
Machine Vision and Applications (2023) 34:81
https://doi.org/10.1007/s00138-023-01432-z

ORIG INAL PAPER

Variable exponent diffusion for image detexturing

Pierre-Alain Fayolle1 · Alexander G. Belyaev2

Received: 7 September 2022 / Revised: 25 April 2023 / Accepted: 8 July 2023 / Published online: 10 August 2023
© The Author(s) 2023

Abstract
We consider a variational approach to the problem of structure+ texture decomposition (also known as cartoon+ texture
decomposition). As usual for many variational problems in image analysis and processing, the energy we minimize consists
of two terms: a data-fitting term and a regularization term. The main feature of our approach consists of choosing parameters
in the regularization term adaptively. Namely, the regularization term is given by a weighted p(·)-Dirichlet-based energy∫
a(x)|∇u | p(x), where the weight and exponent functions are determined from an analysis of the spectral content of the image

curvature. Our numerical experiments, both qualitative and quantitative, suggest that the proposed approach delivers better
results than state-of-the-art methods for extracting the structure from textured and mosaic images, as well as competitive
results on image enhancement problems.

Keywords Image decomposition · Structure extraction · Total variation · Variable exponent · Variational formulation

1 Introduction

Given an image, the structure+ texture (cartoon+ texture)
image decomposition refers to the problem of a decompo-
sition of the image intensity function into the sum of two
components: the structure component representing homo-
geneous image regions separated by salient edges and the
texture component containing repeating patterns and noise.

Structure+ texture image decomposition remains a topic
of intensive research due to various applications includ-
ing low-light image enhancement [1], defect detection [2],
image compression [3], image super-resolution [4], and
image composition and content-aware image resizing [5].
In applied mathematics, the problem of structure+ texture
image decomposition led to developing a number of novel
variational approaches and numerical algorithms [6, Chap-
ter 1], [7, Section5.2], [8, Section15.2], [9, Chapter5].

In this paper, we attack the structure+ texture decom-
position problem using a variational approach based on a
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generalization of the total variation energy. Total variation
(TV) regularization was introduced to image processing
thirty years ago [10], and since then, it has remained one
of the most popular variational regularization technique, and
was successively used in a vast majority of image process-
ing tasks. We generalize the TV approach by considering a
weighted p(·)-Dirichlet-based energy, where the weight and
exponent are spatially varying.

1.1 Related work

Several approaches to the problem of structure+ texture
extraction are based on variational methods and their rig-
orous mathematical analysis was initiated in [6, Chapter1].
The image total variation, introduced in [10], was used for
texture suppression purposes in [11], [7, Section5.2], and [9,
Chapter5]. The reader is also referred to [11] for a survey
of TV-based structure + texture image decomposition meth-
ods. TV-based approaches lead to several variants involving
higher order schemes in [12, 13], adaptive TV energies in
[5], non-convex regularizations in [14, 15], and low-rank
approximations in [16, 17]. Variational approaches with dif-
ferent norms were considered in [6, 18]. A possible issue
with TV-based approaches is that they tend to oversmooth
the recovered image and blur the main edges.

The variational deep priors approach [19] is an hybrid
variational method, where the regularizer (or prior) is learned
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from data. More precisely, a family of denoisers parameter-
ized over the noise variance are trained on images corrupted
by Gaussian noise with given variance, and used as the regu-
larizer in the variational formulation. The difficulty with this
approach is that the family of denoisers may fail to remove
the details at a given frequency, since it is not specifically
trained for this task.

Severalmethods basedonmorphological component anal-
ysis (MCA) [8, 20–25] were proposed for extracting the
structure of an image. Filter-based methods include the fast
nonlinear filter proposed in [26] and a variant using banks
of filters [27]. Another filter-based method is the popular
guided filter approach introduced in [28]. It may suffer from
halo artifacts, an issue that was addressed by considering a
gradient domain guided filter in [29]. Variants include [14,
15, 30, 31] or the very recent work [32]. The problem with
edge preserving image smoothing approaches is that they
are not initially designed to deal with image textures, rely on
local properties andmay fail to suppress certain high contrast
textures.

Othermethods includemachine learning-based approaches
[33–35], approaches based on patch recurrence [36, 37] or
the very recent generalized smoothing framework [38, 39].
Finally, it is also possible to extract the texture first. Tex-
tures can be characterized by their power spectrum [40]. A
power-spectrum-based two-pass approach was very recently
introduced in [41]. The difficulty is that in general there is no
rigorous or definitive mathematical description of textures
[42], and thus, statistical tests on the power spectrum may
not be always sufficient for extracting the texture or high-
frequency details components.

1.2 Motivation, contribution, and organization

In our treatment of the structure+ texture image decompo-
sition problem, we follow the general variational approach
and minimize an energy functional consisting of data-fitting
and regularization terms (variants of this approach can be
found in [7, Section5.2] and [9, Chapter5], for example).
However, the choice of the regularization term we use in this
study has several important differences with the regulariza-
tion terms commonly used in the structure+ texture image
decomposition studies. First of all, the conventional varia-
tional decomposition approaches mainly focus on selecting
texture-insensitive data-fitting terms and the total variation
energy constitutes a very popular choice for the regulariza-
tion term. In contrast to these conventional approaches, our
regularization term is data-dependent and imposes strong
smoothing in texture-rich image regions. Namely, we con-
sider in this work weighted p(·)-Dirichlet energies
∫
a(x)|∇u | p(x)

with spatially varying weight a(x) and exponent p(x), where
theweight and exponent are defined to preserve salient image
edges while suppressing the image texture. We propose two
schemes for automatically selecting the exponent p(x) and
the weight a(x), one for the problem of structure extraction,
where we enforce 0 < p(x) ≤ 1, and one for the problem
of detail enhancement, where we enforce 1 ≤ p(x) ≤ 2. For
both cases, theweighta(x) and exponent p(x) are determined
from an analysis of the spectral content of the level-set and
mean curvatures of the image intensity function. Our choice
of the level-set curvature spectral content is motivated by
its sensitivity to both the low-contrast and high-contrast tex-
tures. On the other hand, the mean curvature is much more
numerically stable than the level-set curvature and, there-
fore, the use of image mean curvature is preferable when
dealing with detail enhancement tasks. Similarly, setting
0 < p(x) ≤ 1 leads to aggressive image texture smoothing,
while choosing 1 ≤ p(x) ≤ 2 yields more gentle smoothing
which is appropriate for image sharpening purposes through
the standard unsharp-masking procedure.

Unlike the methods from [43] and [44], we use a single
pass of an ADMM-based optimization procedure, making
the proposed approach more efficient.

Our numerical experiments suggest that the proposed
approach delivers better results than state-of-the-art methods
for extracting the structure from textured images and mosaic
images, as well as competitive results on image enhancement
problems.

The rest of this work is organized as follows: We describe
our approach in Sect. 2. The results of our numerical experi-
ments are provided in Sect. 3, as well as additional possible
applications of the proposed approach. Finally, we conclude
in Sect. 4.

2 Proposed approach

2.1 A visual illustration of the approach

We start with summarizing the whole approach. It is illus-
trated visually in Fig. 1. Given an input image, in Fig. 1a, we
want to remove the texture and extract the main structure of
the image, as in Fig. 1d. First, we compute the level-set curva-
ture (3) of the image as shown in Fig. 1b, or the surface mean
curvature (4), which is then used to define a disparitymeasure
(6). Next, we use this disparity measure to define a weight
function (shown in the top row of Fig. 1c), and an exponent
function (shown in the bottom row of Fig. 1c). Finally, the
image structure, in Fig. 1d, is obtained by minimizing the
weighted p(·)-Dirichlet energy (1), or (2), defined in terms
of these weight and exponent functions.
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Fig. 1 A visual illustration of
the approach: a the input image;
b the level-set curvature (3); c
top image: the weight function
a(·); Bottom image: the
exponent function p(·); d the
extracted structure

2.2 Weighted p-Dirichlet energy

Given a bounded domain � ⊂ R
2, and a function f defined

on �,1 we consider the following weighted p(·)-Dirichlet
energy

∫

�

(
a(x)|∇u | p(x)

)
+ λ

2

∫

�

(H [u − f ])2 −→ min, (1)

with variable exponent p(x) and weight function a(x). H
is a smoothing operator, and we use the convolution with a
Gaussian

H [u − f ] = Gσ ∗ (u − f ), Gσ (x) = G(x/σ)/σ 2,

where, unless explicitly mentioned, σ = 1. An alternative to
(1) consists in using the L1 norm for the fitting term, leading
to
∫

�

(
a(x)|∇u | p(x)

)
+ λ

∫

�

|H [u − f ] | → min . (2)

The solution u to the problem (1), respectively (2), extracts
the main structure of the original image f . Natural and struc-
ture images are usually sparse in the gradient domain, thus the
consideration of the L p-based gradient regularization term∫
�

|∇u | p(x) with an exponent 0 < p(x) ≤ 1, which pro-
motes sparsity.

In (1), respectively (2), the first term enforces sparseness
of the resulting image, while the second term corresponds to
a fitting term that enforces similarities with the input image.
The weight λ controls the trade-off between these two terms.
In practice, for the structure extraction problem, we would
like to assign more weight to the first term in the textured
regions, and a low weight in the non-textured regions, thus
the introduction of a spatially varying weight a(x) for the
first term. Similarly, using a spatially varying exponent p(x)
allows us to control the gradient sparsity of the structure

1 � is a rectangle for images.

image u(x), by using low values for p(x) in textured regions.
We discuss further the expressions used for a(x) and p(x) in
Sect. 2.4.

The p(·)-Dirichlet energy term (1) with variable expo-
nent p(x) was previously considered in [43–47]. The case
p(x) ≥ 1 was considered in [45–47]. It leads to a convex
energy for which more results and tools are available. Simi-
larly to [43, 44], we consider for structure extraction the case
with 0 < p(x) ≤ 1, for which fewer results exist. The case
p ≡ const, p ∈ [0,∞) was studied in [48, 49], where the
weighted graph p-Laplacian is applied to problems in image
and mesh processing. Indeed, for p ∈ [2,∞)

�pu = div(|∇u | p−2∇u) = 0

is the Euler–Lagrange equation to
∫
�

|∇u | p.
One problem with the case p < 1 is that the energy (1) is

non-convex, and thus, the uniqueness of the minimizer is not
guaranteed. In practice, we minimize (1) with the alternat-
ing direction method of multipliers (ADMM) [50], see also
[51], and found experimentally that the obtained minimizer
delivered very good results. The energy (2) is non-convex as
well, when p < 1, and similarly dealt with by ADMM.

2.3 Minimization of the weighted p(·)-Dirichlet
energy

We use a variant of ADMM to solve numerically (1). The
problem (1) can be rewritten as

∫

�

a(x)|ξ | p(x) + λ

2

∫

�

(H [u − f ])2 → min

with the constraint

ξ = ∇u.
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The minimization is performed by the repetition of the fol-
lowing steps

ξ k+1 ← max

{

|sk | − a(x)

r |∇uk |1−p(x)
, 0

}
sk

|sk | ,

sk = ∇uk − μk

r
,

uk+1 ← Solution of − r(�u − div(ξ k+1))

+ div(μk) + λH∗H [u − f ] = 0,

μk+1 ← μk + ρ
(
ξ k+1 − ∇uk+1

)
.

See “Appendix A” for a derivation of these steps. A sim-
ilar approach is used for solving numerically (2). See
“Appendix B” for details.

One of the remaining issues to be resolved is the definition
of the functions for the exponent p(x) and theweight function
a(x). We propose to learn them from information gathered
from the input image. In particular, we use the curvature
information.

2.4 Computation of p(x) and a(x)

For the image structure extraction problem, it seems reason-
able to force the weight a(x) in (1), or (2), to be large for the
small-scale image details and texture regions of the image
that we want to suppress, and low, otherwise. It corresponds
to assigning more weight in the textured regions to the first
term of (1), whose task is to enforce gradient sparsity of u(x).
Similarly, the exponent p(x) controls the gradient sparsity of
the structure image u(x), thus it makes sense to force low
values in textured regions. Perfect expressions for a(x) and
p(x) are not known in general, and we need to estimate them
from the input image using, for example, the curvature infor-
mation.

We can assume that small-scale image details and texture
contribute to the high-frequency part of the level-set curva-
ture

k(x) = div

( ∇ f (x)
|∇ f (x)|

)

. (3)

One possible issue with the level-set curvature k(·) is that
it is difficult to estimate it robustly in some cases. Indeed,
for natural images with less texture (consider for example
a perfectly blue sky), |∇ f (x)| is close to 0, making (3) ill-
defined. An illustration of this fact is shown in Fig. 2. An
alternative is to view the image as the height field z = f (x)

and to consider instead the surface mean curvature2

Km = 1

2
div

(
∇ f

√
1 + |∇ f |2

)

. (4)

For images with lots of structure such as, for example,
mosaics, using the level-set curvature (3) is preferable. How-
ever, for images containing less texture, it is better to use the
mean curvature (4) to avoid visual artifacts.

Let k̃(x) be obtained from k(x) (or similarly from Km(x)
when themean curvature is used instead) by suppressing high
frequencies of k(x) (respectively, Km(x)). In practice, we use
the Butterworth low-pass filter

[

1 +
( |ω|

b

)m]−1

(5)

with cutoff frequency b. We estimate the difference between
k and k̃ by |k − k̃ |, smooth it by convolution with the Gaus-
sian kernel Gσ (σ = 3 was used in our experiments) and
normalize it to obtain the disparity

d(x) = Gσ ∗ |k − k̃ |
max

(
Gσ ∗ |k − k̃ |

) , (6)

where, by construction, 0 ≤ d(x) ≤ 1.
Under the assumption that the small-scale details and tex-

ture contribute to the high-frequency content of the curvature,
the disparity function d(x) is a normalized function, which
is close to 0 in non-textured regions (where the curvature
k and the filtered curvature k̃ agree), and close to 1 in tex-
tured regions (where the curvature k is high, and the filtered
curvature k̃ low). This disparity function can be used for pro-
viding expressions for the spatially varying weight a(x) and
exponent p(x).

Structure extraction

For the problem of structure extraction, we define the weight
a(x) and the variable exponent p(x) from the disparity d(x)
as follows

a(x) = d(x)2 and p(x) = 1 − d(x)
2

. (7)

As stated earlier, our goal is to set a(x) to be large in tex-
tured regions (i.e., to give more weight to the regularization
term and enforce gradient sparsity) and low in non-textured
regions. Removing the high frequency curvature content
affects corners and some other salient image features. So

2 We use Km for the mean curvature instead of the usual symbol H ,
which is already used to denote a smoothing operator.
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Fig. 2 An example of natural
image is shown with the
computed level-set curvature (3)
and the mean curvature (4),
scaled by a factor 50. Notice the
noise in the region where the
level-set curvature is close to 0
(the blue sky)

if d(x) is small, it is better to reduce the smoothing effect of
the p(·)-Dirichlet term. A simple choice for such a reduction
is a(x) = d(x)2. For the expression of the exponent p(x),
a constant equal to 1 would correspond to the TV model
[10], which preserves image edges. Using p(x) < 1 further
enforces (gradient) sparsity. Lower values of p(x) should be
obtained in textured regions, where the normalized disparity
d(x) is close to 1.

Image sharpening

For the problem of image sharpening, we use the following
variant

a(x) = d(x)2 and p(x) = 2 − d(x). (8)

In the case of image detail sharpening, we use the same
expression for a(x) with a similar justification. When we
deal with the image sharpening problem, we need an accu-
rate smoothing method preserving salient edges. The choice
p(x) < 1 is too aggressive for this purpose, so we choose
p(x) such that 1 < p(x) < 2, justifying our choice for (8).

3 Numerical experiments and applications

We compare the approach described in this work to recent
approaches for the problem of structure+ texture extraction.
A direct application is the extraction of the structure image
from a mosaic image. We also consider another possible
application of image structure extraction: sharpening details
in images. For each of these problems, we compare the pro-
posed approach to recent and state-of-the-art methods.

3.1 Structure + texture decomposition

When considering the problem of structure+ texture decom-
position, the goal is to extract the structure u from an input
image f , the texture component is then given by f − u. We
compute u as a minimizer of the p(·)−Dirichlet energy with
an L2 (1) or L1 fitting term (2) using the numerical method
described in Sect. 2. We use the left image in Fig. 3 as a first
test image. Themiddle and right images in Fig. 3 illustrate the
results obtained by our approach when using the L2 fitting
term or the L1 fitting term, respectively.

A visual comparison between our approach, [19, 32, 39,
41] is provided inFig. 4,where zoomson two selected regions
are also shown. These selected regions are further magnified
in Fig. 5. We can see that the methods from [32] and [19]
tend to over-smooth the structure, while the method from
[39] fails to remove the texture from the napkin properly,
see the zoomed regions and Fig. 5, as well. Visually, the best
results are obtained by our approach and the method from
[41]. The zoomed regions in Figs. 4 and 5 demonstrate that
both approaches retain the main structure of the face, while
removing the texture from the napkin.

To better appreciate the results obtained with the method
from [41] and our approach, we show in Fig. 6 the one dimen-
sional signals corresponding to a cross section of Fig. 6. The
cross section is done along the line in blue color in Fig. 6, left
image. The top-most graphs correspond to the initial signal,
while the graphs shown in the middle correspond to a slice of
the structure obtained from our approach (the middle image)
and the method from [41] (the right image). Ultimately, we
want to preserve the low frequency components of the sig-
nal, without over-smoothing the sharp features or shrinking
the signal too much, and while removing the high frequency
components. Thedifference between the two signals is shown

Fig. 3 Structure extraction from
a test image (left). The extracted
image structure obtained by our
approach is shown in the middle
(L2 fitting term is used (A1))
and right images (L1 fitting term
is used (B3))
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Fig. 4 Structure extracted from
Fig. 3, left image, for different
approaches

Fig. 5 The zoomed regions
from Fig. 4

Fig. 6 Cross section along the blue line (left image) for some of the structure images shown in Fig. 4

in the bottom-most graphs. It corresponds to the texture infor-
mation of the image (the high-frequency components).

L2 against L1 fitting term

One could expect the L1 fitting term to lead to a better fit than
the L2 fitting term in the regions of low disparity and thus

a better preservation of the main edges of the image struc-
ture. In practice, however, we did not find a large difference
between the results obtained when a L2 fitting term (1) or
a L1 fitting term (2) are used. Figure3 illustrates the results
obtained in each case. A zoom on the selected regions shown
in Fig. 4 is shown in Fig. 7.
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(1 () 2)

Fig. 7 A zoom on selected regions shown in Fig. 4 when the L2 (1),
respectively, L1 (2) are used

Parameters sensitivity

The proposed approach depends on two main parameters: b,
the cutoff frequency of the Butterworth filter (5), and λ, the
weight controlling the trade-off between the fitting term and
the regularization term in (1), respectively (2). Intuitively,
lower values of b suppress more terms in the spectrum of
the filtered curvature k̃; thus, it forces the suppression of
the image edges. Consequently, b should be set low enough
to suppress texture, but not too low; otherwise, it tends to
smooth the main image edges as well. The parameter λ con-
trols the weight of the fitting term against the regularization
term. Higher values for λ force the image structure u to stay
closer to the input image f . The sensitivity of the proposed
approach to these two parameters is illustrated in Fig. 8 when
the L2 fitting term is used, and in Fig. 9 when the L1 fitting
term is used.

Ablation study

In Fig. 10, we study the impact of the spatially varying
weight function a(x) and the spatially exponent function
p(x), by individually setting them to a constant value. In
(a), the proposed approach (1) with the parameter values
b = 80, λ = 15 is used. In (b), the weight function is set
to a constant a(x) = 1, while the exponent function p(x)

is kept varying. The result appears to be oversmoothed and
the main features of the structure image are not preserved.
In (c) and (d), the weight function a(x) is spatially varying,
while the exponent function p(x) is kept constant to the val-
ues 1/2 and 1, respectively. When p(x) = 1/2, the result
is too smooth overall, though it appears to be sharper than
(b). The case p(x) = 1 allows to preserve sharper edges for
the face (top row), but cannot filter the texture on the napkin
(bottom row). Overall, (a) delivers the best result.

3.2 Extracting a structure image from amosaic
image

A direct application of structure extraction methods is
used for dealing with the problem of extracting the main
structure image from a mosaic image. Several examples
of mosaic images are shown in Figs. 11, 12 and 13. These
mosaic images are processed by our approach, and the meth-
ods from [19, 32, 39, 41]. While the method from [41]
performed very well for extracting the image structure from
a textured image (see Figs. 4, 5, 6), it is surprisingly hav-
ing difficulties with mosaic images. In most cases, it fails at
removing the tile patterns. The method from [19] performs
very well on several of these mosaic images, but is also sig-
nificantly slower, and can over-smooth parts of the images
sometimes. Our approach performs similarly well: On some
images, it delivers slightly worse results than [19], while on
others, it does a better job at preserving some of the main
image details.

3.3 Quantitative analysis

In general, there are no widely used metrics or quantita-
tive methods for comparing the output of structure+ texture
decomposition methods and we have to rely essentially on
visual and qualitative comparisons, as done in the previous
sections.

One possible approach for a quantitative analysis of image
structure extraction methods could be as follows: gener-
ate a synthetic structure image s (for example, a piecewise
constant function), load a texture image t from a data-set,
such as, for example, [52] and form the image s + t (with
appropriate weighting, if necessary). Then, one can com-
pute a structure image s1 with a given structure extraction
method and compare it with the known structure s using the
peak signal-to-noise ratio (PSNR) or the structural similarity
index measure (SSIM).Wewill use the simple example from
Fig. 14 to show that this approach cannot work in general.

Figure14 shows a synthetic textured image (st) and two
possible decompositions into structure and texture: st =
s1 + t1 = s2 + t2. The structure (respectively, texture)
images differ only by a constant shift (i.e., s1 = s2 + c,
where c is a constant). In this example, the synthetic image
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Fig. 8 Influence of the two
main parameters b and λ when
minimizing (1)

Fig. 9 Influence of the two
main parameters b and λ when
minimizing (2)
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Fig. 10 Influence of the
spatially varying weight a(x)
and exponent p(x) functions on
the result. a (1) is minimized
with the parameters b = 80 and
λ = 15. In b, c and d either the
weight function a(x) or the
exponent function p(x) is set to
a constant

Fig. 11 Extracting the structure
from mosaic images via
different approaches
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Fig. 12 Extracting the structure
from mosaic images via
different approaches

Fig. 13 Image structure
extraction from a mosaic image
via different approaches

is obtained from the sum of the first structure and texture (s1
and t1). The corresponding scores are: PSNR(s1, s2) = 16.5,
SSIM(s1, s2) = 0.71, and are relatively low. Additionally,
we have: PSNR(st, s1) = 16.31, SSIM(st, s1) = 0.68, and
PSNR(st, s2) = 41.6, SSIM(st, s2) = 0.96. This synthetic
example illustrates that the problem is ill-posed and that a
quantitative analysis on a synthetic data-set is difficult to
perform in general.

In spite of these difficulties, a recent work [53] proposed
a method for trying to quantify the performance of structure
extraction methods. The approach is interactive and relies
on the user to select points on an extracted structure image.
These points are classified in two separate categories: The
structure category and the texture category. Scores are com-
puted with different methods for the neighborhoods of points
in each category and combined by cross-entropy. Intuitively,
neighborhoods of points in the structure category should be
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Fig. 14 An example illustrating the difficulty of performing a quantitative analysis. A synthetic image is obtained from the sum of the first structure
and texture. The second structure and texture (obtained by a constant shift) yield the same synthetic image. Note that the textures are scaled by 5
for visibility purposes

similar to the input image, and neighborhoods of points in
the texture category should have the texture smoothed (they
should not preserve edges). This method does not seem to be
widely used so far, outside of the work [32], possibly because
it relies on a user to select key points. Nevertheless, we pro-
vide in Table1 the scores obtained with this approach on the
images used in Figs. 4, 11, 12, and 13.

3.4 Running time

The proposed approachwas implemented inMATLAB.3 The
running times for the structure extraction from the textured
image (Fig. 4), and from the mosaic images in Figs. 11, 12
and 13 are provided in Table2. These running times were
obtained on an Intel CORE i3 at 3.3GHz using a single
thread and are averaged over multiple runs. All the other
methods used in the comparison [32, 39, 41] are similarly
implemented in MATLAB and run in the same conditions.
The computational timings for [19] are omitted from this
table, because they are not directly comparable to the other
methods. The approach relies on a denoiser implemented by
a deep neural network and is not competitive when run on a
CPU. One can observe that our schemes show competitive
computational times, while providing high quality results.

Themost time-consuming part (approximately 25%of the
total time) in our approach is the solution at each iteration
of a simple linear PDE in the second step of the minimiza-
tion procedure described in Sect. 2.3. This PDE is solved in
frequency space using the fast Fourier transform.

All these approaches, with the exception of [41], are itera-
tive, and run for a sufficient number of iterations to compute
the image structure. For energy-based methods, such as ours,
the energy can also be monitored and used as a stopping cri-
terion.

The time-consuming part in the method described in [32]
is the computation at each iteration of the edge aware filters
and their application, while the method [39] needs to solve

3 The code is available at https://github.com/fayolle/tv_ap_onepass_
demo.

a linear system at each iteration by the pre-conditioned con-
jugate gradient method. The method described in [41] spent
most of its time is in computing statistics on image patches.

3.5 Image details sharpening and enhancement

Another domain of application is image sharpening.Given
an input image f , we extract the structure u using the
approach described in Sect. 2 and then compute the texture
t = f − u. We use a simple method to sharpen the details:
We simply multiply the texture by a constant. The sharp-
ened image ( fS) is finally obtained by fS = u + α( f − u).
In the results shown in Fig. 15, we set α = 5. For compar-
ison, we show also the results obtained by combining the
approach previously described for image sharpening with
different state-of-the-art approaches [32, 39, 41] for the struc-
ture extraction. A zoom on the regions highlighted in red and
green color in the top-left image of Fig. 15 is shown in Fig. 16.
Bothmethods from [39] and [32] generate artifacts,which are
highlighted by the white color boxes in Fig. 16. The method
from [41] and our approach do not generate such artifacts
while sharpening the image details.

Enhancing images with haze or mist is another example
of possible application. An example of an image and its pro-
cessed versions is shown in Fig. 17, with zooms on selected
regions shown in Fig. 18. The process is relatively similar
to image sharpening: given an observed image, its structure
is extracted and the recovered details are amplified. When
dealing with natural images, we saw in Sect. 2.4 that the
surface mean curvature (4) was more stable than the level-
set curvature (3). This is illustrated in the middle and right
images in Fig. 17, where the level-set curvature, respectively,
the surfacemean curvature, is used for the computation of the
disparity term (6).We can observe in themiddle image visual
artifacts coming from the use of the level-set curvature, and
amplified by the image enhancement process. The image on
the right does not have these artifacts. The zoomed regions in
Fig. 18 indicate that both methods are able to enhance image
details despite the haze.
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Table 1 T3SI scores [53]
(Higher value, shown in bold
font, is better)

ADMM for (1) [32] [39] [41] [19]

Figure4 2.62 2.44 2.53 2.45 2.48

Figure11—top row 2.67 2.65 2.59 2.38 2.62

Figure11—bottom row 2.77 2.61 2.71 2.31 2.70

Figure12—top row 2.48 2.47 2.20 2.25 2.28

Figure12—bottom row 2.70 2.58 2.48 2.18 2.53

Figure13 2.70 2.70 2.66 2.31 2.70

Table 2 Running times (in sec.)
for the structure extraction from
textured and mosaic images

ADMM for (1) ADMM for (2) [32] [39] [41]

Figure4 6.86 7.88 23.65 14.62 36.05

Figure11—top image 10.87 13.13 34.17 22.14 52.30

Figure11—bottom image 6.00 7.26 18.03 10.96 27.42

Figure12—top image 12.42 14.72 35.37 21.32 54.32

Figure12—bottom image 5.91 6.77 17.27 9.80 25.80

Figure13 6.33 7.35 19.13 12.23 28.99

Fig. 15 Applications to image sharpening. An input image is sharpened by proper re-scaling of the texture information. Different methods for
computing the image structure (and thus the texture) are compared

4 Discussion and conclusion

We have presented in this work an approach for extracting
the structure and texture of an image. The approach is based
on minimizing a weighted version of a p(·)-Dirichlet energy
with spatially variable weight and exponent functions. Our
choices of the weight and exponent functions are adapted for
the tasks considered in the paper: structure extraction and
image details sharpening. In both cases, we construct the
functions based on an analysis of the spectral contents of the
level-set or mean curvature of the image intensity.

For the structure extraction problem, we demonstrated
experimentally the advantages of the proposed approach
over recent state-of-the-art structure+ texture decomposition
methods on textured images and mosaic images. In partic-
ular, we have demonstrated that our approach does a good
job at preserving the main edges and appearance of the input
image, while removing high frequency details.

Using a recent method [53], we have tried to quantify the
result of these different methods on the structure extraction
task. However, we have also shown with a simple synthetic
example that the problem of structure extraction is ill-posed,
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Fig. 16 Zooms on selected regions of the sharpened images in Fig. 15

Fig. 17 An example of
enhancing an image with mist.
Left: The original image;
middle: Enhanced image with
the level-set curvature (3) used
for the structure extraction;
right: enhanced image with the
surface mean curvature (4) used
for the structure extraction. In
both cases, b = 50, λ = 1 are
used
Fig. 18 Zooms on selected
regions of the dehazed images in
Fig. 17

and that a quantitative analysis is difficult to do in general,
and that the results are difficult to interpret.

Finally,we have demonstrated a fewpossible applications,
such as sharpening image details, and enhancing an image
withmist or haze.The former illustrated the advantages of our
approach against other recent methods, while the latter was
used to demonstrate the advantage of using the surface mean
curvature for determining the weight and exponent functions
of the p(·)-Dirichlet energy.
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Appendix AMinimization by ADMM

We use a variant of ADMM to solve numerically (1) and (2).
The problem (1) can be rewritten as

∫

�

a(x)|ξ | p(x) + λ

2

∫

�

(H [u − f ])2 → min

with the constraint

ξ = ∇u.

The corresponding augmented Lagrangian is

La,p(u, ξ ,μ) =
∫

�

{
a(x)|ξ | p(x) + λ

2
H [u − f ]2

+ μ · (ξ − ∇u) + ρ

2
|ξ − ∇u |2

}
, (A1)

where μ(x) is the vector of Lagrange multipliers and ρ > 0
is a constant. The Lagrangian (A1) is minimized by block
descent and updating in turns ξ , u and μ

ξ k+1 = argmin La,p(uk, ξ ,μk),

uk+1 = argmin La,p(u, ξ k+1,μk),

μk+1 = argmin La,p(uk+1, ξ k+1,μ).

There is no closed-form solution for the first step. Instead,
we resort to an approximation for the pth power of the L p

norm of ξ

ξ k+1 = max

{

|sk | − a(x)

r |∇uk |1−p(x) , 0

}
sk

|sk | ,

sk = ∇uk − μk

r
. (A2)

For fixed ξ and μ, computing the optimal u leads to solving
the linear PDE

−r(�u − div(ξ k+1)) + div(μk) + λH∗H [u − f ] = 0,

where H∗ is the adjoint of the operator H . This can be done
with the fast Fourier transform (FFT). Finally, the Lagrange
multipliers are updated with

μk+1 = μk + ρ
(
ξ k+1 − ∇uk+1

)
.

Appendix B L1 fitting term

Similarly, we rewrite (2) as

∫

�

a(x)|ξ | p(x) + λ

∫

�

|r | → min

with the constraints

ξ = ∇u,

and

r = H [u − f ].

The corresponding augmented Lagrangian is

La,p(u, r , ξ ,μ, z) = λ

∫

�

|r | +
∫

�

a(x)|ξ | p(x)

+
∫

�

z(r − H [u − f ])

+ ρ1

2

∫

�

|r − H [u − f ]|2

+
∫

�

μ · (ξ − ∇u) + ρ2

2

∫

�

|ξ − ∇u |2,
(B3)

whereμ(x) is vector of Lagrange multipliers associated with
the constraint ξ = ∇u, z(x) is the Lagrange multiplier asso-
ciated with the constraint r = H [u− f ], and ρ1 > 0, ρ2 > 0
are constants. Similarly to above, we use the approximation

ξ k+1 = max

{

|sk | − a(x)

ρ2 |∇uk |1−p(x)
, 0

}
sk

|sk | ,

where sk = ∇uk − 1
ρ2

μk for solving the sub-problem in ξ .
The L1 fitting term gives a sub-problem in r which is solved
by shrinkage

rk+1 = max

{

|H [uk − f ] − 1

ρ1
zk | − λ

ρ1
, 0

}

sign(H [uk − f ] − 1

ρ1
zk).

The updated u is obtained by solving the linear PDE

− (
ρ1H

∗H + ρ2�
)
u + ρ1H

∗H f − H∗(ρ1r − z)
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− div(ρ2ξ − μ) = 0.

Finally, the Lagrange multipliers are updated with

μk+1 = μk − ρ2(ξ k+1 − ∇uk+1)

zk+1 = zk − ρ1(rk+1 − H [uk+1 − f ]).
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