] [30%, 60%〉 [10%, 30%〉
dataset name FP–O–E FP–O–M FP–O–H

From left to right, we increase the difficulty of the parameter we vary, and keep the other two fixed to the easy
difficulty

sphere so each scan fits inside it. The icosahedron points are
used as the viewpoints for creating the partial views (frag-
ments). For each viewpoint, we use the hidden point removal
[107] algorithm to create a partial point cloud. Finally, for
each two pairs of viewpoints (i, j) that satisfy a desired over-
lap criteria (discussed below), we sample a random rotation
using 3 Euler angles and a random translation for the x, y and
z axes, respectively. We rotate and translate the partial point
cloud obtained from viewpoint i to finally get the benchmark
registration pair (i, j).

To achieve the variability w.r.t. the registration parameters
and have a clear distinction between datasets, we create 3 dif-
ferent benchmark settings. Each setting changes one of the
3 following parameters: rotation range, translation range or
overlap range,whilst fixing the remaining two. For the chang-
ing parameter, we distinguish 3 levels of difficulty, namely an
easy, medium and hard difficulty. Therefore, we obtain 9 dif-
ferent benchmarks; 3 for each setting. Table 1 summarizes the
different settings and the attributed acronyms to each of the
benchmark datasets for easier reference. As can be seen, the

datasets are denominated as FP–S–D, where S ∈ {R, T , O}
indicates the setting (R for rotation, T for translation and O
for overlap), whilst D ∈ {E, M, H} indicates the difficulty
level (E for easy, M for medium and H for hard). For every
benchmark instance (for example FP–R–E), the difficulty of
the setting S (the rotation R) is determined by the chosen
difficulty level D (the difficulty E) whilst the difficulty of
the other two parameters (translation T and overlap O in this
case) are kept at their easy difficulty. Therefore, the triplet of
datasets FP–R–E, FP–R–M and FP–R–H, for example, indi-
cate an increasing difficulty in the rotation range and a fixed
easy difficulty for the remaining translation T and overlap
O ranges. By fixing two out of three registration parameters,
we can isolate the analysis of the quality of a particular 3D
registration method to a single parameter and determine its
robustness regarding that parameter. Even though thedatasets
FP–R–E, FP–T–E and FP–O–E have all the same ranges for
all the three parameters (since the difficulty for all the param-
eters is easy), the datasets are not equal since we sample the
rotations and translations for each dataset independently. We
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choose to keep all the three seemingly equal datasets in order
to showcase the results for different samplings of the same
dataset.

To create the three difficulties for each registration param-
eter, we start by determining the theoretical bounds for each
registration parameter: −180◦ to 180◦ for the rotation, 0 m
for the lower translation bound, and 0% to 100% for the
overlap. The goal is to find three non-overlapping param-
eter ranges within those bounds, with increasing difficulty
of alignment. To create sensible bounds for each difficulty,
we observe the parameter ranges from existing benchmarks.
We plot the kernel density plot (KDE) [109, 110], along
with its carpet plot, for each parameter in Figs. 3, 4 and 5.
The KDE approximates the underlying continuous proba-
bility density function generated by the data, by smoothing
the binned observation frequencies with a Gaussian kernel.
The carpet plot addresses the smoothing pitfalls of the KDE
(continuity of the curve where there is no data for example)
and shows a histogram-like plot of observed data values. For
easier comparison between benchmarks,we additionally nor-
malize each KDE using its maximal binned frequency so that
each curve displays a maximal probability density of 1.

To determine the easy, medium and hard rotation bounds,
therefore, we observe Fig. 3, where we plot the Euler angle
ranges that rotate around the x, y and z axes, respectively. As
can be seen, the angles around the x and y axes for the KITTI
and ETH benchmarks are around [−10◦, 10◦]. Addition-
ally, the angles around the z axis for the KITTI benchmark
are around [−20◦, 20◦]. Since these are small rotations, we
choose a similar range, [−15◦, 15◦], for our easy rotation
range. Since we do not want the parameter ranges for the dif-
ferent difficulties to overlap, the lower bound for the medium
rotation range therefore needs to be 15◦. By looking at the
3DMatch Euler angle distributions for the three axes, we
notice that the range increases to 40◦. Therefore, we create
themedium range from [−45◦,−15◦〉 and 〈15◦, 45◦]. Again,
since we do not overlap the parameter ranges for the differ-
ent difficulties, the lower bound for the hard range needs to
be 45◦. This range is mostly covered by the z axis in the
ETH benchmark, peaking at around 75◦. Therefore, we use
the whole remaining angles as the hard parameter ranges
[−180◦,−45◦〉 and 〈45◦, 180◦].

To determine translation bounds, we observe Fig. 4, where
we plot the translation distances in meters for each bench-
mark. As can be seen, the 3DMatch benchmark translations
peak at 0.5m and decrease rapidly after 1m. Therefore, we
choose the range [0m, 1m] as the easy translation range.
Next, we see that for the ETHbenchmark, the translations are
mostly between 1m and 3m. Therefore, we chose themedium
difficulty translation range as 〈1m, 3m]. Finally, since the
KITTI registration pairs are sampled at a 10m distance, we
create the hard difficulty translation range as 〈5m, 10m], in
order to include the upper bound of the KITTI translations.

Fig. 3 Euler angle ranges for the x, y and z axes. For each axis, we plot
theKDEplot and the carpet plot. To facilitate comparison,we normalize
each KDE using the maximal binned frequency

To determine the overlap bounds, we observe Fig. 5. All
the benchmarks peak at around 40% overlap, with 3DMatch
and ETH having only examples with overlap larger than
30%. Therefore, we determine that the hardest difficulty
should have overlaps lower than 30%. On the other hand,
anything below 10% overlap is not enough to register, so
we deem that the hard overlap range should be [10%, 30%〉.
As we can see from Fig. 5, the KITTI and ETH overlaps
begin to drop more drastically after 60%. Therefore, we use
the [30%, 60%〉 as the medium overlap range. Finally, the
remaining [60%, 100%] is used for the easy overlap diffi-
culty range. Note that the actual overlap in the FP benchmark
is never 100%, since it makes little sense to register two fully
overlapping point clouds.
Benchmark comparison To motivate the creation of the
FAUST-partial benchmark, we provide a detailed overview
of the three established benchmarks, namely 3DMatch, ETH
and KITTI, and compare them to the newly generated ver-
sions of the FAUST-partial benchmark. Using the analysis,
we explain why are the current benchmarks insufficient to
provide an in-depth analysis of a registration method.

As already mentioned, Fig. 3 plots the KDE and carpet
plot for the Euler angle ranges that rotate around the x, y and
z axes, respectively. As can be seen, the 3DMatch bench-
mark has the largest variability in angle ranges. Since the
benchmark is actually a combination of existing 3D registra-
tion benchmarks in itself, this intuitively does make sense.
The ETH and KITTI benchmarks observe a very small angle
variation around the x and y axes and a big angle variation
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Fig. 4 Translation ranges for each dataset. We plot the KDE and carpet
plot using the translation vector norms of each example. To facilitate
the comparison, we normalize each KDE using the maximal binned
frequency

around the z ax. This, again intuitively does make sense,
since these benchmark datasets are obtained with a 3D scan-
ner fixed to the floor; either on a car (KITTI) or on a tripod
(ETH). The newly created FP−R−{E, M, H} benchmarks,
on the other hand, provide a big variety of angle ranges for all
the three axes, covering the whole spectrum of possible val-
ues. Additionally, the benchmarks provide a clear difficulty
increase of the sampled rotation range without any overlap of
the ranges between them. Hence, the benchmark can be used
to thoroughly analyze the rotation robustness of a method.

Figure 4 overviews the translation ranges for each bench-
mark. As can be seen, the translation ranges are clearly
connected to the type of scene that is being scanned. The
3DMatch benchmark dataset is comprised of indoor scenes
that limit the scanner movement range. Hence, they observe
the smallest translation ranges, peaking at 0.5m. The ETH
benchmark dataset is comprised of outdoor scenes and allow
for greater scanner movement range; hence, the translation
ranges increase, ranging mostly from 1m to 3m. The KITTI
benchmark dataset is comprised of lidar scans from amoving
vehicle sampled at approximately every 10m, as clearly indi-
cated in the Figure. The newly created FP−T − {E, M, H}
benchmarks cover the whole range between 0 − 10m for
each difficulty level, without any overlap. Therefore, they
can be used to determine the robustness of a 3D registration
method toward an increasing level of translation between
point clouds.

Figure 5 overviews the overlap range for each benchmark.
To compute the overlap percentage, we compute the inlier
ratio between the two registration examples.We use an adap-
tive distance threshold of 3 times themedian resolution of the
source point cloud. As can be seen, all the datasets have most
examples with around 40% of overlap. A clear cut at 30%
can be seen for the 3DMatch and ETH benchmarks, which
explicitly only take examples with overlap greater than 30%.

Fig. 5 Overlap ranges for each dataset. We plot the KDE and carpet
plot using the overlap between the registration examples. To facilitate
the comparison, we normalize each KDE using the maximal binned
frequency

Table 2 Benchmark statistics for the 3DMatch, KITTI, ETH and FP
benchmarks

Number Number Average Average Average
point benchmark number resolution size
clouds pairs points (cm) (meters)

3DMatch 433 1523 337,258.21 0.6 2.5× 2.0× 2.2
KITTI 6863 555 123,589.28 5.2 152.7× 95.4× 11.3
ETH 132 713 100,625.28 2.7 33.5× 30.4× 15.2
FP-R
FP-T
FP-O-E

1184 1686 63,917.72 0.3 0.7× 1.7× 0.5

FP-O-M 1173 1935 63,528.61 0.3 0.7× 1.7× 0.5
FP-O-H 1183 1781 64,018.49 0.3 0.7× 1.7× 0.5

The FP–R, FP–T and FP–O–E benchmarks use the same examples with
the easy overlap and, therefore, have the same statistics

The newly created FP−O−{E, M, H} benchmarks observe
three non-overlapping ranges covering an overlap from 10%
to 100%. By differentiating the difficulty levels, the bench-
marks allow to evaluate the robustness of a method w.r.t. a
decreasing overlap between registration pairs.

Even though the current benchmarks are not sufficient
to provide an in-depth analysis, we emphasize that they are
not rendered obsolete by introducing the FP benchmark.
On the contrary, the FP benchmark is complementary and
should be used in addition to the current benchmarks when
evaluating a 3D registration method. The existing bench-
marks still provide a different point cloud distribution in
their datasets (indoor and outdoor scans, different resolu-
tion, different number of points, etc.) when comparing to the
FP benchmark (human bodies). We provide some of those
dataset statistics in Table 2.

As can be seen from Table 2, the point clouds in the
different benchmarks can still provide an answer to the gen-
eralization question regarding different statistics, such as
point cloud resolution, number of points, and point cloud
size. Therefore, to get a complete picture of a 3D registra-
tion method, it should be evaluated using all the provided
benchmarks.
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Benchmark difficulty The benchmark comparison from the
previous section provides a clear indicator of the benchmark
difficulty. Having a small rotation, small translation, and a
large overlap range decreases the difficulty of a benchmark.
Oppositely, having a large rotation, large translation, and a
small overlap range increases the difficulty of a benchmark.
This intuition is clearly backed by the evaluation results from
Sect. 4.4, where the increasing parameter difficulty decreases
the number of successful registrations. Therefore, we pro-
pose that the analysis given in the previous section be used
as an indicator of the difficulty of any 3D registration bench-
mark.

4.2 Metrics

Following [12, 15, 71, 85, 95] we evaluate the results using
the relative rotation error (RRE), the relative translation error
(RTE) and the registration recall (RR) measures. The relative
rotation error measures the relative angle in degrees between
the ground truth R∗ and estimated R̂ rotation matrices:

RRE = arccos

(
trace(R̂TR∗) − 1

2

)
180

π
(14)

The relative translation error measures the distance from the
ground truth t∗ and the estimated t̂ translation vectors:

RTE = ‖t∗ − t̂‖2 (15)

The registration recall measures the fraction of success-
fully registered pairs of point clouds.A registration is deemed
successful (or a true positive in terms of the recall measure)
if its RRE and RTE are below predefined thresholds τr and
τt :

RR = 1

|�|
∑

(i, j)∈�

1{RRE(i, j)<τr ∧ RTE(i, j)<τt } (16)

where � is the set of all the point cloud registration
pairs (i, j) in the dataset, 1 is an indicator function and
RRE(i, j),RTE(i, j) indicate the RRE and RTE for registra-
tion pairs (i, j). Following standard practice, the final RRE
and RTE measurements are averaged only over the success-
fully registered pairs (i, j) obtained from the RR.

4.3 Parameters

To fully define the proposed registration method, we need to
set the parameters of the angle step S, voxelization values PV
and NV , and voxelization resolution V R. We use an angle
step of S = 10◦, which determines the number of rotation
matrices N = 162×(360/S) = 5832.As alreadymentioned,
we remove duplicate rotations and obtain N = 3536 rotation

matrices Ri . We use a voxel value of PV = 5 for the pos-
itive voxel and NV = −1 for the negative one. Intuitively,
these values promote high cross-correlations in regions with
good overlap where filled and empty voxel spaces in both
the source and target volumes coincide. More details are pro-
vided in Sect. 5.

The only parameter we vary for each benchmark is the
voxel resolution V R since the datasets vary greatly in their
dimensions ranging from volumes of 152.7m × 95.4m ×
11.3m for KITTI to 0.7m× 1.7m× 0.5m for FP on average.
We use a voxel resolution V R of 7cm, 75cm, 60cm and 6cm
for the 3DMatch, KITTI, ETH and FP benchmarks respec-
tively. For the refinement strategy, we use i = 500 iterations
of the generalized ICP with q = 0.25 for 3DMatch and FP,
and q = 0.80 for ETH and KITTI.

4.4 Results

3DMatch. Following standard practice [12–14, 94], we eval-
uate our EGS method on the 8 test scenes and align all
fragments with a minimum overlap of 30%. We use the
common thresholds τr = 15◦ and τt = 30cm. For a fair com-
parison, we use the overlaps computed in [14] that slightly
differ from ours computed in the previous section. Instead of
finding the overlap between complete point clouds, [14] first
voxel-downsamples the point clouds and then computes the
overlap. The difference between their overlaps and ours is 14
percentage points (pp) on average.

The results presented in Table 3 are divided into two parts:
traditional and deep learning methods. Naturally, the deep
learning methods clearly dominate over the traditional meth-
ods since they are evaluated on the same dataset they were
trained on.

Between the traditional methods, the handcrafted feature-
based traditionalmethodsperformbetter than theoptimization-
based methods. The reasons are the large initial displace-
ments of the point clouds and the noise in the scans, which
are known to influence the optimization-based methods. The
best traditional methods, however, are those that focus on
filtering the outliers and finding the good correspondences.
As can be seen, SC2-PCR achieves the best result between
the current traditional methods. It shows that using a second-
order spatial compatibility measure as guidance for sampling
inliers facilitates an outlier-free set.

The deep learningmethods are further divided into feature
learning methods, robust estimation methods and end-to-end
learning-based methods. Here, the differences of the best
methods of each category are much smaller, favoring more
the end-to-end learning-based methods. Feature learning
methods achieve the lowest recall measures with GeDi at the
forefront. Robust estimation methods build on top of those
learned features and try to filter out bad correspondences.
The best method, CSCE-Net, combines the second-order
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Table 3 Results for τr = 15◦ and τt = 30cm on the 3DMatch bench-
mark

Method RR RRE RTE
(%) ↑ (◦) ↓ (cm) ↓

T
R
A
D
IT

IO
N
A
L

ICP (P2Point)† [30] 6.04 8.25 18.10
ICP (P2Plane)† [31] 6.59 6.61 15.2
Super4PCS† [111] 21.6 5.25 14.10
GO-ICP† [33] 22.9 5.38 14.7
FPFH+FGR† [63] 42.91 4.96 10.25
FPFH+SM† [82] 55.88 2.94 8.15
FPFH+RANSAC-1M† [55] 64.20 4.05 11.35
FPFH+RANSAC-2M† [55] 65.25 4.07 11.56
FPFH+RANSAC-4M† [55] 66.10 3.95 11.03
FPFH+GC-RANSAC† [78] 67.65 2.33 6.87
FPFH+TEASER† [83] 75.48 2.48 7.31
FPFH+CG-SAC† [79] 78.00 2.40 6.89
FPFH+SC2-PCR† [84] 83.98 2.18 6.56

D
E
E
P

L
E
A
R
N
IN

G

3DMatch [13] 73.40 2.49 7.69
FCGF+FGR† [63] 78.93 2.90 8.41
GeDi [27] 92.97 1.86 7.13
FPFH+3DRegNet† [80] 26.31 3.75 9.60
FPFH+DGR† [85] 32.84 2.45 7.53
FPFH+DHVR† [17] 67.10 2.78 7.84
VRNet† [86] 72.90 3.12 8.64
FPFH+PointDSC† [16] 77.57 2.03 6.38
FCGF+3DRegNet† [80] 77.76 2.74 8.13
FPFH+CSCE-Net† [18] 83.61 2.11 6.73
FCGF+TEASER† [83] 85.77 2.73 8.66
FCGF+SM† [82] 86.57 2.29 7.07
FCGF+CG-SAC† [79] 87.52 2.42 7.66
FCGF+RANSAC-1M† [68] 88.42 3.05 9.42
FCGF+RANSAC-2M† [68] 90.88 2.71 8.31
FCGF+RANSAC-4M† [68] 91.44 2.69 8.38
FCGF+DGR† [85] 88.85 2.28 7.02
FCGF+DHVR† [17] 91.40 2.08 6.61
FCGF+GC-RANSAC† [78] 92.05 2.33 7.11
FCGF+PointDSC† [16] 92.85 2.08 6.51
FCGF+SC2-PCR† [84] 93.28 2.08 6.55
FCGF+CSCE-Net† [18] 93.47 2.06 6.53
PointNetLK† [19] 1.61 8.04 21.3
DCP† [9] 3.22 8.42 21.4
PCAM† [12] 92.4 2.16 ∼ 7
RegTR† [94] 93.0 1.92 5.92
GeoTransformer† [95] 95.0 1.98 5.69
EGS 84.11 1.69 6.46

Methods indicated with † are taken from [18, 84–86, 95]. PCAM results
are originally given in meters. All the deep learning methods are trained
on the 3DMatch dataset. The results are shown in ascending order w.r.t.
the RR measure for each category. We bold and underline the best and
the second best results, respectively, for each metric

spatial compatibility from SC2-PCR and spectral matching
from SM [82] with a novel channel-spatial contextual layer
that uses self-attentionmechanisms to aggregate information
in the channel and spatial dimensions. The state-of-the-art
results are achieved by the end-to-end learning methods.
Thesemethods use self-attention and cross-attention [12, 95]
mechanism to exchange contextual information between the
features of the two point clouds to register. This allows for
information sharing between the point clouds that traditional
and robust estimation methods cannot achieve.

The EGS achieves the best results between the traditional
methods and even comparable with the best deep learning
methods by successfully registering 84.11% of the 3DMatch
pairs. Additionally, the EGS achieves the lowest rotation
error, which indicates that the cross-correlationmeasure does
give an indication into the fitness of two point clouds. Con-
trary to the deep learningmethods however, theEGS is simple
and explainable. The effects of different strategies (discussed
in Sect. 5) are clear and intuitive, providing insights into the
registration process.

Interestingly, most methods seem to average around 2◦
for the RRE measure, having a much larger RTE measure of
7cm. This could indicate noisy point clouds, since the dataset
contains many flat surfaces that make the rotation click into
place, but leave the translation handling the noise.
KITTI Following common practice [14, 14, 15, 68, 71, 95],
we test our EGS method on scenes 8 to 10 using pairs which
are at least 10m away from each other. We use the com-
mon thresholds τr = 5◦ and τt = 2m. The stricter rotation
threshold, compared to 3DMatch, reflects the fact that the
rotation ranges are much smaller. The more lenient transla-
tion threshold reflects the fact that the scenes are large and
have a big translation distance between them.We evaluate the
generalization from the 3DMatch benchmark dataset to the
KITTI benchmark dataset, which poses several challenges:
change in scanning modality (from time-of-flight scanner to
lidar scanner) and point cloud size (from 2.2m3 to 86.4m3

by averaging all three axes).
As can be seen from Table 4, somemethods are somewhat

able to generalize onto the KITTI dataset. The registration
pairs from the dataset are gravity aligned, which is reflected
in lower RRE errors compared to the 3DMatch benchmark,
since most of the ground-truth rotation comes from rotating
around one axis. The fragments are also much bigger than
those from 3DMatch (152.7m× 95.4m× 11.3m on average
in size compared to 2.5m×2.0m×2.2m in 3DMatch) which
is reflected in higher RTE errors.

Generally, the learningmethods outperform the traditional
methods, which intuitively make sense, since the registration
pairs showcase a smaller overlap with more noise.

Between the traditional methods, both ICPs do not regis-
ter a single example. Intuitively, the point-to-point ICP fails
since it is a fine registration method, expecting an already
close initial alignment of the point clouds. GO-ICP should
address this downside and find the global solution to the reg-
istration. However, as noted in previous works [33, 83], the
registration method is very sensitive to its parameters. We
unsuccessfully test for several different parameters noted
in Sect. 6. The exception between the traditional methods
is SC2-PCR, which achieves good results using the same
FPFH features as the RANSACmethods. This could indicate
that the FPFH features are not unique enough for different
points in the scene or that the scene contains a lot of similar
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Table 4 Results for τr = 5◦ and τt = 2m on the KITTI benchmark

Method RR RRE RTE
(%) ↑ (◦) ↓ (cm) ↓

T
R
A
D

IT
IO

N
A
L ICP (P2Point) [31] 0.00 - -

GO-ICP [33] 0.00 - -
FPFH+RANSAC-8M [55] 9.91 2.40 36.79
FPFH+RANSAC-2M [55] 10.81 2.24 33.57
FPFH+SC2-PCR [84] 98.74 0.38 8.87

D
E
E
P

L
E
A
R
N
IN

G

D3Feat-rand† [15] 18.47 1.58 37.80
FCGF+RANSAC† [68] 24.19 1.61 27.10
D3Feat-pred† [15] 36.76 1.44 31.60
DIP [72] 51.71 1.02 13.43
SpinNet† [71] 81.44 0.98 15.60
GeDi [27] 82.88 0.65 10.99
FPFH+PointDSC [16] 94.05 0.33 7.44
FCGF+PointDSC [16] 96.76 0.37 9.45
FCGF+SC2-PCR [84] 97.66 0.38 9.61
Predator† [14] 41.20 - -
GeoTransformer [95] 67.93 0.51 103.03
GLORN† [96] 74.30 - -
YOHO-O [73] 81.44 1.99 54.25
YOHO-C [73] 82.16 1.38 39.30
EGS 94.95 0.11 3.90

All the methods are trained on the 3DMatch dataset. Results marked
with † are taken from [71, 96]. The results are shown in ascending order
w.r.t. the RR measure in each category. We bold and underline the best
and the second best results, respectively, for each metric

structures. Only by filtering out bad correspondences with
geometric properties, does the SC2-PCR remove the non-
unique matches and achieves good results.

The same trend is also present in the learning methods,
where the best performing methods are in the category of
robust estimation methods which filter out the bad corre-
spondences. We can also can notice a gap between these
methods and the remaining feature-based and end-to-end
learning methods. Intuitively, since the KITTI benchmark
data is much noisier than the 3DMatch benchmark data,
robust estimation methods have the advantage of addressing
that noise by eliminating bad correspondences.

The interval for the translation error (RTE) goes from
around 7cm to around 50cmwith the exception of GeoTrans-
former having RTE of 103.03cm. Even though it displays the
highest RTEmeasurement, it still achieves a recall of 67.93%
which indicates that using the common practice threshold
of 2m can be misleading. Hence, we additionally show the
results for a stricter τt = 60cm threshold in Table 5.

As we immediately notice, when comparing Table 4 with
Table 5, the biggest drop in performance can be seen by
the end-to-end deep learning methods GeoTransformer and
YOHO, with an average drop of 30.59 recall percentage
points. The remaining methods showcase less than 1 per-
centage points drop in recall (less than 55 registration pairs),
which indicates that the translation error was already low for

Table 5 Results for τr = 5◦ and τt = 60cm on the KITTI dataset

Method RR RRE RTE
(%) ↑ (◦) ↓ (cm) ↓

T
R
A
D

IT
IO

N
A
L ICP (P2Point) [31] 0.00 - -

GO-ICP [33] 0.00 - -
FPFH+FGR† [63] 5.23 0.86 43.84
FPFH+CG-SAC† [79] 74.23 0.73 14.02
FPFH+RANSAC† [55] 74.41 1.55 30.20
FPFH + SC2-PCR [84] 98.38 0.38 8.66

D
E
E
P

L
E
A
R
N
IN

G

FCGF + RANSAC† [68] 80.36 0.73 26.79
GeDi [27] 82.34 0.64 10.54
FCGF + FGR† [63] 89.54 0.46 25.72
FPFH+DGR† [85] 77.12 1.64 33.10
FCGF+CG-SAC [79] 83.24 0.56 22.96
FPFH+PointDSC [16] 93.51 0.33 7.08
FCGF+PointDSC [16] 96.40 0.37 9.20
FCGF+DGR† [85] 96.90 0.34 21.70
FCGF+SC2-PCR [84] 97.48 0.38 9.47
FCGF+CSCE-Net† [18] 97.84 0.32 20.89
FPFH+CSCE-Net† [18] 98.74 0.33 7.05
FCGF+DHVR† [17] 99.10 0.29 19.80
GeoTransformer [95] 15.14 0.55 38.75
YOHO-O [73] 54.41 1.70 33.19
YOHO-C [73] 70.09 1.26 30.37
EGS 94.59 0.11 3.61

All the methods are trained on the 3DMatch dataset. Results marked
with † are taken from [18, 84]. The results are shown in ascending order
w.r.t. the RR measure for each category. We bold and underline the best
and the second best results, respectively, for each metric

those methods. The performance drop from the end-to-end
learning methods comes from their large memory footprint
[95].Because thesemethods have very largemodels that need
to fit onto a GPU, they need to compromise by subsampling
and scaling down the point clouds. Since larger point clouds,
such as the ones in the KITTI dataset, mean a greater number
of voxels, thesemethods need to use amuch coarser voxeliza-
tion in order to be able to register the examples, which in turn
affects the results.

The EGS outperforms most deep learning methods and
achieves a 94.95% and 94.59% recall (for the two thresh-
olds, respectively), which makes it competitive with the best
methods; lagging behind only 4 percentage points on aver-
age from the best result. The EGS, however, achieves the
best RRE and RTE measures, outperforming by 3.49cm on
average the second best RTE result.

Compared to the 3DMatch results, we can notice that the
robust estimation learningmethods, alongwith our EGS, fol-
low an upwards trend, achieving better results on the KITTI
benchmark.The reason is thatKITTI is an easier (on average)
benchmark to register compared to the 3DMatch benchmark,
w.r.t. the registration parameters. However, it is a harder
benchmark to register w.r.t. the noise in the point clouds,
but, because these methods are robust to noise, the results
improve.On the other hand, the end-to-end and feature-based
methods are affected by the noise and, therefore, follow a
downward trend.
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Table 6 Results for τr = 5◦ and τt = 30cm on the ETH dataset

Method RR RRE RTE
(%) ↑ (◦) ↓ (cm) ↓

T
R
A
D

IT
IO

N
A
L GO-ICP [33] 1.54 1.32 21.75

ICP (P2Point) [30] 2.10 0.57 4.20
FPFH-2M [55] 66.20 1.13 6.76
FPFH-8M [55] 66.34 1.09 6.48
FPFH+FGR [63] 66.34 1.09 6.48
FPFH+SC2-PCR [84] 85.41 0.91 6.08

D
E
E
P

L
E
A
R
N
IN

G

GeDi [27] 86.54 1.18 5.09
FPFH+PointDSC [16] 41.94 0.90 6.78
FCGF+PointDSC [16] 77.42 0.94 4.05
FCGF+SC2-PCR [84] 92.85 0.81 4.05
GeoTransformer [95] 4.91 0.69 21.08
DIP [72] 62.41 1.94 14.71
SpinNet [71] 73.07 1.20 5.35
YOHO-O [73] 79.94 2.16 16.11
YOHO-C [73] 84.85 1.95 16.17
EGS 94.25 0.42 1.83

All the methods are trained on the 3DMatch dataset. The results are
shown in ascending order w.r.t. the RR measure in each category. We
bold and underline the best and the second best results, respectively, for
each metric

ETH Following common practice [71, 72, 108] we regis-
ter only point clouds with an overlap greater than 30%. We
set the thresholds to τr = 5◦ and τt = 30cm. The stricter
rotation threshold, compared to 3DMatch, reflects the fact
that the rotation ranges are much smaller. Similarly to the
3DMatch benchmark, we use the overlaps computed from
[108] for a fair comparison. The average difference between
their overlaps and ours is 8 percentage points. We evalu-
ate the generalization from the 3DMatch benchmark dataset,
which poses several challenges: change in scanning modal-
ity (from time-of-flight scanner to laser scanner), point cloud
size (from 2.2m3 to 26.3m3 by averaging the three axes) and
point cloud structure (from flat tables, floors and walls to
scattered vegetation).

As canbe seen inTable 6, the learningmethods outperform
again the traditionalmethods. The general performance of the
traditional methods is worse than on the KITTI benchmark.
The slight increase in performance from the optimization-
based methods can be attributed to having a few closer initial
alignments of the registration pairs, since the recall increases
for only1.82percentagepoints. The loss in performance from
the feature-based traditional methods, on the other hand, can
be attributed to the difference in point cloud distribution;
whereas the KITTI point clouds containmuchmore structure
inferred from the roads, the ETH point clouds contain more
fuzzy vegetation.

The learning methods tend to struggle with generaliz-
ing from the 3DMatch dataset. The best learning method
is SC2-PCR, with a recall of 92.85%. Differently than the
results on the KITTI benchmark, however, the remaining
robust estimation method PointDSC does not achieve great

results. The key difference is that PointDSC learns to embed
the input correspondences into a higher-dimensional space
using the 3DMatch dataset, whereas SC2-PCR does not.
This, in turn, makes the process of generalization harder for
PointDSC. Surprisingly, GeoTransformer achieves the low-
est recall results of 4%. Similarly to the KITTI benchmark,
this result can be partly explained by the scaling of the input
point clouds. As the authors point out [95], the method suf-
fers from a big memory footprint, which in turn means that
the downsampling rate needs to be balanced for performance
and efficiency. For bigger and denser point clouds, the solu-
tion is to scale them in order to simulate the density and inlier
rate of the training 3DMatch dataset, which does not always
work.

Our EGS method achieves the best result on the ETH
benchmark, outperforming all the traditional and learning
methods. Additionally, the EGS achieves the lowest RRE and
RTE measures. Since the ETH benchmark has less big flat
surfaces than the previous two benchmarks, the EGS suffers
less from its main limitation, and therefore achieves better
results. More details are provided in Sect. 5.5.

Compared to the 3DMatch results, we can notice a down-
ward trend in the results of the learning methods, which
affirms our hypothesis that learningmethods have difficulties
generalizing onto different datasets. The larger noise factor
in the ETH benchmark influences all the learning methods,
that seem to prefer more rigid structures, as those that they
have been trained on. Compared to the KITTI results, the
feature-based and end-to-endmethods seem to improve. This
indicates that the learned features seem to transfer better onto
the ETH dataset than onto the KITTI dataset. The robust esti-
mation methods, on the other hand, perform worse because
they try to eliminate the outliers using geometric properties
in a dataset withmuch amuch noisier point cloud distribution
coming from the vegetation.
FAUST-partial We set the thresholds to τr = 10◦ and
τt = 3cm. The stricter thresholds reflect the fact that the frag-
ments from FAUST-partial are much smaller in volume than
all the other datasets.As such,misalignments on smaller frag-
ments are much more noticeable and erroneous. We evaluate
the generalization from the 3DMatch dataset, which poses
several challenges: change in the scanning modality (from
time-of-flight scanner to multi-view stereo), the point cloud
size (from 2.2m3 to 0.9m3 by averaging the three axes) and
the point cloud structure (from flat tables, floors and walls to
curvy human bodies).

In Table 7, we evaluate GO-ICP [33], SC2-PCR [84],
GeDi [27] and GeoTransformer [95] on the FAUST-partial
benchmark. The chosen methods represent the state-of-the-
art methods from each category, namely the traditional opti-
mization, traditional feature, deep learning feature, robust
estimation and end-to-end learning-based categories from
Table 3. The FAUST-partial benchmark datasets allows to
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Table 7 Faust-partial results for different dataset difficulties

Easy Medium Hard

Method RR RRE RTE RR RRE RTE RR RRE RTE
(%) ↑ (◦) ↓ (cm) ↓ (%) ↑ (◦) ↓ (cm) ↓ (%) ↑ (◦) ↓ (cm) ↓

FP–R GO-ICP [33] 0.00 – – 0.06 1.87 2.71 0.00 – –

FPFH+SC2-PCR [84] 99.64 0.95 0.43 94.54 1.43 0.60 75.21 1.76 0.78

GeDi [27] 99.76 1.629 1.162 99.94 1.66 1.14 99.41 1.70 1.63

FCGF+SC2-PCR [84] 98.46 1.21 0.82 91.93 1.67 1.02 85.77 1.77 1.08

GeoTransformer [95] 64.12 2.29 1.57 55.93 2.26 1.63 47.75 0.47 1.69

EGS 99.64 0.005 0.002 97.92 0.003 0.003 78.00 0.01 0.007

FP–T GO-ICP [33] 0.00 – – 0.00 – – 0.00 – –

FPFH+SC2-PCR [84] 99.76 0.93 0.43 99.53 0.92 0.43 99.58 0.93 0.43

GeDi [27] 99.47 1.68 1.16 99.70 1.65 1.15 99.70 1.63 1.14

FCGF+SC2-PCR [84] 98.34 1.25 0.83 98.34 1.24 0.82 98.22 1.25 0.82

GeoTransformer [95] 66.25 2.32 1.59 64.29 2.29 1.58 64.18 2.27 1.57

EGS 99.70 0.005 0.002 99.82 0.005 0.002 98.81 0.005 0.002

FP–O GO-ICP [33] 0.00 – – 0.00 – – 0.00 – –

FPFH+SC2-PCR [84] 99.88 0.91 0.43 84.70 1.68 0.80 38.85 2.42 1.23

GeDi [27] 99.64 1.69 1.16 75.40 2.14 1.45 8.70 2.56 1.76

FCGF+SC2-PCR [84] 98.52 1.26 0.83 63.00 1.98 1.27 17.80 2.68 1.72

GeoTransformer [95] 63.94 2.30 1.57 22.07 2.45 1.94 2.64 2.57 2.22

EGS 99.47 0.067 0.035 88.06 0.030 0.017 37.06 0.477 0.234

FP–R indicates the dataset where the rotation is varied from an easy-to-hard setting, whereas the translation and overlap are kept at the easy difficulty.
Similarly, the FP–T and FP–O alter the translation and overlap setting, respectively, and keep the remaining parameters fixed

analyze each method regarding the three primary registra-
tion parameters: the rotation range, the translation range and
the overlap range.

As can be seen from FP–R in Table 7, GeDi is very robust
to the increasing rotation range, achieving an almost per-
fect recall of 99% on all the three difficulties. All the other
methods observe a small dip in the recall with the medium
difficulty, and a larger dip in the recall with the hard dif-
ficulty w.r.t. the easy difficulty. The RRE and RTE metrics
naturally follow the inverse relationship and increasewith the
increasing difficulty. The exception to this is GO-ICP, which
only registers a few examples for the FP–R–M dataset. Fol-
lowing the author guidelines, we center and scale the point
clouds and run several different parameter choices to improve
the results. However, we observe that the method still does
not register any examples. Analyzing the results, it would
seem that the method suffers mostly from wrongly estimated
translations, with the rotations just above the RRE threshold
of 10◦. More details are provided in Sect. 6. The SC2-PCR
method seems more robust to the rotation changes when
using the FCGF features compared to the FPFH ones, which
indicates that the FCGF training produces rotation-invariant
features. The EGS achieves the second best results on two
out of three benchmarks, namely the FP–R–E and FP–R–
M datasets. Additionally, it achieves the best RRE and RTE

measures for all the three datasets. These results indicate,
however, that the SO(3) parametrization is still lacking in
uniformity since bigger rotation ranges should not, in theory,
affect the method.

Analyzing FP–T in Table 7, we can clearly see that the
change in translation does not seem to affect the registration
recall. All the methods seem to be invariant to the transla-
tion. Again, the exception to this is the GO-ICP method that
does not register a single example. The EGS outperforms all
the methods on the FP–T–M and achieves the second best
result on FP–T–E. Again, it achieves the best RRE and RTE
measurements.

Analyzing FP–O in Table 7, we can clearly see that the
overlap greatly affects the registration results. GeDi andGeo-
Transformer seem to take the biggest hit from a lower overlap
where the recall drops to 8.70% and 2.64%, respectively.
As noted by the authors [27], the low overlap between the
point clouds contains partial structures with little geometric
information which leads to registration failure. Interestingly,
contrary to the FP–R scenario, the FPFH features seem to be
more robust than the FCGF ones w.r.t. the smaller overlap.
This would indicate that, even though the FCGF features are
more distinctive, they ignore the overlap with little geometric
information. In contrast, the EGS achieves the best recall on
FP–O–M and the second best result on FP–O–H. This would
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indicate that the cross-correlation is a good indicator of the
overlap region between two partial point clouds.

5 Ablation study

In Table 8, we evaluate the different strategies tested on the
3DMatch benchmark. Each strategy is then analyzed to get
key insights into the registration process. We mark with Ref
the reference result (under column #) already presented in
Table 3. Each of the remaining results varies a single part of
the method pipeline, such as the voxelization, the filling, the
rotation or the refinement strategy of the reference result Ref.

5.1 Voxelization strategy

We test several different voxelization resolutions V R rang-
ing from 3 to 9 cm. As can be seen from results #1 - #5,
the voxelization resolution does not affect significantly the
results. Contrary to intuition however, we notice that a lower
voxel resolution does not automatically improve the results.
The reason is that a coarser resolution registers the global
shape of the scene instead of being affected by the noise
more present at the lower resolutions.

5.2 Filling strategy

As already noted, voxelizing a point cloud results in a 3D
grid volume where a value of PV = 1 represents that a
point from the point cloud is present in that specific grid box
(voxel). Contrary, a value of NV = 0 represents that there
are no points from the point cloud present in that specific
grid box (voxel). We test this simplest voxelizing strategy
under result #6 in Table 8. As can be seen, this strategy
does not perform well compared to the others. To improve
the registration results, we experiment with PV = 5 and
NV = −1. Intuitively, the idea is to promote high cross-
correlations in regions with good overlap where filled and
empty voxel spaces in both the volumes coincide. More con-
cretely, we encourage the filled voxels to coincide by giving
them a higher value in the cross-correlation (5×5 = 25 in the
cross-correlation operation); encourage less (but still do not
penalize) empty voxels to coincide by giving them a positive
value in the cross-correlation (−1 × −1 = 1); and discour-
age any of the leftover cases (5×−1 = −5). As can be seen
from result #7 in Table 8, this strategy slightly degrades the
RR measure, whilst improving the RTE.

Alongwith the PV and NV values,we additionally exper-
imentwith the value of the padded voxels using the parameter
PDV . As seen from the reference result Ref, using the
padding value of −1 drastically improves the results w.r.t.
results #6 and #7 that use a value of 0. This strategy allows the
method to register point clouds with smaller overlap because

Fig. 6 Removing points from flat surfaces using the difference of nor-
mals (don) [112]. The blue points represent the whole point cloud. The
red points represent the retained points after the don filtering. As can
be seen, points from flat surfaces are mostly rejected

it does not penalize the motion of the source point cloud
beyond the volume of the target point cloud.

We experiment with additional voxelizing strategies that
are based on the same idea of promoting higher cross-
correlations in salient regions: importance and layering. The
importance strategy tries to emphasize salient points on the
point cloud that should be prioritized in the registration pro-
cess. The voxels containing these important points receive
a higher value than the remaining filled voxels. Therefore,
this strategy uses the already seen PV = 5 and NV = −1
with the addition of an intermediary voxel value I V = 2.
Voxels with salient points are given a value of PV , whereas
non-salient points are given a value of I V . The reasoning
for this strategy is discussed more in the Limitations section.
To find non-salient points, we use the difference of normals
(don) [112] to find points on flat surfaces. First, we compute
the normals at each point using two neighborhood radius dis-
tances, r1 = 1cm and r2 = 3cm. The neighborhood radius
distances determine the points used for finding the spanning
plane from which the normal is computed. Intuitively, if a
point in the point cloud is located on a flat surface, its two
computed normals should have similar directions. Hence, we
compute the difference of the two normal vectors and find
its L2 norm. Finally, we threshold these norms to retain only
salient points not located on flat surfaces. An example of the
don filtering can be seen in Fig. 6. As we see from result #8 in
Table 8, this strategy does not improve the recall results, but
improves on the rotation and translation errors. Hence, we do
not use it as a method of choice since the voxelizaton process
is more complex than the one presented in the reference Ref
strategy.
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Table 8 The different strategies tested for the EGS method

# V R FILLING ROTATIONS S N REFINEMENT ADDITIONS RR RRE RTE
(cm) [PV,NV, PDV ] (%) ↑ (◦) ↓ (cm) ↓
7 [5,−1,−1] AA, {3, 5+}4,0 10 3536 x x 75.97 4.90 13.67

Ref 7 [5,−1,−1] AA, {3, 5+}4,0 10 3536 gen ICP, q=0.25, i=500 x 84.11 1.69 6.46

1 3

[5,−1,−1] AA, {3, 5+}4,0 10 3536 gen ICP, q=0.25, i=500 x

76.10 1.71 6.48
2 5 82.40 1.65 6.42
3 6 82.86 1.69 6.43
4 8 83.26 1.67 6.40
5 9 83.98 1.66 6.48

6

7

[1, 0, 0]

AA, {3, 5+}4,0 10 3536 gen ICP, q=0.25, i=500 x

76.49 1.67 6.44
7 [5,−1, 0] 70.52 1.67 6.42
8 Importance 83.06 1.66 6.35
9 Layering 83.06 1.67 6.53

10

7 [5,−1,−1]

Euler 15 6364

gen ICP, q=0.25, i=500 x

80.56 1.69 6.49
11 Euler, Limited 15 1886 82.27 1.72 6.47
12 Euler, Limited 10 6177 86.41 1.72 6.54
13 HOPF x 4608 79.51 1.68 6.35
14 Super-Fibonacci x 3536 75.71 1.61 6.21
15 AA, {3, 5+}2,0 15 281 74.05 1.70 6.19
16 AA, {3, 5+}2,0 10 913 75.25 1.65 6.29
17 AA, {3, 5+}4,0 15 2289 82.14 1.73 6.42
18 AA, {3, 5+}4,0, + 24 4531 79.45 1.81 6.75
19 AA, {3, 5+}8,0 30 4368 74.20 1.80 6.74

20

7 [5,−1,−1] AA, {3, 5+}4,0 10 3536

gen ICP, q=15, i=500

x

83.45 1.83 6.93
21 gen ICP, q=35, i=500 83.85 1.65 6.19
22 gen ICP, q=45, i=500 81.81 1.57 5.91
23 gen ICP, q=55, i=500 78.79 1.57 5.88
24 gen ICP, q=65, i=500 74.52 1.76 6.26
25 gen ICP, q=75, i=500 67.83 2.03 6.87
26 gen ICP, q=25, i=100 83.91 1.73 6.63
27 gen ICP, q=25, i=30 83.39 1.81 6.87
28 ICP (P2Point) 82.27 1.94 7.38
29 ICP (P2Plane) 83.85 1.73 6.67

30

7 [5,−1,−1] AA, {3, 5+}4,0 10 3536 gen ICP, q=0.25, i=500

fps subsample 83.39 1.66 6.35
31 don subsample 79.25 1.66 6.27

32 fps+don 76.63 1.63 6.22
subsample

The columns in order refer to the voxelization strategy, filling strategy, rotation strategy, angle step, number of precomputed rotation matrices,
refinement strategy, additional parameters, and the evaluation metrics RR, RRE and RTE defined in Sect. 4.2. All the results are a variation of the
reference result marked with Ref under column # and are divided into several categories depending on the parameter that is being varied; results
from #2-#5 vary the voxelization strategy, results from #6-#9 vary the filling strategy, results from #10-#18 vary the rotation strategy, results from
#19-#28 vary the refinement strategy and finally the results from #29-#31 describe some additional changes in the reference result. For clarity, we
only mark the varied parameters in the table, whilst the remaining ones are left equal to the reference Ref result. For the rotation strategy, we denote
with AA the angle-axis representation, with Euler Limited the limited range for the Euler angles. For the refinement strategy, we denote with q the
quantile for the distance threshold and with i the number of iterations used. For the Additions column, we denote with don the difference of normal
method, and with fps the farthest point sampling method. Please refer to the text for more details

The layering strategy adds a layer of LV = −2 voxel
values around flat surfaces beside the classical PV = 5 and
NV = −1. The reasoning behind this is that sometimes the
registration is very close to the solution, but needs a further
push to snap into place. By providing negative values on
borders of flat surfaces, we promote exactly that. As can be
seen from result #9 in Table 8, however, the recall is very
similar to the importance and reference Ref results and does
not additionally improve the result.

In Fig. 7, we show the cross-correlation volumes for dif-
ferent voxelization strategies under the ground-truth rotation
matrix. As can be seen, most methods tend to suffer from
wrong or local maximas except our strategy of choice. Since
in this registration example, the correct translation voxel is
located on the bounds of the volume, the methods using

PDV = 0 fail and push the translation more toward a bigger
overlap. The importance strategy prioritizes the translation
onto falsely important points not located on the floor and
the layering strategy moves the translation further from the
bounds since the LV values push them further along the floor
plane. The strategy of choice, with PV = 5 and NV = −1,
suppresses these local maximas and pushes the translation
into the correct voxel location, as can be seen from the image.

5.3 Rotation strategy

We test several different rotation parametrizations to cover
the SO(3) space.We start with the simplest case of uniformly
sampling 3 Euler angles α, β and γ that rotate around the x ,y
and z axes, respectively. Each angle is sampled with an angle
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Fig. 7 The different voxelization strategies tested. PV and NV are the
voxelization values for the filled and empty voxels. PDV is the padding
value. Yellow regions indicate higher cross-correlation values, purple
regions indicate lower cross-correlation regions. There are white spaces
present in the cross-correlation volume because the values are clipped
so only the top 10% of values are shown. The light green dot indicates
the ground-truth location where the central voxel of the red point cloud
should be located. The blue dot indicates the estimated location where
the central voxel of the red point cloud should be located according to
the cross-correlation from the EGS method. For more details, refer to
Sect. 5

step S, from the range 〈−π, π〉 for α and γ and the range
〈−π

2 , π
2 〉 for β. Starting with result #10 from Table 8 we use

an angle step of S = 15 and obtain good results of 80.56%
recall. This strategy, however, is comprised of N = 6364
rotation matrices, unnecessarily increasing the runtime of
the algorithm. We therefore limit the range for all the three
Euler angles to 〈−π

2 , π
2 〉 in result #11 to combat the com-

putation time. As we can notice, the recall further increases
to 82.27%. The reason behind this slight increase in results
is that by decreasing the range of the rotation, we elimi-
nate big rotations as an option for the EGS to chose from.
Since the 3DMatch dataset is comprised of indoor scans,
the rotations from the registration are always in the lower
ranges. Consequentially, we remove the possibility for the
EGS to make obscure registrations between floors and walls,
or wrongwalls (discussed inmore detail in Sect. 5.5).We fur-
ther reduce the angle step to S = 10 in result #12 to receive
a finer discretization of the rotation space. This parametriza-

tion achieves the best recall results of 86.41%. However,
it increases the number of rotations again to N = 6177
and does not behave consistently on the other benchmark-
ing datasets. Hence, we do not use it as the final solution.

Uniformly sampling the Euler angles does not result in
uniformly sampling the rotation space SO(3). Intuitively
however, a more uniform parametrization could result in a
better representation of the rotation space, and potentially
have a smaller need on the number of rotations N . In the
search for amore uniformdiscretization of the rotation space,
we experiment with the Hopf [113] and Super-Fibonacci
[114] parametrizations. For theHopf parametrization, we use
the rotations computed in [115], originally proposed in [113].
They start by sampling the sphere S

2 with the HEALPix
[116] representation, and sampling the circle S1 uniformly.
Next, the sphere sampling is converted into spherical coordi-
nates, which, together with the S1 sampling, can be used as
a sampling of the Hopf coordinates. The Hopf coordinates
are finally converted into N = 4608 quaternions. The Super-
Fibonacci [114] parametrization uses the Fibonacci sampling
twice to generate points in a cylinder, which are then mapped
to a 3-sphere using a volume preserving mapping. As can be
seen from #13 and #14, however, the results do not seem to
reflect our intuition, since the recalls slightly drop to 79.51%
and 75.71% from the Ref result.

Inspired by the uniformity of SO(3), we test a similar
method of sampling that results in being our method of
choice. The main idea is to sample the S

2 sphere using a
geodesic polyhedron and sample the S1 circle with a simple
uniform interval sampling. Then, the points on the sphere act
as the axis and the points on the circle act as the angles for
the angle-axis rotation representation. We experiment with
several samplings of the S

2 sphere and several angle steps
S for the S

1 sampling. In the results #15 and #16, we start
with the geodesic polyhedron {3, 5+}2,0, a regular shapewith
42 vertices on the unit sphere, all with equidistant neigh-
bors, to sample the S2 sphere. In #15, we use an angle step
of S = 15 for sampling the circle S

1. The results for this
option are pretty low,which intuitively doesmake sense. This
parametrization is coarse and is not a representative cover of
SO(3). Increasing the sampling angle step S = 10 in result
#16, helps the EGS achieve better results, however still lower
than the reference result. In results #17 and #18, as well as
the reference result Ref, we increase the number of vertices
of the polyhedron by splitting the edges of each face, result-
ing in {3, 5+}4,0, with 162 vertices. This in turn increases
the number of rotation matrices N , since each vertex rep-
resents the axis of rotation. All the results seem to benefit
from this increase, expect result #18, in which, we increase
the number of vertices, keeping only those in the positive
hemisphere of the sphere. The reasoning for this experiment
stems from the fact that an axis, and its opposite negative axis,
represent the same rotation if we sample the angle from S

1

123



Addressing the generalization of 3D registration methods with a featureless baseline and an… Page 19 of 30    41 

uniformly. By removing the negative axes, and adding twice
the positive axes, we could, in theory, have a better and finer
representation of the SO(3). Unfortunately, the intuition is
not reflected in the results, achieving a 79.45% recall. Result
#17, on the other hand, does achieve better results than its
counterpart with polyhedron {3, 5+}2,0. Improving on that,
the reference result Ref, decreases the angle step S = 10
to achieve a finer resolution, and better results. Increasing
the number of rotations even further, with the polyhedron
{3, 5+}8,0, does not improve the results further, as can be
seen from result #19, indicating that the discretization of the
rotation space is unnecessarily saturated which introduces
noise into the rotation choosing.

Comparing the number of rotation matrices N with the
recall RR, we can somewhat see a pattern. The highest and
lowest recalls are achieved for the biggest and smallest num-
ber of rotations N = 6177 and N = 281. Whilst a higher
number of rotations allow the method to have more rotations
to choose from, it is also important to have a good represen-
tation of the SO(3) space, as seen from results #11, where
using only N = 1886 rotations achieves a recall of 82.27%;
just under 2 percentage points lower than the reference Ref
result.

Comparing the angle step Swith the recall RR, we can see
a clear pattern of linearity: as the angle step decreases, the
recall improves. Comparing results #11 - #12, #15 - #16, #17
- Ref, we see an average increase of 2.43 percentage points
when going from an angle step S = 15 to S = 10.

5.4 Refinement strategy

We experiment with a few refinement strategies, namely
point-to-point ICP (P2Point) [30], point-to-plane ICP (P2Plane)
[31], and generalized ICP [106]. As can be seen from results
#20 to #29, the different version of ICP perform similarly,
with generalized ICP taking a slight advantage. Therefore,
we choose it as our refinement strategy. We further test sev-
eral choices for the hyperparameters of the generalized ICP
algorithm. In results #20 - #25, we test different options for
the ICP inlier ratio hyperparameter. To find the inlier ratio,
we use a quantile threshold q of the nearest neighbor dis-
tance for all the points in the source point cloud. As we can
see, staying in the reasonable inlier threshold range (< 50%)
for the 3DMatch data does not affect the results gravely. In
results #26 and #27, as well as the reference result Ref, we
test themaximum allowable number of iterations generalized
ICP can perform. As can be seen, the best recall is achieved
using 500 iterations. However, the results for 100 and 30
iterations achieve very similar performance of 83.91% and
83.39% recall.

All the experiments for the refinement strategy indicate
that the EGS is not dependent on the performance of the

Fig. 8 EGS registration failure case. The wall of one point cloud is
registered onto the floor of the other point cloud

refinement algorithm and is not susceptible to its hyperpa-
rameter optimization.

5.5 Limitations

The main limitation of the EGS stems from aligning wrong
big flat surfaces. This can be reflected in wrong translations,
where walls or floors are slightly offset, wrong rotations,
where one point cloud is rotated so their floors coincide,
or simply wrong matching of flat surfaces, such as aligning
wrong walls, floors and tables. One such extreme example
can be seen in Fig. 8 where the wall of one point cloud is
registered onto the floor of the other point cloud. Each point
cloud in this example has more than 80% of points located
on a flat surface; either on the floor, wall or table.

In order to fully alleviate this issue, further knowledge
should be introduced into the model. Since our method is
featureless, it does not have the information necessary to
distinguish walls from floors or tables; in short, big flat sur-
faces are dealt with in the same manner. Introducing further
knowledge, however, opposes our approach of having a sim-
ple method, along with our initial hypothesis that learning
feature-basedmethods are unable to generalize onto different
benchmarks. We experiment, therefore, by using geometric
features which can be deterministically extracted from each
point cloud and are pose invariant, such as the difference of
normals (don), farthest point sampling (fps), the importance
strategy, etc. We overview of the strategies that we experi-
ment with, in order to address the problem of aligning flat
surfaces.

We start by purposefully voxelizing the point clouds using
PV = 5 and NV = −1 to discourage such registration
and promote those in which both the positive voxels (those
with values PV ) and negative voxels (those with values NV )
are aligned onto each other. However, when big flat surfaces
are present in the point clouds, there are cases where the
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alignment of the positive voxels from these surfaces trump
other, more meaningful alignments. In other words, aligning
flat surfaces results in big cross-correlation values because of
numerous alignments of positive voxels; and consequentially
numerous 5 × 5 summands in the cross-correlation.

To address this issue even further, we try to remove points
from flat surfaces with the subsampling strategy. In result
#31, we use the difference of normals (don) filtering men-
tioned in the Filling strategy section, to remove points from
flat surfaces. In result #32 we reduce that subsampled set of
points even further, using the fps algorithm to pick a set of
5000 points with the farthest distances. As can be seen from
the results, these strategies lower the recall. The reason for
this is that in many cases, the flat surfaces are also a guid-
ance for the method to align the surfaces together. Therefore,
to leave the flat surfaces in the point clouds, we experi-
ment with the importance strategy, which is halfway between
the subsampling and reference Ref strategy regarding their
filling strategy; whereas the subsampling strategy removes
points on flat surfaces, the importance strategy assigns lower
weights to the flat surfaces. As already discussed in the fill-
ing strategy section, we emphasize salient points using the
don sampling. Even though this strategy restores the original
recall, it does not improve onto the reference Ref result.

By using a subsampling strategy that does not discriminate
toward flat surface points, such as the farthest point sampling,
the results do not change at all, compared to using all the
points. As can be seen from result #30, subsampling to 5000
points from an average of 338000 points per cloud from the
3DMatch dataset, the results lower for only 0.72 percentage
points. This means that the EGS is robust to the number of
points in the point cloud and does not require dense point
clouds to be able to register them.

Even though the alignment of flat surfaces presents a prob-
lem for our method, analyzing the results on the 3DMatch,
KITTI and ETH benchmarks, however, we notice that it does
not pose a severe problem. Despite the fact that the point
clouds from these datasets mostly contain big flat surfaces
(walls, floors, roads, pavements, etc.), we can see fromTables
3, 4, 5 and 6, that our method still obtains very high results on
all the three benchmarks, even achieving the best results on
the ETH benchmark. This is because the point clouds also
contain objects with distinguishable shape, such as indoor
appliances or outdoor vegetation, which steers our method
onto focusing onto these shapes instead of prioritizing the
flat surfaces.

5.6 Computational complexity

Wediscuss the computational complexity of the EGSmethod
in terms of the average runtime and resources needed for
registering two point clouds from the 3DMatch benchmark.
These metrics directly correlate to the applicability of a

Table 9 Results for the EGS method on the 3DMatch, KITTI and ETH
benchmarks using only 5000 points from each point cloud obtained
with the farthest point sampling algorithm

RR (%) RRE (◦) RTE (cm)

3DMatch 83.39 1.66 6.35

KITTI 90.63 0.18 5.98

ETH 94.67 0.41 2.17

We use the stricter threshold τt = 60cm to evaluate on the KITTI
benchmark

Table 10 Average runtime in seconds for registering two pairs from
the 3DMatch benchmark

Mean Std

GeDi 41.51 7.91

SC2-PCR 0.14 0.10

GeoTransformer 0.24 0.04

EGS 12.11 1.99

Comparison made by using only 5000 points from each point cloud

Table 11 Average runtime breakdown in seconds for a registration pair
from the 3DMatch benchmark

# CPU / Cum.
GPU time

pre-processing

target
point
cloud

1 CPU 0.02 s

rotate N CPU 0.24 s
make

positive N CPU 0.22 s

source voxelize N CPU 0.79 s
point pad N CPU 0.55 s
cloud move to

gpu N both 1.07 s

cross-correlation N GPU 10.28 s
estimation 1 GPU 0.002 s
refinement 1 CPU 0.10 s

For each pipeline part we denote its number of repetitions under column
#, if the part is executed on the CPU or GPU and the cumulative time of
execution. For parts that are repeated N times, the cumulative time is the
sum of its N repetitions. For the final version of the EGS method, N =
3536. Note that, in order to obtain these results, the GPU parallelization
has been omitted

method, so we compare them to the latest learning methods.
Because of their large memory footprint, the learning meth-
ods only use 5000 points from each point cloud. Therefore,
to have a fair comparison, we use the farthest point sampling
to get 5000 points from each point cloud and re-run the EGS
on the 3DMatch benchmark.

Before comparing the runtime and resources, however, we
provide the results for the EGS on the 3DMatch, KITTI and
ETH benchmarks using only 5000 points from each point
cloud.

As can be seen from Table 9, the results stay almost the
same, compared to using all the points from the point clouds.
Therefore, we can fairly compare the runtime and resources
with the learning methods knowing that the final results of
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the EGS are not impaired. In the final version of the EGS,
however, we still use all the points available, in order to elim-
inate information loss and the additional overhead of running
the farthest point sampling algorithm.

As can be seen from Table 10, the learning methods are
very fast. With the exception of GeDi, SC2-PCR and Geo-
Transformer operate in under a second. GeDi, on the other
hand, runs for 41.51 seconds on average. The longer run-
time comes from the computation of the local reference
frame at each extracted patch. Our non-learning feature-
less EGS method, on the other hand, runs for 12.11 seconds
on average with a deviation of 1.99 seconds. Compared to
GeoTransformer and SC2-PCR, the EGS has a significantly
higher runtime. However, as we show in the following dis-
cussion, these methods also require a lot more computing
resources compared to the EGS, without having the benefit
of improving the registration results. Therefore, the lower
runtime might not justify the usage of such methods, since
their applicability is impaired. We note here that Table 10
does not measure the time necessary to load the model onto
the GPU or the time for obtaining the farthest point sampling
indices which, differently from the EGS, are a necessity for
the learning methods.

We break down the average runtime for each part of our
pipeline in Table 11 and present the cumulative runtime
results. In order to measure the cumulative runtimes, we omit
using the GPU parallelization, obtaining, therefore, higher
results than the presented 12.11 seconds. Nevertheless, these
results can still provide an intuition into the various parts of
the EGS method. To recap, the EGS pipeline is comprised of
parts that are repeated N times (such as rotating the source
point cloud or performing the cross-correlation) and parts
that are repeated only once (such as estimating the final rota-
tion and translation). Therefore, for the pipeline parts that are
repeated N times, we sum up their N runtimes in order to
obtain the cumulative running time.

As can be seen from Table 11, the largest portion of time
is being used on the cross-correlation part. Even though
this runtime seems large, we note that the average size of
the voxelized point clouds from the 3DMatch dataset is
35.7 × 28.5 × 31.4 for the voxel resolution of V R = 7cm.
This, in addition to repeating the cross-correlation N = 3536
times for each precomputed rotation Ri , makes the 10.28
seconds more plausible. In order to accelerate the cross-
correlation, we make use of the FFT algorithm. Using the
cross-correlation without the FFT implementation in the
background (like the one in PyTorch [117] for example)
runs on average around 17 times slower than our method.
The problem arises because these implementations are not
built for having both the source and target volumes of such
great size. The FFT, in turn, reduces the complexity from
O(K 6) to O(K 3 log(K )) [118], where K indicates the size
of the voxelized volumes. Since K can reach very high values

Table 12 Average GPU occupancy in GBs for registering the 3DMatch
benchmark using only 5000 points from each point cloud

Average GB

GeDi 8.24

SC2-PCR 6.02

GeoTransformer 7.23

EGS 1.29

(reaching even sizes of 203.65× 127.24× 15.08 on average
for the largerKITTI dataset), using the FFT algorithmgreatly
reduces the runtime.

In contrast to the learning methods, the EGS does not
pose a limitation on the number of points it can use dur-
ing the registration process. To register, therefore, two point
clouds from the 3DMatch datasetwith 338000 points on aver-
age each, the EGS takes 27.80 seconds. The rise in running
time compared to using only 5000 points, comes from the
pre-processing of the source point cloud and the refinement
parts. Since the point clouds are much bigger (67.6 times
more points on average) and these parts are computed on
the CPU, their runtime gets inflated. The runtimes of the
remaining parts, namely the pre-processing of the target point
cloud, the cross-correlation and the estimation parts, remain
approximately the same, since the number of voxels do not
drastically change. Therefore, to increase the efficiency of the
EGSwhen using a great amount of points, the pre-processing
step should be parallelized on the GPU.

To further improve our sub-optimal implementation we
canmake use of the hierarchical property of the rotation sam-
pling. Since the polyhedron {3, 5+}2,0 vertices are a subset
of the polyhedron {3, 5+}4,0 vertices, we can hierarchically
query the rotations of polyhedron {3, 5+}4,0 using only the
candidate solutions of polyhedron {3, 5+}2,0. Since the run-
time of the EGS amounts to around 2 seconds when using
{3, 5+}2,0 as the sampling for S2, the total runtime would
benefit from such a strategy.We leave the pre-processing par-
allelization, and the hierarchical implementations as future
work.

We compute the average resources needed to run amethod
by comparing the average occupancy of the GPU memory
necessary for registering a pair of point clouds. An increas-
ing trend in recent works is to tackle the registration problem
by adding more compute power, which in turn translates to
a bigger learning model. Therefore, all of the recent meth-
ods have a very large memory footprint, which makes them
inefficient for many practical use-cases.

As can be seen from Table 12, the most memory efficient
learning method uses at least 6 GB of GPU RAM. In con-
trast, the EGS method uses only 1.29 GB, which makes it
much more efficient and applicable in scenarios with limited
resources, such as robots or mobile phones. Additionally,
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the advantage of the EGS over the learning methods is that
the parameters can be changed to address the needs of the
user, without any need for re-training. For example, to lower
the resources even more, the user can use a different rota-
tion parametrization, as the one show in Table 8 under result
#11, without any trade-offs to the results; where the GPU
occupancy drops to only 0.89 GB. Therefore, our method
provides a broader applicability compared to the learning
methods, without any trade-offs to the quality of the results.

6 Implementation details

All the experiments are done on a single desktop com-
puter, with an Intel Core i7-9700 CPU (3GHz, 8-core),
16GB RAM, and NVIDIA TITAN Xp, under Ubuntu 18.04
LTS. We use PyTorch [117] to implement the EGS and
Open3D [119] to implement the generalized ICP algorithm.
The cross-correlation is a wrap around of the PyTorch FFT
implementation which is made to mimic a standard PyTorch
3D convolution (which by definition performs a cross-
correlation). Therefore, we realize a fast cross-correlation
that can handle two big voxelized volumes, which a standard
Pytorch 3D convolution implementation could not do. The
padding discussed in the paper, therefore, refers to the cross-
correlation volume padding, and not to the FFT padding.

All the other results are reproduced using the respective
authors code and data pre-processing guidelines. We provide
the implementation details in Appendix B.

7 Visualizations

We visualize the registration results on the two most chal-
lenging datasets from the novel FAUST-partial benchmark:
FP–R–H and FP–O–H. In Figs. 9 and 10, we show the worst
registrations for eachmethodon the respective datasets.More
concretely, each row represents the worst performing regis-
tration pair for a given method based on the average distance
(AD) between the points of the transformed source point
clouds:

AD = 1

K

K∑

i=1
xi∈ src

‖(Rgt xi + tgt ) − (Restxi + test)‖2 (17)

where K is the number of points, Rgt and tgt represent the
ground-truth rotation and translation, and Rest and test repre-
sent the estimated ones. Whereas the RRE and RTE metrics
are useful to distinguish between the rotational and trans-
lational errors, the AD metric allows us to aggregate this
information into onemetric and discriminate theworst exam-
ples over a single metric.

The Figures reflect well the results already presented in
Table 7. The percentage of successfully registered examples
(the recall measure RR) from the Table follows the success-
fully registered worst case examples from the Figures.

8 Conclusion

The proposed traditional approach provides exceptionally
strong 3D registration results. Even though the method is
simple and featureless, it is still very effective, demonstrating
great results on public benchmarks, and even achieving the
best results on several of them, when compared to the gener-
alization performance of the current state-of-the-artmethods.
Following a thorough analysis, we see that the EGS is robust
to the change of its parameters and is not dependent on the
refinement strategy choice. To further advance the analy-
sis of a 3D registration method, we provide a methodology
for creating better 3D registration benchmarks and assessing
their difficulty. Using this methodology, we propose a novel
FAUST-partial benchmark that addresses the lack of registra-
tion parameter range variability in the current benchmarks, as
well as the bias toward similar data. The benchmark provides
the option to isolate the analysis of the quality of a particular
3D registration method to a single registration parameter and
determine its robustness regrading that parameter. Compar-
ing the state of the art on the novel benchmark, we observe: a
clear drop in performance for lower overlapping point clouds,
almost no influence of the translation parameter to the diffi-
culty of the registration, and some influence of the rotation
range to the difficulty of the registration. The EGS baseline
achieves competitive results and outperforms all the meth-
ods on the medium translation FP–T–M and medium overlap
FP–O–M benchmarks.
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Fig. 9 Visualization of the worst registration results of the GO-ICP,
FPFH+SC2PCR,GeDi, FCGF+SC2PCR,GeoTransformer andour pro-
posed EGS method on the FP–R–H dataset. Each row represents the
registration example that obtained the worst AD metric result for a

particular method. Each column represents the registration result for a
particular method. We additionally indicate the ground-truth rotation
Euler angles in degrees for each example
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Fig. 10 Visualization of the worst registration results of the GO-ICP,
FPFH+SC2PCR,GeDi, FCGF+SC2PCR,GeoTransformer andour pro-
posed EGS method on the FP–O–H dataset. Each row represents the
registration example that obtained the worst AD metric result for a

particular method. Each column represents the registration result for
a particular method. We additionally indicate the ground-truth overlap
for each example
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Appendix A Error bounds derivation

In this section, we derive a numerical bound RB on the rota-
tion error and an analytical bound T B on the translation error.

To create the numerical bound RB for the rotation error,
we generate a set of K = 1, 000, 000 random rotation
matrices Rrand = {Rk | k = 1, . . . , K } using [120]. Next
we find the upper bound for the minimal RRE between
each generated matrix Rk and our precomputed set of N
rotation matrices Rprecomp = {Ri | i = 1, . . . , N } from the
main paper. We use Rprecomp generated with the polyhedra
{3, 5+}4,0 and angle step S = 10. The numerical approx-
imation for the upper rotation bound RB can therefore be
derived as:

RB = max
Rk∈Rrand

min
Ri∈Rprecomp

RRE(Ri , Rk) = 21.79◦ (A1)

The numerical bound amounts to 21.79 degrees.
The translation error depends on the voxelization resolu-

tion V R used. Let tGT be the ground-truth translation vector
for a registration example, and let t∗ be the estimation com-
puted by the EGSmethod. If the ground-truth translation tGT
is located in the discretized location represented with t∗, we
can derive the following:

RT E(t∗, tGT) = ‖t∗ − tGT‖2 ≤ 1

2

√
3V R (A2)

where Eq. (A2) follows by knowing that the maximal dis-
tance from the central point of a voxel is half of the space
diagonal of that voxel. For a voxel with side V R, the space
diagonal amounts to

√
3V R. Therefore, the upper bound on

the translation error is:

T B = VR
√
3

2
. (A3)

For a coarse voxel resolution of V R = 7cm, the upper
translation error bound would amount to T B = 6.06cm.

Appendix B Implementation details

We list the parameters used for the various implemented reg-
istration methods.

To implement GO-ICP [33], we first translate each point
cloud to the origin and use 5cm, 30cm, 10cm and 1cm voxel
grid to downsample the points from the 3DMatch, KITTI,
ETH and FP benchmarks, respectively. We tried to register
the examples without downsampling as well, but the results
did not differ. Next, we scale the point clouds of a registration
pair using the L2 norm of the farthest point from both point
clouds. We present the results using the default parameters
noted in the paper: 0.001 mean squared error convergence
threshold, −π for the smallest rotation values along the x,y
and z dimensions of the rotation cube, 2π radians for the side
length of each dimension of the rotation cube, −0.5 for the
smallest translation value along the x,y and z dimensions of
the translation cube, 1.0 for the side length of each dimen-
sions of the translation cube, no trimming, 300× 300× 300
distance transforms (DT) with 2.0 expand factor. As noted
by several works [33, 83], the method is sensitive to the trim-
ming parameter that is correlated to the overlap parameter.
Therefore, we tried out several trimming factors: 0%, 30%
and 60%. The results do change for the different parameters.

To implement SC2-PCR [84], we first voxel-downsample
the point clouds and then find the FPFH or FCGF features
with the same parameters used by the authors. Refer to
Table 13 for the parameters used.

To implement DIP [72] we randomly sample 25k points
from each point cloud to compute their descriptors since
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Table 13 Parameters used for
the SC2-PCR method

Dataset Number Inlier d_thre Voxel nms
Iterations Threshold Downsample Radius

3DMatch 10 0.1 0.1 0.05 0.1

KITTI 20 0.6 0.1 0.3 0.6

ETH 10 0.3 0.2 0.1 0.3

FP 10 0.03 0.04 0.02 0.03

Table 14 Parameters used for the GeDi method

Dataset Samples Samples Radius Patches
Per batch lrf lrf Per pair

3DMatch 500 4000 0.6 5000

KITTI 250 2000 2.5 50000

ETH 500 4000 1.5 5000

FP 500 4000 0.3 5000

Table 15 Parameters used for the PointDSC method

Dataset Inlier Threshold Sigma_d Voxel Size

KITTI 0.6 1.2 0.30

ETH 0.3 1.2 0.20

results with 5k points were performing poorly. We tested dif-
ferent thresholds for the LRF radius, and present the results
for the best performing one: 0.6×√

3cm. For theETHdataset
we use the pre-processed data from the authors and register
the descriptors using RANSAC.

To implement GeDi [27], we use the parameters provided
in Table 14. The remaining parameters: descriptor dimen-
sion, samples per patch and voxel size are kept fixed for
all the datasets and are set to the values 32, 1024 and 0.01,
respectively.

For SpinNet [71], we use the FCGF backbone to create
descriptors for 5k keypoints chosen randomly.

To implement PointDSC [16], we use the parameters pro-
vided by the authors for the 3DMatch dataset and change
several of them accordingly, as noted in Table 15.

To implement GeoTransformer [95], we use the pro-
vided parameters by the authors. However, to deal with the
large memory footprint (noted by the authors themselves),
we follow the authors recommendation to scale down and
voxel downsample the point clouds so they either match
the inlier threshold (0.1m) or point cloud density (0.006m)
of 3DMatch. We choose the latter, since it provides better
results. To match the point cloud density for a registration
pair, we scale down the point cloud with:

s =
0.006
src res + 0.006

tgt res

2
(B4)

where src res and tgt res are the original source and target
point cloud resolutions. Intuitively, we use the average scale
needed to match the original resolutions of the source and
target point clouds and the 3DMatch dataset. This scaling,
however, is still too large to satisfy the large memory foot-
print. Therefore, we multiply the scaling factor with 2.3 for
the KITTI dataset, 1.5 for the ETH dataset. We do not scale
the FP datasets. After that, we voxel-downsample the point
clouds using the same voxel size as used for the 3DMatch
dataset: 0.025m.

To implement YOHO [73] we use the author guidelines
to voxel-downsample the point clouds by multiplying the
resolution of 0.025 with the scale difference between the
evaluation dataset and the 3DMatch dataset. Hence, for the
KITTI dataset the voxel-downsample resolution is 0.75cm
and for ETH is 0.20cm.
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