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Abstract
Real-time estimation of actual object depth is an essential module for various autonomous system tasks such as 3D reconstruc-
tion, scene understanding and condition assessment. During the last decade ofmachine learning, extensive deployment of deep
learning methods to computer vision tasks has yielded approaches that succeed in achieving realistic depth synthesis out of a
simple RGBmodality.Most of thesemodels are based on pairedRGB-depth data and/or the availability of video sequences and
stereo images. However, the lack of RGB-depth pairs, video sequences, or stereo images makes depth estimation a challenging
task that needs to be explored in more detail. This study builds on recent advances in the field of generative neural networks
in order to establish fully unsupervised single-shot depth estimation. Two generators for RGB-to-depth and depth-to-RGB
transfer are implemented and simultaneously optimized using the Wasserstein-1 distance, a novel perceptual reconstruction
term, and hand-crafted image filters. We comprehensively evaluate the models using a custom-generated industrial surface
depth data set as well as the Texas 3D Face Recognition Database, the CelebAMask-HQ database of human portraits and the
SURREAL dataset that records body depth. For each evaluation dataset, the proposed method shows a significant increase in
depth accuracy compared to state-of-the-art single-image transfer methods.

Keywords Unsupervised learning · Wasserstein GAN · Surface depth · Perceptual similarity

1 Introduction

Real-time depth inference of a given object is an essen-
tial computer vision task which can be applied in various
robotic tasks such as simultaneous localization and mapping
[1–3] as well as autonomous quality inspection in industrial
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applications [4, 5]. As the popularity of VR applications has
continued to grow, instant depth estimation has also become
an integral part of modeling complex 3D information out of
single 2D images of human faces [6, 7] or body parts [8–10].
Depth information about an object can be directly obtained
from sensors for optical distance measurement. Time-of-
Flight (ToF) cameras, LIDAR or stereo imaging systems
are often used in practice and were also employed to gen-
erate paired RGB-depth data from some well-known depth
databases [1, 2, 8, 10–13]. Since these sensors are typically
costly and time-consuming devices that are also sensitive
to external influences, their applicability to fast full-image
depth generation on small on-site devices is limited. These
limitations have motivated depth synthesis out of a simpler
modality in terms of acquisition effort, namely a conventional
RGB image. This development has initiated a completely
new field of research in computer vision.

An important contribution in that area was made by Eigen
et al. [14], who proposed deep convolutional neural net-
works (DCNNs) for monocular depth synthesis of indoor
and outdoor scenes. Basically,monocular single-image depth
estimation out of RGB images can be seen as a modality
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transfer in which observed data of one modality is mapped
to desired properties of another, potentially more complex,
modality. Although DCNNs are promising tools that suc-
ceed on such transfer tasks, they are commonly based on
large amounts of training data, and generation and acquisi-
tion can be a demanding task. In the supervised setting in
particular, DCNNs make use of paired training data during
network parameter optimization, i.e., the network is provided
with a single-view RGB and corresponding per-pixel depth
[6, 10, 14, 15]. Since large-scale dense depth profiles are not
abundant in many applications, supervised approaches are
not feasible for these objects. One possible way to address
these shortcomings of supervisedmethods is to consider self-
supervised approaches based on monocular video clips in
which a supervisory depth counterpart is extracted from pose
changes between adjacent frames.

These models can be trained on RGB sequences in a
self-supervised manner, where a depth network and a pose
estimation network are simultaneously optimized via sophis-
ticated view-synthesis losses [3, 16–18]. Obviously, these
methods require non-static scenes or a moving camera posi-
tion (e.g., moving humans [18], autonomous driving [2]).

A very recent example for a scenario, where neither video
sequences, stereo pairs nor paired data are available, is non-
destructive evaluation of internal combustion engines for
stationary power generation [4, 5]. Within this application,
surface depth information has to be extracted from RGB
image data. With current standards, cylinder condition can
be assessed from a depth profile on a micrometer scale of the
measured area (cf. Fig. 1). However, microscopic depth sens-
ing of cylinder liner surface areas is a time-consuming and
resource-intensive task which consists of disassembling the
liner, removing it from the engine, cutting it into segments
and measuring them with a highly expensive and station-
ary confocal microscope [4]. With a handheld microscope,
however, single RGB records of the liner’s inner surface
can be generated from which depth profiles may be synthe-
sized. Since depth data is generated on a quite small scale
(1.9mm × 1.9mm) and is comparatively high resolved, it is
hardly possible to generate RGBdatawith accurately aligned
pixel positions. This results in an unsupervised approach
required for reasonable depth synthesis of this static scene.

The main objective of this study is to propose a general
method for depth estimation out of scenes for which neither
paired data, video sequences, nor stereo pairs are available.
For this, we consider the depth estimation problem as an
intermodal transfer task of single images. Several recent
advances in unpaired modality transfer are based on genera-
tive adversarial models (GAN) [19], cycle-consistency [20]
and probabilistic distance measures [21, 22]. The method
proposed in this paper builds on established model archi-
tectures and training strategies in deep learning which are
beneficially combined for unpaired single-view depth syn-

thesis. Introduction of a novel perceptual reconstruction term
in combination with appropriate hand-crafted filters further
improves accuracy and depth contours.

The method is comprehensively tested on the afore men-
tioned industrial application of surface depth estimation.
Additionally, the approach is applied to other, external,
datasets to create realistic scenarios where perfectly aligned
RGB-depth data of single images is not available in prac-
tice. More precisely, we test the model on the Texas 3D Face
Recognition database (Texas-3DFRD) [12], the Bosphorus-
3DFA [11] and the CelebAMask-HQ [23] to show its
plausibility for facial data in an unsupervised setting.

The SURREAL dataset [9] is used to test performance
on RGB-D videos of human bodies, where RGB and depth
frames are not perfectly aligned. For every evaluation exper-
iment, the depth accuracy of the proposed framework is
compared to state-of-the-art methods in unsupervised single-
image transfer. To be more precise, the methods used for
comparison are standard cycleGAN [20], CUT [24] that uses
contrastive learning for one-sided transfer and gcGAN [25]
that utilizes geometric constraints between modalities. For
facial data, we additionally compare to Wu et al. [26], a very
recent work where in addition to the depth profile also the
albedo image, the illumination source and a symmetry con-
fidence map is predicted in an unsupervised manner.
Contributions:

• This study finds a solution to the industrial problem of
single-shot surface depth estimation where no paired
data, no video sequences and no stereo pairs are avail-
able.

• In this work, depth estimation is considered as a single-
image modality transfer; the proposed method shows
superior performance over state-of-the-art works, quan-
titatively and qualitatively.

• Application to the completely different tasks of unsuper-
vised face and human body depth synthesis indicates the
universality of the approach.

2 Related work

The following section summarizes important milestones in
the development of generative adversarial networks andhigh-
lights important work on single-image depth estimation as
well as depth synthesis via GANs. In the supplementary,
background is provided on some 3D databases that have been
critical to the development of deep learning-basedmodels for
depth estimation.
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Fig. 1 Top: RGB measurements
of the inner surface of three
cylinder liners with a spatial
range of 4.2mm × 4.2mm,
recorded by a handheld
microscope. Bottom: Depth
profile of the same cylinder with
a spatial range of
1.9mm × 1.9mm, measured
with a confocal microscope. The
pixels of the modalities are not
aligned

2.1 Generative adversarial networks

A standard GAN [19] consists of a generator network
G : Z → X mapping from a low-dimensional latent space
Z to image space X , where parameters of the generator
are adapted so that the distribution of generated examples
assimilates the distribution of a given data set. To be able
to assess any similarity between arbitrary high-dimensional
image distributions, a discriminator f : X → [0, 1] is trained
simultaneously to distinguish between generator distribution
and real data distribution. In a two-player min-max game,
generator parameters are then updated to fool a steadily
improving discriminator.

Usage of the initially proposed discriminator approach can
cause the vanishing gradient problem and does not provide
any information on the real distance between the generator
and the real distribution. This issue has been discussed thor-
oughly in [21], where the problem is bypassed by replacing
the discriminator with a critic network that approximates the
Wasserstein-1 distance [27] between the real distribution and
the generator distribution.

While the quintessence of GANs is to draw synthetic
instances following agivendata distribution, cycle-consistent
GANs [20] allow one-to-one mappings between two image
domains X and Y . In essence, two generator networks
GY : X → Y,GX : Y → X and corresponding discrimina-
tor networks fY : Y → [0, 1], fX : X → [0, 1] are trained
simultaneously to enable generation of synthetic instances
for both image domains (e.g., synthesizingwinter landscapes
from summer scenes and vice versa). To ensure one-to-
one correspondence, a cycle-consistency term is added to
the two adversarial loss functionals. While cycle-consistent
GANs had initially been constructed for style transfer pur-
poses, they were also very well received in the area of

modality transfer in biomedical applications [28–30]. Since
optimization and fine-tuning of GANs often turns out to be
extremely demanding and time-intensive, much research has
emphasized stabilization of the training process through the
development of stable network architectures such asDCGAN
[31] or PatchGAN [32].

2.2 Monocular depth estimation

Deep learning-based methods achieve state-of-the-art results
on depth synthesis task by training a DCNN on a large-scale
and extensive data set [1, 2]. Most of RGB-based models are
supervised, i.e. they require corresponding depth data that
is pixel-wise aligned. One of the first DCNN approaches
by Eigen et al. [14] included sequential deployment of a
coarse-scale stack and a refinement module and was bench-
marked on the KITTI [2] and the NYUDepth v2 data set [1].
Using an encoder–decoder structure in combination with an
adversarial loss term helped to increase visual quality of the
dense depth estimates [33]. Later methods also considered
deep residual networks [34] or deep ordinal regression net-
works [35] in order to significantly increase performance on
these data sets, where commonly considered performance
measures are the root mean squared error (RMSE) or the δ1
accuracy [3]. Since a lot of research focused on further per-
formance increase at the expense of model complexity and
runtime, Wofk et al. [36] used a lightweight network archi-
tecture [37] and achieved comparable results.

2.3 Depth estimation using GAN

Use of left-right consistency and a GAN architecture results
in excellent unsupervised depth estimation based on stereo
images [38, 39]. In [40] and [41], a GAN has been trained
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to perform unpaired depth synthesis out of single monoc-
ular images. To this end, GANs were employed in the
context of domain adaptation using an additional synthe-
sized data set of the same application with paired samples.
This approach may not be regarded as a fully unsupervised
method and requires availability or construction of a syn-
thetic dataset. Arslan et Seke [6] consider a conditional GAN
(CGAN) [32] for solving single-image face depth synthesis.
Nevertheless, CGANs rely on paired data since the adver-
sarial part estimates the plausibility of an input–output pair.
Another interesting approachwas taken in [15], where indoor
depth and segmentationwere estimated simultaneously using
cycle-consistent GANs. The cycle-consistency loss helped
them to maintain the characteristics of the RGB input dur-
ing depth synthesis, while the simultaneous segmentation
resolved the fading problem in which depth information is
hidden by larger features. However, the proposed discrimi-
nator network and reconstruction term in the generator loss
function are based on paired RGB and depth/segmentation
data, which is not available for the aforementioned industrial
application of surface depth synthesis.

3 Method

This section proposes an approach to monocular single-
image depth synthesis with unpaired data and discusses the
introduced framework and training strategy in detail.

3.1 Setting and GAN architecture

The underlying structure of the proposed modality synthesis
is twoGANs linkedwith a reconstruction term (cf. Fig. 2). To
be more exact, let X ⊂ [0, 255]d1×d2×3 and Y ⊂ R

d1×d2×1

denote the domain of RGB and depth images, respectively,
where the number of image pixels d1 · d2 is the same in
both domains. Furthermore, let X :={x1, . . . , xM } be the set
of M given RGB images and Y :={y1, . . . , yN } the set of N
available but unaligned depth profiles. PX and PY denote
the distributions of the images in both domains. The pro-
posed model includes a generator function GθY : X → Y ,
which aims to map an input RGB image to a corresponding
depth counterpart in the target domain. A generator func-
tion for image transfer may be approximated by a DCNN,
which is parameterized by a weight vector θY consisting of
several convolution kernels. By adjusting θY , the distribu-
tion of generator outputs PθY may be brought closer to the
real data distribution in the depth domain PY . Note we do
not know what PθY and PY actually look like, we only have
access to unpaired training samples GθY (x) ∼ PθY , x ∈ X
and y ∼ PY , y ∈ Y . An adversarial approach is deployed to
ensure assimilation of both high-dimensional distributions in
the GAN setting. The distance between the generator distri-

bution and the real distribution is estimated by an additional
DCNN fωY : Y → R, which is parameterized by weight
vector ωY and is trained simultaneously with the generator
network since PθY changes after each update to the genera-
tor weights θY . This ensures that GθY can be pitted against
a steadily improving loss network fωY [19].

This research work has chosen a network critic based on
the Wasserstein-1 distance [21, 27]. The Wasserstein-1 dis-
tance (earth mover distance) between two distributions P1
and P2 is defined as W1(P1, P2):= inf J∈J (P1,P2) E(x,y)∼J

‖x − y‖, where the infimum is taken over the set of all joint
probability distributions that have marginal distributions P1
and P2. Since the exact computation of the infimum is highly
intractable, the Kantorovich–Rubinstein duality [27] is used

W1(P1, P2) = sup
‖ f ‖L≤1

[
E

y∼P1
f (y) − E

y∼P2
f (y)

]
, (1)

where ‖·‖L ≤ C denotes that a function is C-Lipschitz.
Equation (1) indicates that a good approximation to W1

(PY , PθY ) is found by maximizing the distance Ey∼PY f

ωY (y) − Ey∼PθY fωY (y) over the set of DCNN weights
{ωY | fωY : Y → R 1-Lipschitz}, where the Lipschitz
continuity of fωY can be enhanced via a gradient penalty

[22]. Given training batches y = {yn}bn=1, yn
iid∼ PY and

x = {xn}bn=1, xn
iid∼ PX , this yields the following empirical

risk for critic fωY :

Rcri(ωY , θY , p, y, x) := 1

b

b∑
n=1

[
fωY (GθY (xn)) − fωY (yn)

+ p ·
(( ∥∥∇ỹn fωY (ỹn)

∥∥
2 − 1

)
+

)2 ]
,

(2)

where p denotes the influence of the gradient penalty,
(·)+:=max({0, ·}) and ỹn :=εn · GθY (xn) + (1 − εn) · yn
for εn

iid∼ U[0, 1]. The goal of the RGB-to-depth generator
GθY is to minimize the distance. Since only the first term of
the functional in (2) depends on the generator weights θY ,
the adversarial empirical risk for generator GθY simplifies as
follows:

Radv(θY , ωY , x):= − 1

b

b∑
n=1

fωY (GθY (xn)). (3)

3.2 Perceptual reconstruction

In the context of depth synthesis, it is not sufficient to
ensure that the output samples lie in the depth domain.
Care must be taken that synthetic depth profiles do not
become irrelevant to the input. A reconstruction constraint
forces generator input and output to share same spatial
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Fig. 2 Illustration of the proposed framework: The left part describes
the domains inwhich the RGB-to-depth generatorGθY and the contrary
depth-to-RGB generator GθX operate. Both generators are updated
via the probabilistic Wasserstein-1 distance, estimated by fωY in the
input and fωX in the target domain. Perceptual similarity is compared

between each generator input and its reconstruction. The right plot indi-
cates that during inference, only GθY has to be deployed to synthesize
new depth profiles. RGB images and ground truth depth images were
taken from the Texas-3DFRD [12]

structure by taking into account the similarity between the
input and the reconstruction of the synthesized depth pro-
file. Obviously, calculation of a reconstruction error requires
an opposite generator function GθX : Y → X to assimilate
real RGB distribution PX as well as the corresponding dis-
tance network fωX : X → R. Both have to be optimized
simultaneously to the RGB-to-depth direction. The recon-
struction error is commonly evaluated by assessing similarity
between x and GθX (GθY (x)) as well as similarity between
y and GθY (GθX (y)) for x ∈ X and y ∈ Y . In the setting
of style transfer and cycle-consistent GANs [20], a pixel-
wise distance function on image space is considered, where
the mean absolute error (MAE) or the mean squared error
(MSE) is the common choice.

The use of a contrary generator GθX can be viewed
as a type of regularization since it prevents mode col-
lapse, i.e., generator outputs remain dependent on the inputs.
Deployment of the cycle-consistency approach [20], where
reconstruction error is measured in image space, assumes no
information loss during the modality transition. This corre-
sponds to the applications of summer-to-winter landscape or
photograph-to-Monet painting transition. Determining GθY
and GθX is an ill-posed problem since a single depth profile
may be generated by an infinite number of distinct RGB
images and vice versa [42]. For example, during RGB-
to-depth transition of human faces, information on image
brightness, light source or the subject’s skin color is lost. As
a consequence, the contrary depth-to-RGB generator needed
for regularization has to synthesize the lost properties of the
image. Both generatorsGθY andGθX may be penalized if the
skin color or the brightness of the reconstruction is changed

even though GθX did exactly what we expected it to do, i.e.,
synthesize a face that is related to the input’s depth profile.

Adapting the idea of [43], we propose a perceptual recon-
struction loss, i.e., instead of computing a reconstruction
error in image space, we consider certain image features
of the reconstruction. Typical perceptual similarity metrics
extract features by propagating the images (to be compared)
through an auxiliary network that is usually pretrained on
a large image classification task [43–45]. Nevertheless, we
expect our feature extractor to be perfectly tailored to our
data and not determined by an additional network pretrained
on a very general classification task [44] that may not even
cover our type of data. Therefore, we enforce the reconstruc-
tion consistency on the image space by using the MAE loss
on feature vectors extracted by φX (·):= f lωX (·), which cor-
responds to the l-th layer of the RGB critic (cf. Algorithm 1).
Analogously, we define the feature extractor on depth space
by φY (·):= f lωY (·), which corresponds to the l-th layer of
the depth critic. Although we are aware that feature extrac-
tor weights are adjusted with each update of critic weights
ωX , ωY , we assume that, at least at a later stage of train-
ing, φX and φY have learned good and stable features on the
image and depth domain. This yields the following empirical
reconstruction risk:

Rrec(θX , θY , φX , φY , x, y) := 1

b

b∑
n=1

MAE

[
φX

(
GθX

(
GθY (xn)

) )
, φX (xn)

]

+ 1

b

b∑
n=1

MAE
[
φY

(
GθY

(
GθX (yn)

) )
, φY (yn)

]
.

(4)
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In our implementation, we set l:=L − 2 for a critic with L
layers, i.e., we use the second-to-last layer of the critic.
A good reconstruction termmust still be found for the start of
training when the critic features are not yet sufficiently reli-
able.At first, it is desirable to guide the framework to preserve
structural similarity duringRGB-to-depth and depth-to-RGB
transition. Therefore, we propose to compare the input and
its reconstruction in the image space while automatically
removing the brightness, illumination and color of the RGB
images beforehand. This can be ensured by applying the fol-
lowing steps:

1. Convert the image to grayscale by applying the function
g : [0, 255]d1×d2×3 → R

d1×d2 , x 	→ 0.299
255 · x(,,0) +

0.587
255 · x(,,1) + 0.144

255 · x(,,2), where (, , i) denotes the i-th
color channel for i = 0, 1, 2.

2. Enhance the brightness of the grayscale image using an
automated gamma correction based on the image bright-
ness [46], i.e. take the grayscale image xgr to the power of
�(xgr):=−0.3 · 2.303/ln xgr, where xgr denotes the aver-
age of the gray values.

3. Convolve the enhanced image with a high-pass filter h
in order to dim the lighting source and color informa-
tion (cf. Fig. 3). The high-pass filter may be applied in
Fourier domain, i.e., the 2D Fourier transform is multi-
plied by a Gaussian high-pass filter matrix Hσ defined

by Hσ
i, j :=1− exp

( ∥∥∥(i, j) − ( d12 , d2
2 )

∥∥∥2
2
/(2σ 2)

)
for i =

1, . . . , d1 and j = 1, . . . , d2. In our implementation,
σ = 4 yielded satisfactory results for all tasks.

This yields the updated empirical reconstruction risk:

Rrec(θX , θY , φX , φY , γ, x, y)

:= γ · 1
b

b∑
n=1

MAE
[
φX

(
GθX

(
GθY (xn)

) )
, φX (xn)

]

+ γ · 1
b

b∑
n=1

MAE
[
φY

(
GθY

(
GθX (yn)

) )
, φY (yn)

]

+ (1 − γ ) · 1
b

b∑
n=1

MAE
[
ψ

(
GθY

(
GθX (xn)

) )
, ψ(xn)

]

+ (1 − γ ) · 1
b

b∑
n=1

MAE
[
GθY

(
GθX (yn)

)
, yn

]
,

(5)

whereψ(·):=h∗g(·)�(g(·)) and γ is gradually increased from
0 to 1 during training to control feature extractor reliability.
In the far right column in Fig. 3, we may observe the strong
effect of operator ψ . For the face sample, the face shape
and the positions of the nose and the eyes are very clear, at

the same time the low image brightness and the exposure
direction are resolved. The main edges of the cylinder liner
surfaces are clearly identifiable, whereas the different brown
levels and illumination inconsistencies of the input are no
longer visible.

Using the previously discussed risk functions Rcri (2),
Radv (3) andRrec (5), Algorithm 1 summarizes the proposed
architecture for fully unsupervised single-view depth estima-
tion. Implementation of the proposed framework is publicly
available on https://github.com/anger-man/unsupervised-
depth-estimation.

Algorithm 1 Proposed Framework
Require: α f critic learning rate; αG generator learning rate; p gradi-
ent penalty; n f number of critic iterations; nG number of generator
updates; b minibatch size; λrec reconstruction loss weight

Require: ωY , ωX initial critic weights; θY , θX initial generator
weights; γ = 0
for k = 1, . . . , nG do

for i = 1, . . . , n f do
Sample x = {xn}bn=1 ⊂ X and y = {yn}bn=1 ⊂ Y

{ỹn}bn=1 ← {
εn · GθY (xn) + (1 − εn) · yn, εn ∼ U[0, 1]}bn=1

{x̃n}bn=1 ← {
εn · GθX (yn) + (1 − εn) · xn, εn ∼ U[0, 1]}bn=1

∂Y ← ∇ωYRcri(ωY , θY , p, y, x)
∂X ← ∇ωX Rcri(ωX , θX , p, x, y)
ωY ← Adam(ωY , ∂Y , α f , β1 = 0, β2 = 0.9)
ωX ← Adam(ωX , ∂X , α f , β1 = 0, β2 = 0.9)

end for
Sample x = {xn}bn=1 ⊂ X and y = {yn}bn=1 ⊂ Y ; set φY , φX to

l-th layer of fωY , fωX
∂Y ← ∇θYRadv(θY , ωY , x)+

λrec · ∇θYRrec(θX , θY , φX , φY , γ, x, y)
∂X ← ∇θX Radv(θX , ωX , y)+

λrec · ∇θX Rrec(θX , θY , φX , φY , γ, x, y)
θY ← Adam(θY , ∂D, αG , β1 = 0, β2 = 0.9)
θX ← Adam(θX , ∂C , αG , β1 = 0, β2 = 0.9)
γ ← k

nG
end for

3.3 Network implementation

As critical as the loss function design of an unsupervised
method is the choice of an appropriate architecture for the
critic and the generator network. A decoder for the critic
is built following the PacthGAN critic that was initially
proposed in [32] with nearly 15.7 × 106 parameters. The
PatchGAN architecture has been found to perform quite
stably over a variety of different generative task and is
part of many state-of-the-art architectures for image gener-
ation [20, 24, 47]. The generator is a ResNet18 [48] with a
depth-specific upsampling part taken from [17] (19.8 × 106

parameters). Detailed information on critic and generator
implementations is provided in the supplementary.
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Fig. 3 The first column
visualizes the RGB samples and
the second column the grayscale
versions. The third column
contains the gamma corrected
counterparts, where the contrast
in lower gray levels is enhanced
for dark images in particular.
The last column illustrates the
application of the high-pass
filter

4 Experiments and discussion

The framework proposed in Algorithm 1 is implemented
with the publicly available TensorFlow framework [49]. The
applications are inner surface depth estimation of cylinder
liners, face depth estimation based on the Texas-3DFRD [12]
and body depth synthesis using the SURREAL dataset [9].
In this section, we benchmark the proposed framework on
each dataset and separately present the results, followed by
a discussion at the end. As discussed in the introduction, the
methods used for comparison are cycleGAN [20], gcGAN
[47] and CUT [24]. For CUT, we use the public github repos-
itory. 1 The benchmark methods cycleGAN and gcGAN
use the same critic and generator implementations as the
method proposed in this study (cf. Sect. 3.3). For cycleGAN,
we remove the novel perceptual loss and hand-crafted image
filters from our method and replace them with MAE recon-
struction loss. For gcGAN, the contrary generator is removed
and up-down flip is employed as the geometric constraint.
An ablation study is conducted in order to highlight the
impact and necessity of the novel hand-crafted filters and the
perceptual reconstruction loss proposedhere.More precisely,
we setψ � Id in (5) in order to avoid the hand-crafted filters,
i.e., the reconstruction loss in the RGB domain is determined
based on the MAE. Furthermore, we set γ � 0 in (5) for the
entire training process to study network behavior without
perceptual reconstruction in both domains. The experiments
without hand-crafted filters (w/o ψ) and without perceptual
reconstruction (w/o φ) are performed for the test cases of
surface depth and face depth estimation (cf. Tables 1 and 2 ).

In our implementation, we set the number of generator
updates nG to 10k, the minibatch size b to 8 and the penalty
term p to 100. The number of critic iterations n f is initially
established to be 24 to ensure a good approximation of the

1 https://github.com/taesungp/contrastive-unpaired-translation.

Table 1 Unsup. surface depth estimation: the reported metrics are
RMSE and MAE of the ground truth and the synthesized depth and
are evaluated on unseen data (smaller is better)

Method Two-sided λrec RMSE ± std (µm) MAE ± std (µm)

Ours � 10 0.751 ± 0.195 0.533 ± 0.144

Ours w/o φ � 10 0.788 ± 0.226 0.568 ± 0.171

Ours w/o ψ � 10 0.820 ± 0.230 0.586 ± 0.174

cycleGAN � 2 0.833 ± 0.175 0.600 ± 0.132

gcGAN x 1 0.777 ± 0.196 0.555 ± 0.145

CUT x 10 1.434 ± 0.402 1.074 ± 0.326

When comparing the individual methods, the best achieved values with
regard to the validation metrics are marked in bold

Table 2 Unsup. face depth estimation: the reported metrics are RMSE
and MAE of the ground truth and the synthesized depth and are evalu-
ated on unseen data (smaller is better)

Method Two-sided λrec RMSE ± std MAE ± std

Ours � 10 0.064 ± 0.022 0.046 ± 0.017

Ours w/o φ � 10 0.072 ± 0.028 0.053 ± 0.024

Ours w/o ψ � 10 0.089 ± 0.037 0.070 ± 0.032

cycleGAN � 1 0.105 ± 0.049 0.073 ± 0.033

gcGAN x 0.3 0.078 ± 0.039 0.058 ± 0.034

CUT x 10 0.094 ± 0.039 0.081 ± 0.042

When comparing the individual methods, the best achieved values with
regard to the validation metrics are marked in bold

Wasserstein-1 distance in the beginning. After 1000 gener-
ator updates, it is halved to speed up training. Furthermore,
we set α f to 5 × 10−5 and αG to 1 × 10−4. The influence
of the reconstruction term λrec is found for each dataset and
method individually by a parameter grid search.
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Table 3 Unsup. body depth estimation: the reported metrics are RMSE
and MAE of the ground truth and the synthesized depth and are evalu-
ated on unseen data (smaller is better)

Method Two-sided λrec RMSE ± std (m) MAE ± std (m)

Proposed � 1 0.080 ± 0.033 0.022 ± 0.020

cycleGAN � 1 0.091 ± 0.035 0.033 ± 0.019

gcGAN x 1 0.095 ± 0.036 0.030 ± 0.021

CUT x 1 0.183 ± 0.021 0.071 ± 0.016

When comparing the individual methods, the best achieved values with
regard to the validation metrics are marked in bold

4.1 Surface depth

This study uses the same database initially proposed in [4]
for depth estimation of inner cylinder liner surfaces of large
internal combustion engines.

Depth measurements cover a spatial region of 1.9mm ×
1.9mm, have a dimension of approximately 4000×4000 pix-
els and are acquired using a resource-intensive logistic chain
as discussed in the introduction. The profiles denote relative
depth with respect to the core area of the surface on a µm
scale. The RGB data is taken from the same cylinder surfaces
with a simple handheldmicroscope. TheRGBmeasurements
cover a region of 4.2mm × 4.2mm and have a resolution
of nearly 1024×1024 pixels. The smaller image area of the
depth measurements is not registered in the larger RGB area,
but the RGB instances are randomly cropped to 1.9mm ×
1.9mm to ensure the same spatial size between RGB and
depth data. 592 random samples are obtained from each
image domain. The RGB and depth data is then augmented
separately to nearly 7000 samples via random cropping,
flipping and gamma correction [46]. To make computation
feasible on a NVIDIA GeForce RTX 2080 GPU, each sam-
ple is resized to a dimension of 256×256 pixels. In order to
assess the visual quality between two completely unaligned
domains, we also generated depth profiles of 211 additional
surface areas and registered them with great effort using
shear transformations and a mutual information criterion.
These evaluation samples are not included in the training
database. During optimization, RGB images and depth pro-
files are scaled from [0, 255] to [−1, 1] and from [−5, 5]
to [−1, 1], respectively, whereas evaluation metrics (RMSE
and MAE) are calculated on the original depth scale in µm.

4.2 Face depth

The Texas-3DFRD [12] consists of 118 individuals and a
variety of facial expressions and corresponding depth profiles
are available for each of them. Depth pixels represent abso-
lute depth and their values are in [0, 1] where 1 represents
the near clipping plane while 0 denotes the background. We
randomly select 16 individuals as evaluation data and use the

remaining samples as training data. For unsupervised train-
ing, we randomly select 50% of the training individuals for
the input domain and use the depth images of the remaining
50% for the target domain. We resize all RGB frames and
depth profiles to a dimension of 256 × 256 pixels. Data is
augmented via flipping, histogramequalization andGaussian
blur to nearly 6300 samples per modality. During optimiza-
tion, RGB images are scaled from [0, 255] to [−1, 1] and
depth profiles are scaled from [0, 1] to [−1, 1], whereas the
evaluation metrics RMSE and MAE are computed on the
original depth scale.

More experiments on unsupervised facial depth synthesis
on the Bosphorus-3DFA [11], the CelebAMask-HQ [23] and
qualitative comparison to Wu et al. [26] are presented in the
supplementary.

4.3 Body depth

The SURREAL dataset [9] consists of nearly 68k video clips
that show145 different synthetic subjects performing various
actions. The clips consist of 100 RGB frames with perfectly
aligneddepth profiles that denote real-world camera distance.
We use the same train/test split as Varol et al. [9], i.e., we
remove nearly 12.5k clips and use the middle frame of each
100-frame clip for evaluation. For the remaining clips, an
amount of 2500 clips is randomly selected for training. We
choose 20 RGB and 20 depth frames per clip ensuring that
RGB and depth frames are disjointed in order to mimic an
application without any accurately aligned RGB-depth pairs.
This results in approximately 50k samples per modality. We
strictly follow the preprocessing pipeline of Varol et al. [9],
cropping each frame to the human bounding box and resiz-
ing/padding images to a dimension of 256 × 256 pixels.

In addition, for each image, we subtract the median of
depth values to fit the depth images into the range ±0.4725
m, where values less or equal −0.4725 denote background.
During optimization, RGB images are scaled from [0, 255] to
[−1, 1] and depth profiles are scaled from [−0.4725, 0.4725]
to [−1, 1], whereas evaluation metrics RMSE and MAE are
computed on the original depth scale in meters.

4.4 Discussion

Quantitative evaluation on unseen test data in Tables 1, 2
and 3 confirms superiority of the proposedmethod compared
to other state-of-the-art modality transfer methods. In partic-
ular, the CUTmethod is not suitable for the depth estimation
of planar surfaces and human bodies. Obviously, usage of
a novel perceptual reconstruction term in combination with
hand-crafted image filters is able to overcome the shortcom-
ings of a standard cycle-consistency constraint as explained
in Sect. 3.2 and improves depth accuracy significantly. Con-
sidering the industrial application, Fig. 4 and Fig. 5 indicates
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Fig. 4 From left to right: surface RGB input, ground truth and profiles predicted by our method, gcGAN and cycleGAN

Fig. 5 An instant 3D model
generated by our proposed
framework provides valuable
information on the liner surface
condition

that we have been able to synthesize realistic surface depth
profiles with an RMSE of 0.751 µm compared to the reg-
istered ground truth. In Fig. 6, we observe that predictions
coming from our method seem most similar to the ground
truth, while the results of cycleGAN and CUT do not cor-
rectly reproduce the contours of the input. Plausibility of our
depth predictions is also confirmed by the instant 3D model
in Fig. 7. In Fig. 8, it can be seen that the CUT benchmark
completely fails on the SURREAL dataset, which can possi-
bly be attributed to the fact that here, in parallel to the depth
estimation, the body must also be segmented.

Although the proposed method was initially motivated by
cycleGAN [20], it is important to point out that replacement
of the standard cycle-consistency termwith perceptual losses
and usage of appropriate hand-crafted filters in image space
is a novel idea that overcomes significant shortcomings of
the standard cycleGAN architecture in depth estimation that
are thoroughly discussed in the paper. For depth synthesis
of surfaces, faces and human bodies, the RMSE decreases
(compared to a standard cycleGAN) about 9.8%, 39.1% and
12.1%, respectively. Tables 1 and 2 show how the removal

of the perceptual reconstruction loss (w/o φ) and the hand-
crafted filters (w/o ψ) reduces the accuracy of the proposed
method.However, the use of perceptual-based reconstruction
and the inclusion of hand-crafted filters each outperform the
cycleGANbenchmark, with the combination of the two tech-
niques providing the best performance in terms of evaluation
metrics. The proposed method has been mainly developed to
find a solution to the problem of depth synthesis of planar
cylinder liner surfaces. The results confirm that the frame-
work not only succeeds on the cylinder surface task but
also significantly improves performance in the field of face
and whole body depth synthesis compared to state-of-the-art
modality transfer methods.

All three prototypical studies of single-shot depth pre-
diction have in common that the color of the objects in the
RGB instances has nearly no effect on the depth. This was the
mainmotivation for the hand-crafted filters that convert RGB
instances to gray values and remove low-frequency compo-
nents.However, themotivation for these filters does not apply
to all depth estimation problems. Indeed, there are examples
where the color of the RGB instance could also give an indi-
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Fig. 6 From left to right: Face
RGB input, ground truth and
profiles predicted by our
method, gcGAN, cycleGAN and
CUT

Fig. 7 An example of viewpoint
augmentation using a 3D face
model instantly generated by
our proposed framework

Fig. 8 From left to right: Body RGB input, ground truth and profiles predicted by the proposed method, gcGAN, cycleGAN and CUT

cation of the depth of the observed scene. An example would
be depth estimation from satellite images, i.e., modeling alti-
tude from aerial imagery data. In such cases, the structure
of the hand-crafted filters must be reconsidered and adjusted
accordingly.

5 Conclusion

This paper proposes a framework for fully unsupervised
single-shot depth estimation from monocular RGB images
based on the Wasserstein-1 distance, a novel perceptual
reconstruction loss and hand-crafted image filters. Themodel
is comprehensively evaluated on differing depth synthesis
tasks without using pairwise RGB and depth data during
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training. The approach provides a reasonable solution for
estimating the relative depth of cylinder liner surfaces when
generation of paired data is technically not feasible. More-
over, the proposed algorithm also shows promising results
when applied to the task of absolute depth estimation of
human bodies and faces, thereby proving that it may be gen-
eralized to other real-life tasks.

However, one disadvantage of the perceptual reconstruc-
tion approach is that four neural networks must be fitted in
parallel.

Future work will therefore include the development of
one-sided depth synthesis models in an unsupervisedmanner
as well as the application of our approach to other modality
transfer tasks.
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Appendix A: 3D databases: an overview

Single-shot depth estimation has become increasingly pop-
ular over the last decade of deep learning. The first deep
learning solutions for depth synthesis were motivated by the
development of autonomous driving and localization systems
and therefore were initially designed to automatically deter-
mine the depth of indoor or outdoor scenes [14–17, 38–40].
Deep convolutional neural networks, trained on large-scale
and extensive data sets such as KITTI [2] or NYU Depth

Dataset v2 [1] achieved state-of-the-art results. The outdoor
video clips of the KITTI dataset can be used for various
subtasks in computer vision such as optical flow, object
detection, semantic segmentation and depth [3]. Each video
sequence of the KITTI dataset consists of stereo image
pairs with aligned depth images (LIDAR), which renders
the database a common benchmark for unsupervised or self-
supervised depth estimation tasks [16, 17, 38]. The NYU
Depth Dataset v2 focuses on monocular sequences of indoor
environments, where depth counterparts are obtained with a
high quality RGB-D camera. Therefore, this dataset is con-
sidered a primary benchmark in supervised monocular depth
estimation [14, 15].

With the advent of virtual and augmented reality appli-
cations, single-image pose estimation and 3D reconstruction
of human bodies or body parts received a great amount of
attention in the research field of computer vision [18]. 3D
information on human faces provides additional benefits for
face recognition or detection systems [6]. The Texas-3DFRD
[12] and the Bosphorus-3DFA [11] are known representa-
tives of paired face RGB-depth data of high quality and
include a variety of head poses and emotional expressions.
Both databases provide facial landmarks for additional face
expression analysis, but with approximately 100 different
individuals each, the sets are rather small. A larger num-
ber of facial depth models can be derived from 3D synthetic
data of human faces as in [7, 50]. Leveraging the task to
whole body depth estimation is challenging due to the fact
that RGB-depth pairs of real individuals are not abundant in
many datasets. A small dataset of 25 video clips for detailed
human depth estimation is proposed in [10], while a depth
dataset of 10 sequences recorded from different viewpoints is
published in [8]. TheHuman3.6Mdataset [13] contains high-
resolution depth data from 11 individuals acting in varying
scenarios. Varol et al. [9] propose using the approximately
68k video clips of synthetic humans in the large-scale SUR-
REAL dataset for supervised training of human body depth
and segmentation models.

Appendix B: Network details

In Tables 4, 5 and 6, k denotes the kernel size, s the stride,
and channels the number of layer output channels. Input
corresponds to the input of each layer. Network input and
output are denoted by I and O, respectively, where for a
generator network the output channel size equals 1 (RGB-
to-depth) or 3 (depth-to-RGB).
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Table 4 ResNet18 generator

Name Type k s chns Input Activ.

con1 conv-norm 7 2 64 I ReLU

max1 maxpool3x3 2 64 con1

res1 res-block 3 1 64 max1 ReLU

res2 res-block 3 1 64 res1 ReLU

res3 res-block 3 2 128 res2 ReLU

res4 res-block 3 1 128 res3 ReLU

res5 res-block 3 2 256 res4 ReLU

res6 res-block 3 1 256 res5 ReLU

res7 res-block 3 2 512 res6 ReLU

res8 res-block 3 1 512 res7 ReLU

ups1 upsampling 2 512 res8

con2 conv-norm 3 1 512 ups1 ELU

cct1 concatenate 768 con2,res6

con3 conv-norm 3 1 512 cct1 ELU

ups2 upsampling 2 512 con3

con4 conv-norm 3 1 256 ups2 ELU

cct2 concatenate 384 con4,res4

con5 conv-norm 3 1 256 cct2 ELU

ups3 upsampling 2 256 con5

con6 conv-norm 3 1 128 ups3 ELU

cct3 concatenate 192 con6,res2

con7 conv-norm 3 1 128 cct3 ELU

ups4 upsampling 2 128 con7

con8 conv-norm 3 1 64 ups4 ELU

cct4 concatenate 128 con8,con1

con9 conv-norm 3 1 64 cct4 ELU

ups5 upsampling 2 64 con9

con10 conv-norm 3 1 32 ups5 ELU

con11 conv-norm 3 1 32 con10 ELU

O convolution 3 1 3/1 con11 tanh

The encoder is quite similar to the illustrated architecture in [48]. The
decoder architecture is a slightly modified version of [17]. For upsam-
pling, nearest neighbor method is used. Convolution layers followed by
an instance normalization are denoted by conv-norm

Appendix C: Facial depth estimation on
bosphorus-3DFA and CelebAMask-HQ

Section 4.2 demonstrates the plausibility of our proposed
framework for fully unsupervised facial depth estimation
using the small Texas-3DFRD [12]. Obviously, the shoot-
ing position of the portrayed faces is always constant. The
data set consists exclusively of frontal views, the illumina-
tion direction is consistent, and all images are individually
cropped to the facial region. However, the goal of this section
is to train a model that is capable of generating depth pro-
files from arbitrary portrait images that are at least sufficient
for reasonable viewpoint augmentation. To accomplish this,

Table 5 PatchGAN critic

Name Type k s chns Input Activ.

con1 convolution 4 1 16 I LReLU

con2 convolution 4 1 16 con1 LReLU

con3 convolution 4 2 32 con2 LReLU

con4 convolution 4 1 32 con3 LReLU

con5 convolution 4 2 64 con4 LReLU

con6 convolution 4 1 64 con5 LReLU

con7 convolution 4 2 128 con6 LReLU

con8 convolution 4 1 128 con7 LReLU

con9 convolution 4 2 256 con8 LReLU

con10 convolution 4 1 256 con9 LReLU

con11 convolution 4 2 512 con10 LReLU

con12 convolution 4 1 512 con11 LReLU

O convolution 4 1 1 con12 linear

LReLU denotes the Leaky ReLU activation function with slope param-
eter 0.2

Table 6 Residual block

Name Type k s chns Input Activ.

con1 conv-norm k s c I ReLU

con2 conv-norm k s c con1

skip conv-norm 1 s c I
add addition c con2,skip

O activation c add ReLU

A residual block (res-block) with kernel size k, stride s and channel size
c is implemented as follows

we make use of the following two data sets: the Bosphorus
Database for 3D Face Analysis (Bosphorus-3DFA) [11] and
the CelebAMask-HQ [23] that records face portraits.

The Bosphorus-3DFA consists of 105 individuals, where
for each person, in contrast to the Texas-3DFRD, varying
poses, different head rotations and occlusions (e.g. eye-
glasses, long hair) are available. Pixel-aligned depth samples
represent absolute depth and are preprocessed to the range
[0, 1].

Analogously to Sect. 4.2, we resize all RGB frames and
depth profiles to a dimension of 256× 256 and conduct data
augmentation via random cropping. This results into 11k
samples per modality. Although this database now contains
different positions and face expressions, the decisive disad-
vantage is that all images were taken with constant lighting
and with the same background (cf. Fig. 9). Therefore, we add
the CelebAMask-HQ to our experiment.

The CelebAMask-HQ is a large-scale facial portrait
dataset with high-resolution face images of 30k celebri-
ties selected from the CelebA dataset [51]. Each sample is
provided with a segmentation mask of face attributes, and
therefore this database is used to train and evaluate face
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Fig. 9 Left: RGB samples of the Bosphorus-3DFA [11]. Right: Samples of the CelebAMask-HQ [23]

Fig. 10 From left to right: RGB input, four snapshots of the synthesized 3D model generated by our method and four snapshots of the synthesized
3D model generated by Wu et al. [26]
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analysis, face recognition and segmentation algorithms. In
our opinion, this database is particularly well suited for
depth prediction of arbitrary portraits, as it consists of RGB
images with different exposures and different image back-
grounds. Furthermore, all images are already cropped to a
face-bounding box.We randomly select 10kRGB frames and
resize them to a dimension of 256 × 256. The RGB images
of the Bosphorus-3DFA and all samples of the CelebAMask-
HQ are used as training data for the RGB domain, and the
depth profiles of the Bosphorus-3DFA are used for the depth
domain. We conduct unsupervised training of our proposed
framework as described in Algorithm 1. During optimiza-
tion, RGB images are scaled from [0, 255] to [−1, 1] and
depth profiles are scaled from [0, 1] to [−1, 1].

We qualitatively benchmark our proposed method against
Wu et al. [26], where a method for fully unsupervised 3D
modeling out of single images is introduced. To be more
exact, a network is proposed that factors each input RGB
into depth, albedo, viewpoint and illumination. In order to
disentangle these different components without any supervi-
sion via paired data, stereo pairs or video sequences,Wu et al.
make use of the fact that faces have in principle a symmetric
structure. Thus, this proposedmethod for image disentangle-
ment can also be applied to other object categories, provided
that these have a symmetrical structure. The research of Wu
et al. is one of the fewworkswhich has especially been devel-
oped for 3D modeling and where no supervision via paired
RGB-depth data or availability of video sequences and stereo
images is possible. Themethod has been evaluated on several
databases of cat and human faces, also including the CelebA.
For visual comparison, wemake use of the publicly available
demo version 2 provided by the authors.

We visually evaluate the success of the proposed unsuper-
vised approach and present in Fig. 10 synthesized 3Dmodels
that were created fromRGB images of the Bosphorus-3DFA,
the CelebAMask-HQ, and images in the wild.
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