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Abstract
PatchMatch Stereo is a method for generating a depth map from stereo images by repeating spatial propagation and view
propagation. The concept of PatchMatch Stereo can be easily extended to Multi-View Stereo (MVS). In this paper, we present
PatchMatch Multi-View Stereo (PM-MVS), which is a highly accurate 3D reconstruction method that can be used in various
environments. Three techniques are introduced to PM-MVS: (i) matching score evaluation, (ii) viewpoint selection, and (iii)
outlier filtering. The combination of normalized cross-correlation with bilateral weights and geometric consistency between
viewpoints is used to improve the estimation accuracy of depth and normal maps at object boundaries and poor-texture
regions. For each pixel, viewpoints used for stereo matching are carefully selected in order to improve robustness against
disturbances such as occlusion, noise, blur, and distortion. Outliers are removed from reconstructed 3D point clouds by a
weighted median filter and consistency-based filters assuming multi-view geometry. Through a set of experiments using
public multi-view image datasets, we demonstrate that the proposed method exhibits efficient performance compared with
conventional methods.

Keywords PatchMatch · 3D reconstruction · Multi-view stereo

1 Introduction

Stereo matching is a technique to find correspondence
between two images captured by a stereo camera, and is
one of fundamental processes in image processing and com-
puter vision [17,22]. The 3D shape of a target object can be
reconstructed from the correspondence obtained by stereo
matching, considering the geometric relationship between
cameras. Multi-View Stereo (MVS), which uses a set of
images taken frommultiple viewpoints for dense reconstruc-
tion of the target object, has been widely studied [22].

PatchMatch Stereo proposed by Bleyer et al. [1] is one
of convincing stereo matching methods. PatchMatch Stereo
generates a disparity map (and a normal map) from a
binocular stereo image pair by repeatedly updating the dis-
parity and normal maps, which are initialized with random
values in advance. The update process consists of three
steps: (i) spatial propagation, (ii) view propagation, and
(iii) plane refinement. PatchMatch Stereo exhibits efficient
performance with fewer stereo matches than brute-force
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matching approach by introducing realistic assumptions that
take into account the characteristics of disparity map. Patch-
Match Stereo can also estimate the disparity between stereo
images with sub-pixel accuracy. In addition, PatchMatch
Stereo estimates the normal of each pixel, enabling robust 3D
reconstruction against local image deformation. With these
advantages, PatchMatch Stereo is expected to become one
of the most effective stereo matching methods for 3D recon-
struction.

The concept of PatchMatch Stereo can be easily extended
to MVS. Shen proposed a multi-view 3D reconstruction
method based on PatchMatch Stereo [21]. Shen’s method
is very ad hoc and does not take full advantage of the poten-
tial of multi-view images; the method simply combines a set
of depth maps, each derived from a pair of stereo images.
On the other hand, it is well known in the field of MVS that
the robustness and accuracy of 3D reconstruction frommulti-
view images can be improved by integrating matching scores
from multiple stereo image pairs [4,6,16,22]. This approach
matching score integration could be applied to derive an effi-
cient multi-view extension of Bleyer’s original PatchMatch
Stereo [1].

In line with this idea, Schönberger et al. proposed
COLMAP [19], which uses a matching score that takes

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00138-023-01380-8&domain=pdf
http://orcid.org/0000-0001-7431-7105


32 Page 2 of 16 K. Ito et al.

into account multi-view integration unlike Shen’s method.
COLMAP estimates depth and normal maps by introducing
a hidden Markov model to the parameter update algorithm
for PatchMatch Stereo. COLMAP is one of the most accu-
rate multiview 3D reconstruction algorithms. On the other
hand, a major concern of COLMAP is that it simplifies the
depth/normal update process to reduce computational com-
plexity. Spatial propagation, which is to propagate depth and
normal parameters to neighboring pixels, is performed only
on the pixels one pixel adjacent to the pixel of interest. In
addition, view propagation, which is used in the original
PatchMatch Stereo to propagate parameters to another view-
point, is not used inCOLMAP.Plane refinement, which is the
updating of parameters using random numbers, is performed
multiple times in the original PatchMatch Stereo, but only
once in COLMAP. Such ad hoc simplification could degrade
overall 3D reconstruction performance.

In our work [9] published earlier than COLMAP, we pro-
posed a systematic extension of PatchMatch Stereo taking
the multi-view integration into consideration. This method
is different from Shen’s method in the following points:
(i) depth maps are updated with interaction among multi-
view images, (ii) matching score is calculated from multiple
stereo image pairs, and (iii) view propagation is also per-
formed among multi-view images. In this method, however,
the viewpoints used for matching is selected roughly for each
reference viewpoint and not for each pixel, so the reconstruc-
tion accuracymay be degraded by image occlusion and noise.
The estimation accuracy of depth and normal maps at object
boundaries and poor-texture regions may also be degraded
since simple Normalized Cross-Correlation (NCC) is used
as a measure of matching. The estimated depth and normal
maps are used directly to reconstruct the object shape, so the
result will be significantly affected by the areas where the
estimation failed, resulting in outliers and missing points.

In this paper, we propose PatchMatch Multi-View Stereo
(PM-MVS), a highly accurate 3D reconstruction method
addressing the above problems and can be used in vari-
ous environments. We introduce three improvement tech-
niques into PM-MVS, related to (i) matching score eval-
uation, (ii) viewpoint selection, and (iii) outlier filtering.
For (i), we employ NCC with bilateral weights as an
advanced matching measure and reflect geometric con-
sistency for each stereo pair to improve robustness of
matching. For (ii), we modify the algorithm so that the
viewpoint used to calculate the matching score can be
selected for each pixel. For (iii), we remove outliers by
a weighted median filter and three specially designed fil-
ters based on the consistency of multi-view geometry [26].
Through a set of experiments using public multi-view image
datasets, we demonstrate that the proposed method exhibits
efficient performance compared with conventional meth-
ods.

2 Related work

In the following, we briefly summarize well-known multi-
view 3D reconstruction algorithms that are also used for
performance comparison with the proposed method.

The MVS algorithms based on region expansion recon-
struct the 3D shape by performing 3D reconstruction of
feature points and then repeatedly propagating the results to
neighboring regions [4,8,12]. One of the most well-known
methods is Patch-based Multi-View Stereo (PMVS) [4].
PMVS reconstructs a sparse 3D shape based on feature points
detected in the input image, and then reconstructs a dense
3D shape by repeating propagation of the reconstruction
result and filtering based on consistency of visibility. Algo-
rithms based on region expansion have the advantages of fast
processing and not requiring the 3D reconstruction results
obtained by other methods as initial values. There are some
problems that the entire object cannot be reconstructed due to
a small number of feature points, and that the reconstruction
accuracy is degraded in regions where no feature points are
detected since these algorithms propagate the sparse results
reconstructed from the feature points. It is also difficult to
reconstruct areas with small changes in intensity, such as
poor-texture areas. In many cases, outliers are included in the
reconstruction results from feature points, and it is important
to remove them in order to perform stable 3D reconstruction.

TheMVS algorithms based on depth map integration esti-
mate depthmaps for each viewpoint frommulti-view images,
and then integrate them to reconstruct the 3D shape of the
target [2,6,13,19,23]. Depth is estimated by calculating the
likelihood of the assumed depth using image matching such
as NCC, and then a 3D point cloud or 3D mesh model
is generated by integrating the depth maps generated for
each viewpoint with consistency. Goesele et al. [6] used
NCC-based window matching in the framework of plane-
sweeping approach to generate highly accurate depth maps.
Campbell et al. [2] assigned multiple depth candidates to a
single pixel and selected the best depth based on the informa-
tion of neighboring pixels, resulting in a highly accurate 3D
shape reconstruction. Tola et al. [23] used DAISY descrip-
tors [3] to improve the robustness against stereo images with
large image deformations. Schönberger et al.[19] proposed
COLMAP for fast and accurate 3D reconstruction by com-
bining a hidden Markov model with the parameter update
algorithm used in PatchMatch Stereo [1]. Goesele et al.’s
method and Campbell et al.’s method are based on a plane-
sweeping approach, which requires a full search in the depth
direction to estimate the depth corresponding to a pixel.
Therefore, thesemethods are not practical in terms of compu-
tational cost because of the large number ofwindowmatching
calculations. Tola et al.’s method and COLMAP can recon-
struct the shapewith short processing time and high accuracy,
however, a sparse 3D shape is reconstructed depending on the
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Fig. 1 Geometric relationship among the 3D point M and views Vk
(k = 3)

object since they achieve high accuracy of 3D reconstruction
by excluding points with low confidence values.

In our previous work [9], we proposed an extension of
PatchMatch stereo [1] to MVS as well as COLMAP. In this
method, depth maps are updated with interaction among
multi-view images, a matching score is calculated from
multiple stereo images, and view propagation is performed
among multi-view images. The reconstruction accuracy of
this method can be improved by filtering based on the consis-
tency of multi-view geometry [26]. As mentioned in Sect. 1,
the reconstruction accuracy is highly dependent on the envi-
ronment since the viewpoints used for matching are selected
for each viewpoint and NCC is used for matching among
multi-view images.

3 Fundamental techniques for PM-MVS

This section describes fundamental techniques for PM-MVS:
(i) matching score, (ii) viewpoint selection, and (iii) out-
lier filtering. We use the following notations to describe
each technique. We now consider a set of views V =
{V1, V2, . . . , VK }. For each view Vk ∈ V , let IVk (m) be a
reference image, AVk be the intrinsic parameters, and RVk
and tVk be the extrinsic parameters consisting of a rota-
tion matrix and a translation vector. K is the number of
images and m = (u, v) is an image coordinate. We consider
the problem of generating depth maps dVk (m) and normal
maps θVk (m) and φVk (m) for all the views in V . θVk (m) and
φVk (m) indicate the angle of X -axis direction and Y -axis
direction of the normal vector, respectively. Note that we use
dVk , θVk , and φVk for dVk (m), θVk (m), and φVk (m), respec-
tively, unless necessary in the following. Figure1 shows
geometric relationship among views and a target object when
k = 3.

3.1 Matching score

We employ a confidence value proposed by Goesele et al.
[6] as a matching score to utilize multiple stereo images

in the framework of PM-MVS. In the most MVS algo-
rithms [4,6,21], NCC is used to evaluate the matching of
multi-view images. NCC-based matching produces wrong
correspondence at object boundaries and in poor-texture
regions, resulting in the estimation of discontinuous depths
and normals, which cause outliers. Filtering of the 3D point
cloud removes some outliers, however it cannot remove them
completely, which reduces the reconstruction accuracy. The
matching score in PM-MVS is based on BNCC, which is
NCCwith bilateral weights, used in COLMAP [19]. The dif-
ferences between PM-MVS and COLMAP are as follows.
The matching score in PM-MVS is obtained by subtract-
ing a penalty calculated based on the geometric consistency
between viewpoints from the similarity between windows
calculated by BNCC. Also, the average of the matching
scores of the top-L stereo pairs out of all stereo pairs is
used to suppress the effect of occlusion. In the following,
we revise the definition of BNCC and provide details on the
mathematical definitions of the matching scores used in PM-
MVS.

We consider the matching score for the reference view
Vk ∈ V in the following. Let us assume thatCVk = {Cn

Vk
|n =

1, . . . , Npair } is a set of stereo pairs to be matched with
Vk , where Npair is the number of stereo pairs. As described
in Sect. 3.2, each m has a different viewpoint to be paired,
and therefore, Cn

Vk
should be written as Cn

Vk
(m) to be pre-

cise. In the following, we use the notation Cn
Vk

for ease
of understanding. Given a pixel m in Vk and parameter
pVk = {dVk , θVk , φVk }, a matching score ξ(Vk,Cn

Vk
, pVk ,m)

between Vk and Cn
Vk

is defined by

ξ(Vk,C
n
Vk , pVk ,m) = BNCC( f , g) − ψ(Vk,C

n
Vk , pVk ,m),

(1)

where BNCC isNCCwith bilateral weights, which is defined
by

BNCC( f , g) =
∑

i bi ( fi − f̄ ∗)(gi − ḡ∗)
√∑

i bi ( fi − f̄ ∗)
∑

i bi (gi − ḡ∗)
. (2)

f and g are defined by

f = Crop(IVk ,m, w), (3)

g = Crop(Trans(ICn
Vk

, H(Vk,C
n
Vk , pVk ,m)),m, w), (4)

where Crop(I ,m, w) indicates a function to crop a win-
dow with w × w pixels centered on the coordinate m from
the image I . Trans(I , H) indicates a function to transform
I using a projective matrix H .Given parameters pVk =
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{dVk , θVk , φVk }, the projective matrix H between Vk − Cn
Vk

is defined by

H(Vk,C
n
Vk , pVk ,m) = ACn

Vk

(

R + tnT

nT M

)

A−1
Vk

, (5)

where a rotation matrix R, a translation vector t , a 3D coor-
dinate M and a normal vector n are defined by

R = RCn
Vk
R−1
Vk

,

t = tCn
Vk

− RCn
Vk
R−1
Vk

tVk ,

M = dVk A
−1
Vk

[u, v, 1]T ,

n = 1
√
tan2 θVk + tan2 φVk + 1

[tan θVk , tan φVk ,−1]T ,

respectively. In Eq. (2), i indicates a pixel in the windows.
f̄ ∗ and ḡ∗ indicate the weighted average calculated using the
pixel values and weights bi of each window. The bilateral
weight bi at pixel i is defined by

bi = exp

(

−| fi − fc|2
2σ 2

f

− ‖mi − mc‖22
2σ 2

m

)

, (6)

where the subscript c indicates the center coordinate of the
window. | fi − fc|2 indicates the pixel value distance and
‖mi −mc‖22 indicates the spatial distance, whose importance
is relatively scaled by their Gaussian dispersion σ f and σm .

ψ(Vk,Cn
Vk

, pVk ,m) in Eq. (1) indicates the geometric
consistency between Vk and Cn

Vk
at pixel m on Vk . In poor-

texture or noisy regions, the scores obtained by BNCC are
less reliable. Therefore, adding geometric consistency as a
penalty improves the reliability of the matching scores for
such regions. The geometric consistency is defined by the
reprojection error �e(m) between Vk and Cn

Vk
as in [19].

The 3D point M for m on Vk is calculated by

M = R−1
Vk

(dVk (m) · A−1
Vk

[u, v, 1]T ) − R−1
Vk

tVk . (7)

M is projected onto Cn
Vk

by

m′ = ACn
Vk

[RCn
Vk
tCn

Vk
]M (8)

as shown inFig. 2 (a). Then, the 3DpointM ′ form′ = (u′, v′)
on Cn

Vk
is calculated by

M ′ = R−1
Cn
Vk

(dCn
Vk

(m′) · A−1
Cn
Vk

[u′, v′, 1]T ) − R−1
Cn
Vk
tCn

Vk
. (9)

M ′ is projected onto Vk by

[û, v̂, 1]T = AVk [RVk tVk ]M ′ (10)

Fig. 2 Illustration of reprojection error �e(m): a m′ is obtained by
projecting a 3D point M onto Cn

Vk
, which is reconstructed using m on

Vk and its parameters and b m̂ is obtained by projecting a 3D point M ′
on to Vk , which is reconstructed using m′ on Cn

Vk
and its parameters.

The reprojection error �e(m) is calculated as the distance between m
and m̂

as shown in Fig. 2b. The reprojection error is given by

�e(m) = ‖m − m̂‖2, (11)

where m̂ = (û, v̂). The geometric consistency is given by

ψ(Vk,C
n
Vk , pVk ,m) = ηmin(�e(m), ψmax ), (12)

where ψmax indicates the maximum of the acceptable repro-
jection error and η indicates the constant.

We obtain a set of matching scores by calculating the
matching score for all the stereo pairs. The effect of occlusion
can be reduced by considering the top-L matching scores [5].
Assuming that the matching score sorted in descending order
is ξ̂ (Vk,Cn

Vk
, pVk ,m), the final matching score for pixel m

on the reference view Vk is calculated by

Score(Vk,CVk , pVk ,m) = 1

L

L∑

l=1

ξ̂ (Vk,C
l
Vk , pVk ,m).

(13)

3.2 Viewpoint selection

The original approaches of MVS with PatchMatch [9,21]
select one of the viewpoints, Cn

Vk
, to make a stereo pair and

match all the pixels in the image of Cn
Vk

with those of the
reference viewpoint Vk . Since it is assumed that the pixels
of Vk correspond to those of Cn

Vk
, the accuracy of depth and

normal estimation is degraded by disturbances such as occlu-
sion and noise. Therefore, the optimal viewpoint Cn

Vk
to be

matched with Vk has to be selected for each pixel, not for
each viewpoint, as used in recent approaches [15,19,24,27]
to improve the matching accuracy. In the proposed method,
three metrics are introduced for pixel-wise viewpoint selec-
tion: (i)matching score, (ii) triangulation probability, and (iii)
incident probability. Our approach is similar to Goesele et al.
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[7], although it is not pixel-wise viewpoint selection. Both
approaches use convergence angles between viewpoints and
an NCC-based score. In [7], the number of SIFT features
shared among viewpoints and image resolution are used. On
the other hand, the proposed approach uses normals and a
mesh generated from a sparse 3D points obtained by SfM.

3.2.1 Matching score

Generally, the viewpoints are selected in the order of shortest
baseline length to make a stereo pair with less image defor-
mation, however, the effects of occlusion and noise are not
taken into account in this case. To robustly select viewpoints
against noise and occlusion, we employ a metric based on
the matching score, which is defined by

Pscore = exp

(

−{1 − ξ(Vk,C
j
Vk

, pVk ,m)}2
2σ 2

s

)

, (14)

where ξ(Vk,C
j
Vk

, pVk ,m) indicates amatching score defined

in Eq. (1). C j
Vk

indicates the j-th viewpoint among the Ns

viewpoints. σs is a parameter of the Gaussian function and
is the threshold for determining whether a window extracted
from Vk is included in C j

Vk
.

3.2.2 Triangulation probability

Thematching score is high if the intensity values between the
windows are correlated. In general, windows extracted from
viewpoints with a short baseline lengthwith Vk exhibit a high
correlation since the image deformation between viewpoints
is small.Note thatwhen the angle betweenviewpoints is close
to zero, the windows are highly correlated with each other
for any given depth, resulting in inaccurate depth estimation.
In order to avoid this problem and improve the accuracy of
viewpoint selection, the triangulation prior Ptri proposed in
[19] is introduced to the proposed method, which is defined
by

Ptri = 1 − {min(θtr i , τtr i ) − τtr i }2
τ 2tr i

, (15)

where τtr i is a threshold and θtr i indicates a triangulation
angle between viewpoints as shown in Fig. 3, which is given
by

θtr i = arccos
(M − O

C j
Vk

)T · M
‖M − O

C j
Vk

‖2‖M‖2 , (16)

Fig. 3 Illustration of the triangulation angle θtr i , where M is a 3D point
reconstructed from the depth dVk (m), OVk indicates the camera center

of Vk , and O
C j
Vk

indicates the camera center of C j
Vk

Fig. 4 Illustration of the incident angle θinc, where M is a 3D point
reconstructed from the depth dVk (m), nM indicates the normal vector

nM of the 3D point M, and O
C j
Vk

indicates the camera center of C j
Vk

where M is a 3D point reconstructed from the depth dVk (m),

and O
C j
Vk

indicates the camera center of V j
k . Ptri is lowwhen

the triangulation angle θtr i is below the threshold τtr i .

3.2.3 Incident probability

If the normal vector nM of the 3D point M and the eye
vector of the viewpoint C j

Vk
have the same direction, M is

not visible in C j
Vk
. In order to exclude such viewpoints and

improve the accuracy of viewpoint selection, the incident
prior Pinc proposed in [19] is introduced to the proposed
method, which is defined by

Pinc = exp

(

− θ2inc

2σ 2
i

)

, (17)

where σi is a parameter of the Gaussian function, and θinc
indicates an incident angle between nM and the eye vector
of the viewpoint C j

Vk
as shown in Fig. 4, which is given by

θinc = arccos
(O

C j
Vk

− M)T · nM

‖O
C j
Vk

− M‖2‖nM‖2 . (18)

123



32 Page 6 of 16 K. Ito et al.

The above three metrics are used to select a set of view-
points CVk to be paired with the reference viewpoint Vk for

each pixel m. The score P(Vk,C
j
Vk

, pVk ,m) for each view-

point C j
Vk

is calculated by

P(Vk,C
j
Vk

, pVk ,m) = Pscore · Ptri · Pinc, (19)

whereC j
Vk

indicates the j-th viewpoint in CVk . A set of view-
points CVk consists of Ns viewpoints in order of decreasing
baseline length to Vk . We limit the number of viewpoints to
Ns instead of all viewpoints in viewpoint selection to elimi-
nate distant viewpoints and reduce the number of candidate
viewpoints for reducing the processing time. Since PM-MVS
is an iterative method, the accuracy of depth and normal is
low at first. The accuracy of the viewpoint selection score
calculated in Eq. (19) is also low, resulting in inaccurate esti-
mation of depth and normal maps. Therefore, the sparse 3D
point cloud obtained by Structure fromMotion (SfM) used in
the estimation of camera parameters is used. A mesh model
is generated from the sparse 3D point cloud using Poisson
surface reconstruction [11], and the depth and normal maps
corresponding to the reference viewpoint Vk are rendered
from its mesh model. Equation (19) is calculated for the
depth and normal from pVk and from the sparse 3D point
cloud, respectively, and the larger value is used as the score
for viewpoint selection. The viewpoint C j

Vk
corresponding

to the top Npair of P(Vk,C
j
Vk

, pVk ,m) is selected as a set
of viewpoints CVk (m) that should be paired to estimate the
parameters of pixel m in Vk .

3.3 Filtering

The depth map and normal map estimated by MVS have
wrong correspondence in poor texture regions and object
boundaries, and these result in outliers and missing points
in 3D reconstruction. It is necessary to remove or interpolate
such wrong correspondence in depth and normal maps to
obtain highly accurate reconstruction results. The proposed
method uses a weighted median filter and three filters based
on the consistency of multi-view geometry [26] to suppress
the occurrence of outliers and missing points in the recon-
struction results.

3.3.1 Weightedmedian filter

A weighted median filter [22] has been used to improve the
accuracy of disparity estimation in stereo vision [14] and
depth and normal estimation in MVS. The weighted median
filter is introduced into PM-MVS not only to remove out-
liers, but also to interpolate missing points. In the proposed
method, the weight for the weighted median filter is cal-
culated from the matching score and bilateral weights. The

weight wmed(m) on m is calculated by

wmed(m) = bi exp

(

−1 − Score(Vk, pVk ,m)2

2σ 2
x

)

. (20)

3.3.2 Consistency among depth maps and their visibility

This filter checks consistency among themultiple depthmaps
and their visibility. If a 3D point interrupts the visibility of
other 3D points or its visibility is interrupted by other 3D
points, this point is removed as an outlier.

3.3.3 Left-right consistency

This filter is similar to left-right consistency checking used in
binocular stereomatching.We remove apointwhose distance
from each corresponding point in all other views is longer
than threshold,whereweuse thedepth insteadof the distance.

3.3.4 Consistency of pixel intensity

This filter checks the consistency of pixel intensity among
the multiple images to remove artifacts observed around the
surface.We do not take care of a 3D point near other points in
the filter described in Sect. 3.3.2, since it is hard to check the
consistency of such a 3D point using only geometric relation.
The use of pixel intensity makes it possible to classify such
a 3D point into a true 3D point or an outlier.

Formore details on the above four filters, refer toYodokaw
et al. [26].

4 PatchMatchmulti-view stereo (PM-MVS)

The proposed method consists of four steps: (i) initializa-
tion, (ii) spatial propagation, (iii) view propagation, and (iv)
plane refinement. The flow of PM-MVS for reference view
Vk is shown in Fig. 5. Depth and normal maps are generated
by repeating processes (ii)–(iv). The processing flow of PM-
MVS follows that of [1], except that the viewpoint is updated
at each iteration, although the content of each process is dif-
ferent. The detail of each step in PM-MVS is described in
the following.

4.1 Initialization

This step consists of parameter initialization by random
numbers, viewpoint selection, and calculation of the initial
matching score.
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Fig. 5 Flow of the proposed method for the reference view Vk

4.1.1 Parameter initialization by random numbers

In 3D reconstruction methods using PatchMatch, the values
of depth and normalmaps are initialized by randomnumbers.
It is necessary to set the appropriate range of randomnumbers
since the range of the random numbers corresponds to the
reconstruction range. In the proposed method, we employ
the difference approaches for setting the range of random
numbers depending on whether SfM is used to estimate the
camera parameters or not.

In the case of using SfM, the camera parameters, i.e.,
the intrinsic and extrinsic parameters of the cameras, are
estimated and the sparse 3D point cloud is reconstructed
simultaneously. The 3D point could is projected onto the ref-
erence viewpoint Vk to obtain a set of depth ZVk . Since ZVk
includes the depth from outliers, the range of depth �dVk is
determined by

�dVk = [Zmin, Zmax], (21)

where Zmin and Zmax are calculated by

Zmin = λminmin′(ZVk , �cminNZVk
+ 1�), (22)

Zmax = λmaxmin′(ZVk , �cmaxNZVk
+ 1�), (23)

where �x� indicates the function to round the element of
x to the nearest integer towards minus infinity, NZVk

is the
number of elements in ZVk , min′(x, i) indicates the function
to get the i-th smallest element in x, and λmin, λmax, cmin, and
cmax are parameters. We employ {λmin, λmax, cmin, cmax} =
{0.75, 1.25, 0.01, 0.99} in this paper.

In the case where the camera parameters for each view-
point are given in advance and SfM is not used, the depth

Fig. 6 Depth map initialization using the geometric relationship
between the reference viewpoint Vk and other viewpoints CVk

range is determined using the geometric relationship between
the reference viewpoint Vk and other viewpoints CVk as
shown in Fig. 6. Let L be the line of sight through the image
center of Vk . For each view Cn

Vk
in CVk , LCn is obtained by

projecting L onto the viewpoint Cn
Vk
. The coordinate x

Cn
Vk

1

and x
Cn
Vk

2 are defined as the coordinate locating at 1/4 of the
image size in this paper. Assuming that the image center of

Vk corresponds to x
Cn
Vk

1 and x
Cn
Vk

2 onCn
Vk
, the depth Z

Cn
Vk

min and

Z
Cn
Vk

max are calculated. The range of depth is set to

�dVk = [Zmin, Zmax], (24)

where

Zmin = min{ZCn
Vk

min |Cn
Vk ∈ CVk }, (25)

Zmax = max{ZCn
Vk

max|Cn
Vk ∈ CVk }. (26)

In both cases, the range of normal is set to ±π/3. Thus,
we obtain the initial parameters pVk = {dVk , θVk , φVk }.

4.1.2 Viewpoint selection

According to the procedure of viewpoint selectionmentioned
in Sect. 3.2, we obtain a set of viewpoints CVk = {Cn

Vk
|n =

1, . . . , Npair } fromwhich to calculate thematching score for
each pixel in the reference viewpoint Vk .

4.1.3 Calculation of initial matching scores

The above processes determine parameters and viewpoints
to be used for each pixel in Vk , and the initial matching scores
are calculated according to Sect. 3.1.

4.2 Spatial propagation

This step propagates the depth and normal information
in the reference viewpoint Vk . As mentioned above, let
pVk (m) = {dVk (m), θVk (m), φVk (m)} be parameters for the

123



32 Page 8 of 16 K. Ito et al.

pixel coordinate m = (u, v) in Vk . Parameters pVk (m)

are updated by comparing a matching score on the image
coordinate m with matching scores on its neighboring pix-
els. If Score(Vk,CVk , pVk (u + δ, v),m) > Score(Vk,CVk ,

pVk (u, v),m), then the parameters for (u, v) are replaced by
the parameters for (u + δ, v). Similarly, if Score(Vk,CVk ,

pVk (u, v + δ),m) > Score(Vk,CVk , pVk (u, v),m), then
the parameters for (u, v) are replaced by the parameters for
(u, v + δ). If the iteration count is odd, then spatial propaga-
tion is performed from the top-left pixel to the bottom-right
pixel. Otherwise, spatial propagation is performed in the
reverse order. Thus, δ indicates 1 when the iteration count
is odd and −1 when the iteration count is even. The above
process is performed for all the pixels in Vk .

4.3 View propagation

This step propagates the depth and normal information from
the reference viewpoint Vk to the neighboring viewpoints
CVk obtainedbyviewpoint selection.Wecompare amatching
score for each pixel in Vk with that for corresponding pixel
in Cn

Vk
∈ CVk (n = 1, . . . , Npair ) to keep the consistency

amongmulti-view images. A 3D pointM reconstructed from
m in Vk and the parameters pVk (m) is transformed into a 3D
point M ′ in the viewpoint Cn

Vk
by

M ′ = [M ′
X , M ′

Y , M ′
Z ]T

= [RCn
Vk

tCn
Vk

]R−1
Vk

(dVk (m)A−1
Vk

m̃ − tVk ), (27)

where m̃ is homogeneous coordinates ofm. A normal vector
n′ in Cn

Vk
is defined by

n′ = [n′
X , n′

Y , n′
Z ]T = RCn

Vk
R−1
Vk

n. (28)

Parameters p′(m′) in Cn
Vk

are calculated by

p′(m′) =
(

M ′
Z , tan−1

(
n′
X

n′
Z

)

, tan−1
(
n′
Y

n′
Z

))

. (29)

If Score(Vk, p′(m′),m′) > Score(Cn
Vk

, pCn
Vk

(m′),m′) for
the pixel coordinate m′ in CVk , then the depth dCn

Vk
(m′) and

the angle of normal vector θCn
Vk

(m′), φCVk
(m′) are replaced

by p′(m′). The above process for all the viewpoints in CVk
provides highly accurate depth and normal estimation, while
significantly increasing the computational cost. Therefore,
we randomly select only one viewpoint Cn

Vk
from a set of

viewpoints CVk in view propagation. We found that a limited
number of viewpoints can be used to estimate the depth and
normal maps with the same accuracy as when the parameters
are propagated to all the viewpoints [9]. The above process
is performed for all the pixels in Vk .

4.4 Plane refinement

This step is to refine parameters pVk . Increasing the resolu-
tion of parameters is necessary to accurately estimate depths
and normals. Although the accuracy of parameter estima-
tion can be improved by increasing the resolution of the
initial random numbers, it also significantly increases pro-
cessing time. Plane refinement reduces processing time by
refining the parameters by adding random numbers to the
parameters with a finer resolution than the resolution of
the random numbers generated by the initialization. For a
given parameter, we add a random number generated at a
finer resolution than the random number used for initial-
ization. Note that one random number is added for each
of the parameters. The matching scores are obtained before
and after adding the random numbers, and if the addition
of a random number increases the score, the parameter is
replaced with the parameter to which the random number
was added. Thus, for m in Vk , if Score(Vk,CVk , pVk (m) +
� p,m) > Score(Vk,CVk , pVk (m),m), the parameter
pVk (m) is replaced by pVk (m) + � p, where � p indicates a
random number generated for each pixel. In this paper, the
range of random numbers is set to 1/4 of the range in initial-
ization described in Sect. 4.1. It is expected to improve the
accuracy by performing this process repeatedly. To reduce
the processing time, we perform the above procedure three
times in one plane refinement in this paper. In addition, the
range of � p is reduced by 1/2 for each time.

4.5 3D reconstruction

After repeating spatial propagation, view propagation, and
plane refinement Nitr times and applying filters to the depth
and normal maps, the depth and normal maps for Vk are
obtained as shown in Fig. 5. For a viewpoint Vk ∈ V , let the
depth of pixel m be dVk (m), the intrinsic parameters be AVk ,
and the extrinsic parameters be RVk and tVk . In this case, the
3D point M reconstructed from m is calculated by

M = R−1
Vk

(dVk (m)A−1
Vk

m̃ − tVk ), (30)

where M is the coordinate of a 3D point in the world
coordinate system. For every pixel m in viewpoint Vk , we
reconstruct a 3D point by Eq. (30). By computing this pro-
cess for all the viewpoints and integrating the point clouds,
we obtain a 3D point cloud that is reconstructed from the
input images V .

5 Experiments and discussion

In this section, we evaluate the accuracy of the proposed
method by using images taken under various conditions.
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Fig. 7 Example of input images in “courtyard” of the ETH3D dataset

First, we evaluate the effectiveness of each techniques pro-
posed in this paper for PM-MVS through the ablation study.
Next, we demonstrate the effectiveness of the proposed
methodby comparing itwith some typical conventionalMVS
methods using the ETH3D dataset [20] including multi-view
images taken in indoor and outdoor environment. Finally,
we demonstrate that the proposed method can reconstruct
dense and accurate 3D point clouds from multi-view images
regardless of the environment and object types through the
experiments using theDTUdataset [10] includingmulti-view
images taken in an indoor environment.

5.1 Ablation study

We apply different combinations of the improvements in
the proposed method and check their effectiveness. In this
experiment, we use “courtyard” in the ETH3D dataset [20].
The “courtyard” set consists of images taken by Nikon D3X
from 38 viewpoints. Three types of images are provided
in the dataset: RAW images, JPEG images, and distortion-
corrected JPEG images. In this experiment, we use only the
distortion-corrected JPEG images. Although the image size
is approximately 6, 048 × 4, 032 pixels, the image size is
reduced by a quarter in this experiment to reduce the pro-
cessing time. An example of the input image used in the
experiment is shown in Fig. 7. For accuracy evaluation, the
ETH3D dataset provides a 3D point cloud measured by the
FARO Focus X 330 laser scanner. The camera parameters
for each viewpoint are provided as the parameters estimated
by the SfM tool COLMAP [18] and scaled to match the
ground-truth 3D point cloud. In this experiment, the cam-
era parameters for each viewpoint are scaled to fit the image
size. In addition, the sparse 3D point cloud reconstructed by
SfM of COLMAP is also provided. In the proposed method,
a mesh model is generated from this point cloud and used for
viewpoint selection.

The parameters of the proposedmethod used in this exper-
iment are set as follows. We set the matching window size
to 10 × 10 pixels and the number of iterations Nitr to 4.
The parameters of the viewpoint selection process are set
to {Npair , Ns, σs, τtr i , σi } = {2, 10, 0.6, π/180, 45.0}. The
parameters for BNCC and Geometric Consistency are set to
{σ f , σm, η, ψmax } = {12.0, 3.0, 0.01, 3.0}. The parameters
of theweightedmedian filter are set to 11 for thewindow size,
σ f = 2.0 and σn = 0.6 for bi . Only pixels with a matching
score greater than 0.5 are reconstructed as having reliable

Table 1 Specification of the methods compared in the ablation study
(VS: viewpoint selection, WM: weighted median filter, GC: geometric
consistency)

Method VS Matching score WM

A View wise NCC

B View wise BNCC + GC �
C Pixel wise NCC �
D Pixel wise BNCC + GC

E Pixel wise BNCC + GC �

depth and normal. The above settings of parameters in PM-
MVS have been experimentally confirmed to be applicable
to other datasets as well. We evaluate the proposed method
using the quantitative metrics of accuracy, completeness, and
F1-score [20]. “Accuracy” is the ratio of 3D points included
in the reconstruction result whose distance to the ground-
truth 3D point is less than or equal to the tolerance (tol.).
This is a metric that indicates how accurately each point has
been reconstructed. “Completeness” is the ratio of ground-
truth 3D points whose distance to the reconstruction result
is less than or equal to tol. It is a metric that indicates how
much of the region has been reconstructed. F1-score is the
harmonic mean of accuracy and completeness, and is a met-
ric that indicates the overall accuracy of the reconstruction
result. Since some 3D reconstruction methods have a trade-
off between accuracy and completeness, the F1 score, which
is the combination of these two factors, is a good indicator
to measure the performance of the methods. The higher the
value of each of these metrics, the better the reconstruction
result.

The methods to be compared in this experiment are sum-
marized inTable 1.A is our previousmethod [9]with filtering
based on the consistency of multi-view geometry [26]. B is a
modified version ofAwith improvedmatching score calcula-
tion and filtering. C is a modified version of Awith improved
viewpoint selectionmethod and filtering. D is amodified ver-
sion of A with improved viewpoint selection and matching
score calculation. E is the proposedmethod in this paper with
all the improvements.

Table 2 shows the accuracy (A), completeness (C), and
F1-score (F1) of each method, and Fig. 8 shows the recon-
struction results of each method. Note that Fig. 8 shows a
magnified view of a part of the reconstruction results. There-
fore, there may be a gap between the appearance and the
number of reconstructed points in Fig. 8 D compared to other
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Fig. 8 Reconstruction results of “courtyard” for each method in the
ablation study. The number in the each figure indicates the number of
reconstructed 3D points

results. In fact, Fig. 8 D has many missing parts that are not
shown in the figure, and the upper right corner is sparser than
in C and E, resulting in fewer reconstructed points. A and B
do not use pixel-wise viewpoint selection, which results in
degraded matching accuracy, missing regions on the wall,
and the small number of reconstructed 3D points. On the
other hand, for C, D, and E, which use pixel-wise viewpoint
selection, the missing regions in A and B are recovered and
the reconstruction results are dense. ComparedwithC,which
uses onlyNCC to calculate thematching scores, andD,which
does not use aweightedmedian filter, E shows higher or com-
parable F1-scores. The above results show the effectiveness
of the proposed method, which employs all the improvement
techniques.

5.2 3D reconstruction frommulti-view images of
ETH3D dataset

We compare the reconstruction accuracy of the proposed
method with that of conventional MVS methods through
experiments using the ETH3Ddataset [20]. The conventional
methods are PMVS [4], COLMAP [19], and Yodokawa et al.
[26], which is the method A in Table 1 with filtering based on
the consistency of multi-view geometry. In this experiment,

we use 12 datasets from the training data of High-res multi-
view, where we exclude “facade” from this experiment since
it has larger number of images then other datasets and some
of the methods are out-of-memory. An example of the input
images selected from the datasets “delivery area” and “ter-
race” is shown in Fig. 9. The other experimental conditions
are the same as those described in the previous section.

Table 3 shows a summary of experimental results for the
ETH3D dataset, where we indicate the results for tol. = 2cm.
COLMAP has the highest accuracy for all the datasets, while
the F1 score is not necessarily high due to the low complete-
ness. The accuracy of the reconstructed 3D points is high,
while the rangeof the reconstructed area is narrow.Yodokawa
et al.’s method has a higher completeness than COLMAP
on some datasets, although its overall performance is lower
than that of COLMAP. The proposed method, PM-MVS,
has the highest completeness for all the datasets. The accu-
racy is lower than COLMAP since the reconstructed area
is larger than COLMAP and includes 3D points with lower
reconstruction accuracy. While PM-MVS can reconstruct
areas with poor texture and far from the camera that can-
not be reconstructed by COLMAP, these areas are difficult
to be recovered by MVS, resulting in a lower accuracy for
PM-MVS. Since there is a trade-off between accuracy and
completeness for each method, the F1 score, which is the
combination of accuracy and completeness, indicates the per-
formanceof eachmethod inMVS.The F1 score for PM-MVS
is the highest inmost cases, indicating that the reconstruction
effectiveness is high.

We focus on the results of “delivery_area” and “terrace”
in the following to analyze the experimental results of each
method in detail. Tables 4 and 5 summarize the results for
accuracy (A), completeness (C), and F1-score (F1) in “deliv-
ery_area” and “terrace,” respectively. Figures10 and 11 show
reconstruction results of each method in “delivery_area” and
“terrace,” respectively. The second and third columns of
Figs. 10 and 11 show the 3D points colored based on the class
of 3D points used in the evaluation of accuracy and complete-
ness, respectively. In accuracy, the reconstructed point cloud
is classified into three types: accurate point, inaccurate point,
and unobserved point. An accurate point (green) is a point
that is accurately reconstructed, an inaccurate point (red) is
a point that is inaccurately reconstructed, and an unobserved
point (blue) is a point that is not included in the set of ground-
truth points. Note that unobserved points are not used for
evaluation. More accurate points indicate higher accuracy of
the reconstruction. In completeness, ground-truth points are
classified into two types: complete points and incomplete
points. A complete point (green) is a point where the cor-
responding 3D point of the reconstruction result exists. An
incomplete point (red) is a point where the corresponding 3D
point of the reconstruction result does not exist. More com-
plete points indicate higher accuracy of the reconstruction.
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Fig. 9 Example of input images in “delivery_area” and “terrace” of the ETH3D dataset

Fig. 10 Results of 3D
reconstruction of
“delivery_area” (first column:
3D point cloud colored by pixel
values, second column: point
cloud visualizing accuracy at
tol. = 1cm, and third column:
point cloud visualizing
completeness at tol. = 1cm).
The number listed below each
figure in the first row indicates
the number of reconstructed 3D
points (color figure online)

Fig. 11 Results of 3D reconstruction of “terrace” (first column: 3D
point cloud colored by pixel values, second column: point cloud visual-
izing accuracy at tol. = 1cm, and third column: point cloud visualizing

completeness at tol. = 1cm). The number listed below each figure in the
first row indicates the number of reconstructed 3D points (color figure
online)
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Table 2 Experimental results of “courtyard” for each method in the ablation study: accuracy (A) [%], completeness (C) [%] and F1-score (F1) [%]
at tol. [cm]

Tol A B C D E
A C F1 A C F1 A C F1 A C F1 A C F1

1 42.03 14.96 22.07 42.56 17.24 24.54 42.92 42.21 42.56 47.53 30.24 36.96 43.19 40.30 41.69

2 58.83 31.25 40.81 60.01 37.54 46.19 62.82 72.79 67.44 66.43 65.30 65.86 63.12 72.57 67.52

5 79.43 52.21 63.00 80.86 53.01 64.04 84.81 85.21 85.01 86.63 83.48 85.03 85.42 85.45 85.44

10 90.83 67.70 77.58 92.09 57.25 70.61 94.21 88.99 91.52 95.37 88.59 91.86 94.77 89.22 91.91

20 96.61 79.73 87.36 97.42 60.01 74.27 98.07 91.93 94.91 98.67 91.71 95.06 98.47 91.90 95.07

50 98.82 86.28 92.13 99.31 64.35 78.10 99.20 95.20 97.16 99.48 95.05 97.22 99.49 95.11 97.25

A bold font indicates the highest value for each metric

Table 3 Experimental results for the training data of “high-res multi-view” in the ETH3D dataset: accuracy (A) [%], completeness (C) [%] and
F1-score (F1) [%] for tol. = 2cm

Dataset PMVS [4] COLMAP [19] Yodokawa [26] Proposed
A C F1 A C F1 A C F1 A C F1

Courtyard 70.18 9.26 16.37 85.17 35.93 50.54 60.78 49.78 54.74 63.12 72.57 67.52

Delivery_area 69.98 16.32 26.47 90.01 45.83 60.73 64.97 62.79 63.86 62.38 76.74 68.82

Electro 68.94 11.61 19.87 91.48 43.95 59.37 76.63 14.15 23.89 76.32 45.86 57.30

Kicker 72.58 22.67 34.55 91.63 35.79 51.48 71.32 17.96 28.7 70.83 52.14 60.07

Meadow 67.36 10.94 18.83 81.12 23.27 36.17 60.34 29.30 39.44 59.60 38.15 46.52

Office 67.68 12.60 21.24 91.48 23.79 37.77 63.35 8.21 14.54 65.80 41.71 51.06

Pipes 80.50 14.83 25.04 95.54 19.27 32.07 80.05 8.36 15.15 78.24 30.50 43.89

Playground 79.11 15.80 26.34 85.26 42.62 56.83 81.69 20.74 33.08 76.67 44.93 56.66

Relief 90.05 26.10 40.47 95.89 48.37 64.31 86.39 27.53 41.76 77.59 74.43 75.98

Relief_2 89.35 25.94 40.21 94.61 46.93 62.74 80.47 47.55 59.78 77.06 73.90 75.45

Terrace 80.87 23.15 35.99 95.64 60.30 73.96 86.34 68.95 76.67 80.87 79.21 80.03

Terrains 86.67 25.59 39.52 93.42 52.41 67.15 79.93 39.70 53.05 70.48 63.51 66.81

Average 76.94 17.90 28.74 90.94 39.87 54.43 74.36 32.92 42.06 71.58 57.80 62.51

A bold font indicates the highest value for each metric

Table 4 Experimental results
for “delivery_area”: accuracy
(A) [%], completeness (C) [%]
and F1-score (F1) [%] for each
method in tol. [cm]

Tol PMVS [4] COLMAP [19] Yodokawa [26] Proposed
A C F1 A C F1 A C F1 A C F1

1 54.46 4.12 7.66 76.81 22.4 34.68 46.87 43.72 45.24 43.55 56.77 49.29

2 69.98 16.32 26.47 90.01 45.83 60.73 64.97 62.79 63.86 62.38 76.74 68.82

5 84.64 45.65 59.31 96.34 68.94 80.37 84.97 76.01 80.24 83.88 89.31 86.51

10 90.79 62.13 73.77 97.94 80.94 88.63 93.32 82.04 87.32 93.21 94.48 93.84

20 94.01 73.57 82.54 98.53 89.94 94.04 96.82 85.64 90.89 97.09 97.09 97.09

50 96.62 85.42 90.68 99.00 97.49 98.24 98.30 88.67 93.24 98.67 98.68 98.68

A bold font indicates the highest value for each metric

The reconstruction results by the proposed method contain
more outliers and inaccurate points than those by the conven-
tional methods as shown in Figs. 10 and 11. The proposed
method can reconstruct 3D points that are not included in the
ground truth, and can also reconstruct areas with poor tex-
ture and far from the camera, which cannot be reconstructed
by COLMAP and other methods. Therefore, when visual-
izing the accuracy of the proposed method, there are more

inaccurate points and unobserved points than other methods.
On the other hand, visualization of the completeness of the
proposed method shows that the number of complete points
is larger than that of other methods, indicating that the pro-
posed method can reconstruct a dense point cloud. PMVS
has relatively high accuracy, while it has the lowest com-
pleteness among all the methods. This is because PMVS is
based on patch expansion, which makes it difficult to recon-
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Table 5 Experimental results
for “terrace”: accuracy (A) [%],
completeness (C) [%] and
F1-score (F1) [%] for each
method in tol. [cm]

Tol PMVS [4] COLMAP [19] Yodokawa [26] Proposed
A C F1 A C F1 A C F1 A C F1

1 65.82 5.29 9.79 89.01 32.64 47.77 73.58 48.91 58.76 64.40 62.62 63.50

2 80.87 23.15 35.99 95.64 60.30 73.96 86.34 68.95 76.67 80.87 79.21 80.03

5 92.23 54.41 68.44 98.51 79.20 87.81 94.70 84.52 89.32 93.25 91.32 92.28

10 95.77 65.57 77.84 99.12 86.85 92.58 97.26 91.62 94.36 96.94 96.74 96.84

20 97.44 72.76 83.31 99.43 93.42 96.33 98.38 97.01 97.69 98.51 99.08 98.79

50 98.95 79.76 88.33 99.76 99.00 99.38 99.20 99.59 99.40 99.44 99.94 99.69

A bold font indicates the highest value for each metric

Fig. 12 Examples of input images of the DTU dataset used in the experiment (upper: scan2, lower: scan34)

struct regions with poor texture, such as walls. COLMAP has
the highest accuracy, while it has the lower completeness. On
the other hand, the proposedmethod has the highest F1-score
in many tol. and the highest completeness in almost all the
cases. As a result, the proposed method can reconstruct the
3D point clouds more densely and accurately than the con-
ventional methods.

5.3 3D reconstruction frommulti-View images of
DTU dataset

We demonstrate the effectiveness of the proposed method
through experiments using the DTU dataset [10]. The DTU
dataset provides multi-view images of 128 objects taken
under indoor environment, ground-truth 3Dpoint clouds, and
camera parameters for each image. The 128 objects include
building models, product packages, vegetables, building
materials, animal figurines, etc. For each object, the 3D point
clouds reconstructed by Campbell et al.’s method [2], PMVS
[4], andTola et al.’smethod [23] are also provided. Themulti-
view images are taken from 49 or 64 viewpoints, and each
image has a size of 1, 600×1, 200 pixels. In this experiment,
we compare the accuracy of the proposed method with that
of PMVS [4], COLMAP [19], and Yodokawa et al. [26] as
in Sect. 5.2, in addition to the MVS algorithms provided by
the dataset. Note that in the multi-view images provided in
the DTU dataset, the camera position and pose of the object

change automatically, and the light source environment is
constant in all the images. Therefore, the proposed method
does not use pixel-wise viewpoint selection, but viewpoint
selection based on the baseline length as in our previouswork
[9] in this experiment. In this experiment, we use “scan2”
and “scan34” among 128 objects. Both scan sets are taken
from 49 viewpoints. Figure12 shows an example of the input
images.

The parameters of the proposedmethod used in this exper-
iment are almost the same as those in the other experiments,
except for the matching window size and Npair . The images
in the DTU dataset contain poor-texture regions, therefore, a
larger window size and a larger Npair improve the accuracy
of the reconstruction. We set the matching window size to
16× 16 pixels and the parameters of the viewpoint selection
process to Npair = 4.

We evaluate the reconstruction accuracy by three met-
rics: accuracy, completeness, and overall [25], using the
evaluation tools provided in the DTU dataset. Note that the
definitions of accuracy and completeness are different from
those of metrics of the same name in the ETH3D dataset.
Accuracy in the DTU dataset is the distance from each point
of the reconstructed 3D point cloud to the nearest neighbor
point of the ground-truth point cloud. This is a measure of
how accurate the reconstructed points are. Completeness in
theDTUdataset is the distance fromeach point in the ground-
truth point cloud to the nearest neighbor of the reconstructed
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Table 6 Experimental results for “scan2” and “scan34” in the DTU dataset (unit: mm)

Scan2 Scan34
Median acc Median comp Median overall Median acc Median comp Median overall

Campbell [2] 0.3740 0.1463 0.2601 0.3266 0.1433 0.2350

PMVS [4] 0.2432 0.3088 0.2760 0.2099 0.2890 0.2495

Tola [23] 0.1807 0.3432 0.2619 0.1636 0.3361 0.2498

COLMAP [19] 0.2058 0.3536 0.2797 0.2013 0.3551 0.2782

Yodokawa [26] 0.2684 0.1754 0.2219 0.1888 0.1511 0.1700

Proposed 0.2311 0.1845 0.2078 0.1768 0.1532 0.1650

A bold font indicates the highest value for each metric

Fig. 13 Reconstruction results of the DTU dataset for each method (upper: scan2, lower: scan34). The number listed below each figure indicates
the number of reconstructed 3D points

Fig. 14 Error maps of accuracy for each method (upper: scan2, lower: scan34)

Fig. 15 Error maps of completeness for each method (upper: scan2, lower: scan34)
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point cloud. This is a measure of how much of the region of
the ground-truth point cloud is reconstructed by the resultant
point cloud. Overall was defined as the arithmetic mean of
accuracy and completeness, and is a measure of the overall
accuracy of the reconstruction results. The lower these met-
rics are, the higher the accuracy of the reconstruction results.

Table 6 summarizes themedian values of accuracy (Acc.),
completeness (Comp.), and overall for scan2 and scan34.
Figure13 shows the reconstruction results for each method,
Fig. 14 shows errormaps of accuracy, and Fig. 15 shows error
maps of completeness. In scan2,Acc. of the proposedmethod
is the third lowest after Tola et al. and COLMAP. Comp. is
the third lowest after Campbell et al. and Yodokawa et al. On
the other hand, overall of the proposed method is the low-
est among all the methods. In scan34, Acc. of the proposed
method is the second lowest after Tola et al. Comp. is the third
lowest after Yodokawa et al.’s method and Campbell et al.’s
method. On the other hand, overall of the proposed method
is the lowest among all methods as well as scan2. As shown
in Figs. 14 and 15, the results of Tola et al.’s method include
many pointswith smallAcc. errors, but alsomany pointswith
large Comp. errors. The results of Campbell et al.’s method
include many points with small Comp. errors, but also many
points with large Acc. errors. On the other hand, the results
of the proposed method include both points with small Acc.
and points with small Comp. in a balanced manner, result-
ing in the most accurate reconstruction results. These results
indicate that the proposed method is also effective for 3D
reconstruction using data taken in indoor environments.

6 Conclusion

In this paper, we proposed a highly accurate multi-view
3D reconstruction method, PatchMatch Multi-View Stereo
(PM-MVS), by introducing three improvement techniques
for the extension of PatchMatch Stereo to MVS. In the first
technique, the combination of NCC with bilateral weights
and geometric consistency between viewpoints was used to
improve the estimation accuracy of depth and normal maps
at object boundaries and poor-texture regions. In the second
technique, the viewpoint to be used for calculating matching
scores was selected for each pixel to be robust against distur-
bances such as occlusion and noise. In the third technique,
outliers in the reconstructed 3D point cloud are removed by
a weighted median filter and filters based on the consistency
of multi-view geometry. Through a set of experiments using
public multi-view image datasets, we demonstrated that the
proposed method exhibited efficient performance compared
with conventional methods. In the future, we will develop a
simple and accurate 3D reconstruction system and explore a
mesh model generation method using the proposed method.
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