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Abstract
To support the ongoing size reduction in integrated circuits, the need for accurate depth measurements of on-chip structures
becomes increasingly important. Unfortunately, present metrology tools do not offer a practical solution. In the semiconductor
industry, critical dimension scanning electron microscopes (CD-SEMs) are predominantly used for 2D imaging at a local
scale. The main objective of this work is to investigate whether sufficient 3D information is present in a single SEM image
for accurate surface reconstruction of the device topology. In this work, we present a method that is able to produce depth
maps from synthetic and experimental SEM images. We demonstrate that the proposed neural network architecture, together
with a tailored training procedure, leads to accurate depth predictions. The training procedure includes a weakly supervised
domain adaptation step, which is further referred to as pixel-wise fine-tuning. This step employs scatterometry data to address
the ground-truth scarcity problem. We have tested this method first on a synthetic contact hole dataset, where a mean relative
error smaller than 6.2% is achieved at realistic noise levels. Additionally, it is shown that this method is well suited for other
important semiconductor metrics, such as top critical dimension (CD), bottom CD and sidewall angle. To the extent of our
knowledge, we are the first to achieve accurate depth estimation results on real experimental data, by combining data from
SEM and scatterometry measurements. An experiment on a dense line space dataset yields a mean relative error smaller than
1%.

Keywords SEM images · Scatterometry · Optical critical dimension · Monocular depth estimation · Domain adaptation ·
Weakly supervised learning

1 Introduction

In the semiconductor industry, critical dimension scanning
electron microscopes (CD-SEMs) are used to measure the
spatial lateral dimensions of structures on amicrochip. These
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measurements are important for controlling the fabrication
process, which enables yield optimization of a produced
wafer. Currently, SEM is the fastest way of measurement that
provides local geometry information. However, the obtained
SEM images are a two-dimensional (2D) representation of
the electron interactionswith the surface. In practice, detailed
metrology that provides the true 3D geometry of this struc-
ture is desired for various reasons. It is expected that 3D
metrology will become crucial in the semiconductor indus-
try’s quest to keep up with the requirements of Moore’s Law
[1].

Depth estimation from 2D images has been studied thor-
oughly in the field of computer vision [2] and is nowadays
applied to robotics [3], autonomous driving [4], medical
imaging [5] and many other scene understanding tasks. Tra-
ditionally, these techniques relied on stereo pairs of input
images [2], butmore recently the subfield ofmonocular depth
estimation has emerged [6]. Here, the depth estimation task
is constrained with a single image available per scene during
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the inference phase. This paper concentrates on performing
depth estimation on SEM data to analyze and predict the
semiconductor’s surface.

Monocular depth estimation is challenging, as it is an
ill-posed problem. This challenge results from the fact that
multiple 3D scenes can be projected onto the same 2D scene.
Currently,many state-of-the-artmodeling techniques heavily
rely on deep neural networks [7]. These models can perform
inference on various types of data, by setting up a high-
dimensional non-linear regression or classification problem.
Deep neural networks have been applied to many computer
vision tasks such as image classification, object detection and
semantic segmentation, achieving remarkable results. One
reason for these results is the networks’ ability to understand
a geometric configuration by not only taking local cues into
consideration, but also by employing global context such as
shape or layout of the scene, which is extremely helpful for
solving non-trivial computer vision problems.

Neural networks require large-scale datasets with (manu-
ally) annotated ground-truth labels, which can be a difficult
operation. In the case of monocular depth estimation from
SEMimages, the ground-truth data can only be obtained from
other sources, such as atomic force microscopy (AFM) [8],
transmission electron microscopy (TEM) [9] and scatterom-
etry, also referred to as optical critical dimension (OCD)
metrology [10]. The first two sources provide highly accu-
rate and local depth information. However, they commonly
provide data in one dimension and are notoriously slow and
labour-intensive. Alternatively, OCDmetrology is extremely
fast, much faster than SEM, but providesmeasurements aver-
aged over a larger area on the wafer, typically 25 µm3 or
more.

One possibility to circumvent the labeling problem is
to generate a synthetic dataset, containing representative
geometries, with an electron scattering simulator. Open
source implementations based on Monte-Carlo methods are
currently available [11] and provide highly accurate simula-
tions of propagating electrons through a material. However,
the results of these simulations are not fully accurate. The
electron beam and the detector are simplistically approxi-
mated, which negatively impacts the image quality. Thereby,
physical phenomena, like electron-beam-induced charging
and damage, are excluded, whilemodels for the generation of
so-called secondary electrons are hard to validate. Therefore,
this approach forms only one part of the solution. A second
training step is required where the model will be adapted to
experimental (real) data.

Machine learning can be a helpful tool for deriving the
above models. Domain adaptation is a sub-field of machine
learning, where the goal is to maximize prediction perfor-
mance on a target domain without (complete) labels, with
the help of a related and well-labeled source domain, while
the prediction task in both domains is identical [12]. In this

Fig. 1 Qualitative results of the proposed method. Input SEM images
are depicted at the top row and corresponding depth maps predictions
at the bottom row. From left to right: synthetic contact holes, real exper-
imental dense lines, real experimental isolated trenches. Predictions of
the contact holes are inverted in order to improve visualization

case, we have the sole availability of coarse-grained labels
in the target domain (average depth from OCD), so we can
classify this as a weakly supervised domain adaptation prob-
lem. More specifically, the goal is to fine-tune a pre-trained
network with a limited set of experimental SEM data, paired
with OCD metrology measurements. For doing so, an accu-
rately aligned dataset of these modalities is required.

The objective of this work is to extract useful 3D informa-
tion from SEM images, using advancedmodeling techniques
based on deep neural networks. First, a depth estimation
method on synthetic data is explained. Next, this method
is extended to work on measured experimental data, without
any local ground-truth depth information. Example results of
the proposed method are displayed in Fig. 1. This research
work presents two contributions. First, we present a method
that is capable of predicting a detailed height map and cor-
responding semiconductor metrics of synthetic SEM images
under realistic noise conditions. Second, we demonstrate a
weakly supervised domain adaptation technique, in order to
incorporate the OCD data into the training procedure. We
refer to this technique as pixel-wise fine-tuning.

The paper is organized as follows. After a survey of
related work in Sect. 2, Sect. 3 discusses the proposed
method in detail. Then, Sect. 4 provides the results and dis-
cusses the results in Sect. 5. Finally, the paper concludes in
Sect. 6. Additional implementation details are provided in
“Appendix.”

2 Related work

2.1 Depth Estimation from SEM Images

Several techniques have already been developed to extract
depth information from SEM images. A well-known method
obtains depth information from observing disparities at
descriptive points from a stereo image pair [13,14]. The
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stereo pair is acquired by tilting the specimen. Unfortunately,
this method is not suitable for a SEM, since tilting is not pos-
sible due to geometric constraints imposed by the objective
lens above the specimen (300-mm wafer). One way to over-
come this issue is to tilt the beam (not the specimen) with
deflectors [15]. But this tilt angle is limited to less than a
degree in typical high-resolution SEMs. Another technique
uses a four-channel secondary electron (SE) detector [16].
By combining these four SE intensity maps, it is possible to
create a depth profile of the surface. However, this method
is not compatible with the magnetic objective lenses that are
typically used in a SEM.Moreover, all aforementioned tech-
niques require a different hardware platform,which puts high
demands on the system costs.

Also methods based on a single SEM image with conven-
tional hardware have been proposed. In [17] SEM images
are compared against a model library with physical mod-
els. This method predicts shape approximations interpolated
from multiple models in the library. It has only been vali-
dated with line space patterns and so far seems to be hard
to generalize to various geometries, materials and SEM set-
tings. Alternatively, landing energy is exploited to extract
depth information in top-down SEM images [18]. In certain
conditions, the SE yield is sensitive to depth, while unre-
sponsive to other shape parameters. The results obtained
with synthetic SEM images were verified by experiments on
an inverted pyramid shape with unit step depth transitions,
but can be extended to more complex structures according
to the authors. The main limitation of this approach is the
requirement to change landing energies, which is typically
undesirable for continuous measurement systems. Another
recent work uses a neural network to predict 1D SEM-profile
depths from synthetic 1D back-scattered electron (BSE) pro-
files [19]. A custom-weighted loss function was designed to
train the network, which improved the results significantly.

2.2 Monocular depth estimation from natural
images

Monocular depth estimation has been an active field of
research over the years. Initially, supervised techniques were
proposed [6], where ground-truth depth is available during
training. Later, self-supervised techniques have become pop-
ular aswell [20].Here, depth is inferredby cleverly exploiting
information from stereo data [21] or video data [22] during
training. This paper will be focused on supervised methods
because of the ready availability of ground-truth data for the
simulated SEM images and the hardware limitations of stereo
imaging.

Starting with [6], supervised depth estimation techniques
evolved over the years [23–25], but along with the major
improvements on established benchmarks [26,27], the net-
works became also quite complex [28]. Recent work [29]

rephrased the depth estimation problem as an image-to-
image translation [30], based on conditional generative
adversarial networks (cGANs) [31]. These frameworks add
a second network to the training process, which enforces an
adversarial loss term, resulting in global consistency of the
output. These networks show impressive results, even with a
relatively straightforward prediction network [32].

2.3 SEM and deep learning

Deep learning is successfully applied to other tasks in SEM
imaging. For instance, deep neural networks are used for line
roughness estimation and Poisson denoising [33]. They also
seem beneficial for removing artifacts without the need of
paired training data [34]. Both works promise great potential
for these kind of models in the field of SEM. Similarly, these
applications are also established research fields with other
use cases, for example, image denoising [35–37] on natural
images and contouring [38] on medical images.

3 Methodology

Our approach consists of the following steps. First, a syn-
thetic dataset is generated and pre-processed. Then, a neural
network is pre-trained with the generated data. Next, the net-
work weights are adapted using experimental data. After the
training process, a diverse test set is used for validation, by
comparing key semiconductor performance metrics. Infor-
mation about the implementation is found in “Appendix B.”

3.1 Synthetic data generation

For the development of the methods in this work, we
developed datasets with two types of structures: contact
holes (CHs) and line-based spaces (LSs). These datasets
are explained in detail in the next sections. The resulting
constructed geometries are used as input for a Monte-Carlo
particle simulator. For this, we have adopted Nebula [39],
which is an open source, GPU-accelerated, solution for sim-
ulating the electron-scattering processes in materials. This
simulator is currently one of the most accurate solutions
available and produces partially realistic SEM images corre-
sponding to the input geometries.

3.1.1 Contact holes dataset

CHs are cylindrical holes inside a layer of material. A hole
should span the entire layer along the axial (depth) dimen-
sion to ensure contact to the next layer. We have chosen
CHs for several reasons. First, the geometry contains non-
trivial shape information in two lateral dimensions (circular),
in contrast with line-based spaces, where only one lateral
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Fig. 2 Side view of the contact hole (CH) geometry, parameterized
by: Depth, Top Critical Dimension (TCD), Bottom Critical Dimension
(BCD). The Sidewall Angle (SWA) can be inferred from the TCD, BCD
and depth of the CH. The left CH has edge-width because SWA < 90◦.
Themiddle CH has no edge-width because the wall is perfectly straight.
The right CH has overhang because SWA > 90◦, and it is not opened
because the depth value is insufficient to reach the bottom layer (shaded
area)

dimension exhibits significant depth variation. Second, CHs
are heavily used in the semiconductor industry, since they
enable connecting subsequent layers in a device. Third, from
an industry perspective, it is attractive to obtain a proper esti-
mation of the depth value of every CH, in order to determine
whether the CH is open or not. Unopened CHs result in fail-
ures of the device.

For the creation of randomized CH geometries, the para-
metric model displayed in Fig. 2 is used. All CHs are
generated in a two-dimensional (x, y) grid of unit cells. The
total size of the grid is 1024×1024 (nm) and contains 16×16
unit cells, which results in an average pitch of 64nm. For
individual CH generation, we distinguish two type of pro-
cess deviations. Normal distributions are used to mimic the
intra-field (local) process deviations as realistically as possi-
ble. Furthermore, inter-field (between image) deviations are
applied to the parameters that influence the height predic-
tion the most (depth and sidewall angle). Here, a uniform
distribution is used to ensure the network is robust for all
possible combinations. More specifically, the center point
of a CH within a unit cell deviates from the center with
�x ,�y ∼ N (0, 1) nm. The top critical dimension (TCD)
and bottom critical dimension (BCD), both in nm, are defined
by:

TCD ∼ max(N (35, 4), 25),

BCD ∼ TCD + �rand + �shift, (1)

where �rand ∼ max(N (0, 2),−10) and�shift ∼ U(−5, 2).
The same �shift value is applied to all CHs within the grid.
The skew of this distribution was chosen because the pat-
terning process gives rise to a preference of tapered CHs
(SWA < 90◦). Also line-edge roughness (LER) is applied in
the x- and y-direction to perturb the perfectly circle-shaped
edge of the CH. More details are available in “Appendix A.”

Fig. 3 Topviews of the generated geometries. From left to right: contact
holes, dense lines and isolated trenches, all with roughness. Pixel color
represents the depth value

Fig. 4 Left: side view of line-space (LS) geometry. Right: side view of
Isolated trench geometry. Both are parameterized by: depth, top critical
dimension (TCD),middle critical dimension (MCD) and bottom critical
dimension (BCD). The interior of a LS is filled with material. The
isolated trench hasmaterial everywhere except in the trench. The bottom
layer (shaded area) commonly consists of a different material

Furthermore, the numerical values are derived from relevant
experimental data.

The depth of the CHs is varied between 20 and 100nm
with steps of 1nm. One depth value is applied to all CHs in
the grid, in order to mimic a lithographic process as close as
possible. CHs chosen at random with probability p = 0.005
are unopened (filled with extra material), as shown in the
rightmost CH in Fig. 2. One example of a resulting geometry
is visualized in the leftmost image of Fig. 3. For the simu-
lations, we have used SiO2 (Silicon dioxide) as top material
and Si (Silicon) as bottom material. For the settings of the
electron beam, we employed a Gaussian distributed spot-
profile, defined by its FullWidthHalfMaximum (FWHM) of
2.0nm, a dose of 100 electrons per pixel and a landing energy
of 800eV. These settings are chosen to mimic common CD-
SEMoperation, except that currently aFWHMaround3.5nm
is more common. In total, we have simulated four geome-
try realizations per depth value, resulting in 320 images of
1024 × 1024 pixels, with a pixel size of 1nm2.

3.1.2 Line space datasets

LSs are vertical or horizontal strokes of material in a reg-
ular fashion, separated by trenches (Fig. 4). Because of the
presence of stochastic effects of the fabrication process, the
LSs have non-smooth edges. In extreme cases, LSs can have
interruptions or get (partly) connected to adjacent structures,
often called micro-bridges. LSs are heavily used in devices,
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since they are the building blocks of transistors, as well as
wiring between components.

The geometries should be roughlymatchedwith the exper-
imental data (examples in Fig. 1), which consists of dense
lines (16nm) with 32-nm pitch and isolated trenches (16nm)
with 112-nm pitch. The TCD, MCD and BCD are inde-
pendently varied from 13 to 20nm and the depth is varied
from 15 to 30nm and kept equal within one image. The 1D
LER is applied to the line contours by an improved vari-
ant of the Thorsos method [40]. More details are found
in “Appendix A.” All parameter ranges were chosen a bit
larger than the ranges of the measured data. This makes
the simulated data a superset of the actual data, which
ensures that all possible cases are covered by the simulated
data. Defects such as micro-bridges are not modeled in the
synthetic dataset. In total, 550 dense line geometries were
constructed together with 1650 isolated trench geometries.
Figure 3 shows one example for both.

For the simulator, the same settings were used as for the
previous experiment, except for the landing energy (500eV)
and pixel size (0.64nm2), to obtain a better match with
the experimental data. In total, we have simulated one
SEM image per geometry, with a field of view (FOV) of
1024 × 1024 pixels.

3.2 Pre-processing

The fact that some parts of the CD-SEM system are not mod-
eled in the simulator creates a distribution shift between the
synthetic and experimental domains. In this Section, we elab-
orate on the steps taken for decreasing this domain shift.
Furthermore, data augmentation techniques are discussed.

3.2.1 Noise

A simplified noise model of a CD-SEM system is displayed
in Fig. 5. The first noise contribution is shot noise from
the electron gun. The number of primary electrons (PEs)
originating from the gun is Poisson distributed. When a PE
hits the specimen, it may become a secondary electron (SE),
which experiences a stochastic electron cascade (scattering)
through the material. This results in a compound Poisson
noise distribution. Both effects are accounted for in the simu-
lator. The third noise contribution is from the detector, where
dark current is assumed to be dominant. Dark current intrinsi-
cally behaves as shot noise (Poisson), but for large numbers,
the Poisson distribution will approach a Normal distribution.
Therefore, this detector noise ismodeled as additiveGaussian
N (0, σ 2) with σ ∈ [0.1, 0.2] for normalized image values
in the unity interval. A standard deviation of 0.1 appeared to
be a realistic result based on experiments in which the beam
current was measured with and without the beam blocked.
The value of σ = 0.2 serves as a worst-case upper bound.

Fig. 5 Left: simplified noise model of a CD-SEM system. Noise from
the electron gun (1) and the random walk of secondary electrons (2)
are incorporated in Nebula. Detector noise (3) is modeled as additive
Gaussian distribution (μ = 0, σ ∈ [0.1, 0.2]). Right: examples of a pre-
processed CD-SEM image and their corresponding histograms. From
top to bottom: Original image from the simulator, image with added
detector noise (σ = 0.1) and histogram correction, image with added
detector noise (σ = 0.2) and histogram correction

3.2.2 Histogram correction

CD-SEM systems work with a detector current which will
be translated into a gray value. This value depends on var-
ious CD-SEM aspects, such as the electronics, signal gain,
landing energy, etc. Scaling all gray values of an image to
use the full dynamic range prevents saturation effects, while
changing settings of the CD-SEM. We have implemented
this by snapping the lowest 0.2% pixels to the lowest value
possible, the highest 0.2% pixels to the highest value possi-
ble and scaling everything in between accordingly. Images
are stored in 8-bit unsigned integer format. Eight bits typ-
ically provide sufficient dynamic range, while maintaining
the memory load of millions of images acceptable.

3.2.3 Data augmentation

Additional data augmentation is performed on the fly when
training the network. A smaller patch of 256 × 256 pixels
is cropped from the generated image at a random location.
Detector noise and histogram correction are applied next.
Further augmentation may be horizontal flipping, vertical
flipping and rotating, with a probability of 0.5 per event.
With experimental data, this probability is set to zero, since
important aberrations, like charging, are not symmetrical and
dependent on the fast-scan direction of the SEM. Examples
of pre-processed synthetic images are displayed in Fig. 5.

During inference, an entire image is processed at once by
the network, so the only augmentation steps that stay relevant
are adding noise and histogram correction. With inference of
experimental data, no augmentation step is required.
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Fig. 6 Top: geometry cross sections of depth changes with steps of
different SWAs. Bottom: the corresponding secondary electron-yield
signals. Values are averaged over 50 measurements to obtain clean
results. Dashed lines correspond to overhanging structures

3.3 Depth estimation from synthetic data

This section involves model selection, network architecture,
loss functions and explaining the training process in more
detail.

3.3.1 Model selection

There are many ways to represent a 3D structure, e.g., a
polygon mesh, a voxel grid or a depth map. To determine
what data type is most suitable for this application, an initial
experiment was performed for examining the SEM signal,
using a simple geometry with a varying SWA, see Fig. 6.
We observe no distinctive signal for overhanging structures
and conclude that distinguishing them is not possible, with
the chosen landing energy only. This implies that only one
depth value per pixel location of the SEM image is suffi-
cient to capture all depth information present in the image
signal. True 3D data types, like voxel grids, would therefore
be redundant. Instead, we have adopted to use depth maps,
which directed the research into depth estimation models.

Recent literature on depth estimation uses standard-
ized benchmarks to compare the performance of different
approaches [4]. Supervised methods still have the best over-
all performance. Most supervised methods use a pixel-wise
loss function. However, recent work [29] proposes adding
an adversarial (non-local) loss term to the depth prediction
network. This approach outperforms pixel-wise losses with a
relatively simple prediction network and triggers the interest
for conducting an extensive loss function evaluation study.
This will be elaborated in a separate section.

Fig. 7 Architecture of the prediction network, consisting of a convo-
lutional front-end, 9 residual blocks and a transposed convolutional
back-end. The number of channels and kernel size are displayed above
the convolutional blocks. The width and height of the inputs during
training are displayed at the left bottom. The stride of the convolutional
layers is unity, except for the layer before (2) and after (1/2) the series
of Resblocks. Reflection padding is applied prior to each convolutional
block to reduce border artifacts

3.3.2 Network architecture

The network used is based on recent work [41] for image-to-
image translation. We denote As and Ad as the SEM image
and depthmap domains, respectively, while as and ad refer to
training examples in both domains. The actual prediction net-
work learns a mapping function G : As → Ad which takes a
SEM image as input and outputs a depth map. Furthermore,
depending on the loss function, we use a discriminator net-
work with a mapping function D. This network takes a SEM
image and a corresponding predicted depth map as input and
outputs an error-parameter score that quantifies the quality
of the realism.

A detailed overview of the prediction network is found in
Fig. 7. It consists of 9 stacked residual blocks [42], together
with a convolutional front- and back-end. All residual blocks
have two convolutional layers and an identity connection to
the next block. This connection is attractive because the con-
volutional layers only have to learn the difference between
the input and the output, which is inmany cases less demand-
ing for the network. These skip connections also enable the
construction of deeper nets, since they do not suffer from
the vanishing gradient problem during the backpropagation
phase. The number of filters in the first layer is set to 64.
Instance normalization is used after each convolutional layer,
followed by a rectified linear unit (Relu).

3.3.3 Loss functions

A loss function with multiple terms is used for more detailed
optimization. We employ three terms, each operating at a
different scale. At a local scale we use an �1 or �2 loss, as
defined by:

L�n(G) = Eas ,ad∼pAs ,Ad

[‖ad − G(as)‖n
]
, (2)
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where n ∈ 1, 2 is the rank of the distance measure and pdata
denotes the probability distribution of the data samples. This
loss term operates on pixel level.

A perceptual loss, which operates on patch level, is used
for regional features and is defined by:

LVGG(G) = Eas ,ad∼pAs ,Ad

[
N∑

i=1

1

Mi

∥
∥∥�F (i)

∥
∥∥
1

]

,

where �F (i) = F (i)(ad) − F (i)(G(as)). (3)

Here, F (i) denotes the i-th layer with Mi total network
elements. It minimizes the �1-distance of the network’s inter-
mediate feature representations between the predicted and
ground-truth samples. The applied network is VGG16 [43],
which is pre-trained with Imagenet [44] data.

For the global features, we have trained the prediction
network together with a discriminator network. The network
then becomes a generative adversarial network (GAN) [45],
which can also be used for image-to-image translation [30]
when adding conditional inputs. In this case, a least squares
GAN (LSGAN) loss [46] is used, which consists of a gen-
erator loss and discriminator loss, resulting in the following
specification:

LcLSGAN(D) = 1

2
Eas ,ad∼pAs ,Ad

[
(D(as, ad) − 1)2

]

+1

2
Eas∼pAs

[
(D(as,G(as)))

2
]
,

LcLSGAN(G) = 1

2
Eas∼pAs

[
(D(as,G(as)) − 1)2

]
. (4)

Unlike cross-entropy functions, the squares in Eq. (4)
stronger penalize samples far from the decision boundaries,
even when classified correctly, which helps to stabilize the
training process [47]. For the discriminator, we have used a
multi-scale Patch-GAN [30], operating at a receptive field
of 70 and 140 pixels (which is the default operation setting),
each with three convolutional layers. Also here, all layers are
followed by a normalization and activation layer, while the
first layer starts with 64 filters.

Finally, we can construct the resulting loss function as a
linear combination of the aforementioned terms, where a part
is minimized over G, and the last part over D, such that:

Ltotal(G, D) = min
G

λlocL�n(G) + λregLVGG(G)

+λglobLcLSGAN(G) + min
D

λglobLcLSGAN(D). (5)

3.3.4 Training process for pre-training

The data are divided in a training, validation and test set, con-
sisting of 70%, 5% and 25% of the data, respectively. The
test set is carefully constructed so that all possible depths

are represented. Training is done in randomized batches of
16 images. As already mentioned, data augmentation is per-
formed on the fly. The amount of noise added to the images is
uniformly distributed between zero and the specified maxi-
mum σ required to mimic the detector noise. After empirical
experiments, this turned out to be the best choice. A pos-
sible reason for this choice is that the network is not able
to establish proper kernel filters when only receiving very
noisy images. The Adam optimizer [48] is used for minimiz-
ing the total loss function, for 300 epochs, with a learning rate
of 0.0002 and momentum parameters β1 = 0.5, β2 = 0.999.
Multiple networks are trained with loss functions specified
by different values for λglob, λreg and λloc. If not zero, then
λglob = 1, λreg = 10 and λloc = 10. Training performance is
assessed by reviewing the depth performance metrics on the
validation set. The following metrics were used for model
comparison on the validation set:

– Mean Relative Error: 1
N

∑
y

ygt−ypred
ygt

– Average log10 Error:
1
N

∑
y | log10 ygt − log10 ypred|

– Root Mean Square Error:
√

1
N

∑
y

(
ygt − ypred

)2

– Accuracy with threshold t : % of ypred s.t. max(
ygt
ypred

,
ypred
ygt

)

= δ < t (t ∈ [1.250.25, 1.250.5, 1.25, 1.252, 1.253])

where ypred and ygt are the predicted and ground truth depth
map. N is the total number of pixels.

3.4 Depth estimation from experimental data

The shift in distributions between the experimental domain
and the synthetic domain requires an extra step. In this case,
we have paired experimental SEM data with available OCD
data. Due to the lack of local information in the OCD data,
the ground truth is only partially present, which makes that
thismethod can be classified as aweakly-supervised learning
approach.

3.4.1 Experimental datasets

We have employed a CD-SEM system to measure a focus
exposure matrix (FEM) wafer just after a lithography step.
On a FEM wafer, the focus and dose of the scanner is
gradually changed during exposure, which results in con-
siderable geometry variations over different locations on the
wafer. The wafer contained 16-nm dense lines (32-nm pitch)
and 16-nm isolated trenches (112-nm pitch). The available
data consist of two measurements for 1341 unique loca-
tions on the wafer. One SEM measurement with an FOV
of approximately 1µm3 is available, as well as one OCD
measurement with an FOV of 25µm3. The OCD measure-
ment contains several parameters (scalars) that are directly
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Fig. 8 Schematic overview of the training procedure. a The network
is pre-trained on synthetic data. b Inference with experimental data on
the pre-trained network. The resulting depth map (Dpt) is scaled by
dOCD/dpt. e dpt is determined by the peak distance of the histogram of
the pre-trained depth map Dpt. Isolated trenches are also element-wise
multiplied (operation denoted by �) by a binary matrix Bct, in order to

remove charging artifacts. f This binarymatrix is obtained from the out-
put of a contouring algorithm dilated (operation denoted by ⊕) with J4
(which is a 4×4matrix of ones). This results in a new pixel-wise ground
truth. c The network is fine-tunedwith experimental data and pixel-wise
ground truth. d With the final network inference on experimental data
is possible

related to a (multi-) trapezoid model representing the cross-
sectional profile of a line, similar to Fig. 4. One parameter
of this model expresses the total depth of the line. Further-
more, we assume that global statistics of one SEM image are
sufficiently averaged to correlate with OCD values.

We have constructed two datasets, one with dense lines
and one with isolated trenches. The dense-line dataset con-
tains 331 images, where the depth varies between 17 and
24nm. The isolated-trenches dataset contains 682 images,
where the depth is within 26–27nm. Although the depth
range of the isolated trenches is insufficient for testing the
depth predictions, we use these data to perform other useful
experiments. The total number ofmeasurements is lower than
the total number of measurements on the wafer, since cases
where the OCD trapezoid model has not converged properly
are omitted.

3.4.2 Pixel-wise fine-tuning

The domain adaptation step is implemented by a novel
method, further referred to as pixel-wise fine-tuning. In
general, fine-tuning with a single value as ground truth
entails that the optimization problem of the model is under-
constrained. In order to prevent the network drifting from

the manifold of realistic structures, some training regulariza-
tion is required. The inference on experimental data without
fine-tuning the network turned out to be qualitatively cor-
rect in terms of lateral shape information, but quantitatively
incorrect in terms of depth information in the axial direction.
Therefore,wehavedecided to generate a newground-truth by
combining information from the resulting depth maps with
correspondingOCDdepth values. This re-enables pixel-wise
training, thereby solving the under-constrained problem.
This domain adaptation method is valid for this use case
because the properties of a lithographic multilayer etch pro-
cess imply that the structure height within the field-of-view
of and OCD measurement is very constant. Alternatively,
we have tried to regularize the network by fine-tuning only a
subset of the layers or adding a discriminator to the loss func-
tion that was specifically trained on realistic depth maps. The
results of both methods were not satisfactory because arti-
facts were introduced, so that it will not be treated further.

The pixel-wise ground truth is produced by scaling the
depthmaps (Dpt) obtained from inference of the experimental
images on the pre-trained network. The scaling is defined by

Dgt = dOCD
dpt

· Dpt, (6)
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where dOCD denotes the depth parameter from the OCD
model and dpt is the depth derived from the depth map Dpt.
Matrix Dgt is the resulting depth map. The value of dpt is
determined by the distance between the two peaks in the
histogram of the depth map, displayed in Fig. 8.More specif-
ically, the histogram bins have awidth of 0.01, and the largest
bin of the lower half and the largest bin of the upper half of
the histogram are selected. These peaks represent the values
of the averaged bottom-layer surface depth and the averaged
depth of the LSs. This method is robust for the presence of
noise in Dpt and produces consistent results.

3.4.3 Artifact removal

The predicted depth maps of isolated trenches suffer from
artifacts at the surface between the trenches, most likely due
to charging effects present in the experimental data. These
artifacts are present as small pits from the surface of the
depth map and do not interfere with the border of the trench
or the trench itself. We have solved this issue by adding one
processing step, just prior to the pixel-wise scaling operation.
The processing step entails element-wise multiplication with
a dilated binary map (bct) originating from a SEM contour-
ing algorithm, which exploits an adaptive-threshold method.
This step is also depicted in Fig. 8 at step (b). It removes
the artifacts while preserving the rest of the information in
the depth map. With this ground-truth, the network learns
to ignore charging artifacts, which results in a correct out-
put. Since SEMcontouring algorithms are available formany
structures, this method can be extended to other use cases.

3.4.4 Training process for fine-tuning

The entire training process is depicted in Fig. 8. Pre-training
is performed as described in the previous sections concerning
synthetic data. The experimental data are separated in sets,
70% train, 5% validation and 25% test. Fine-tuning is done
for 100 epochs using Adam solver, with a learning rate of
0.001. Data augmentation and detector noise are not applied.
Several models are trained with different loss configurations.
The same performance metrics are used as in the validation
during the pre-training process.

3.5 Post-processing

Several key performance indicators that are relevant for the
semiconductor industry can be inferred from the obtained
depth maps. We introduce the following notations. The area
at depth z is Az = Nz · ap, where Nz denotes the number of
pixels below (or abovewith dense lines) depth z within a slice
at depth z of the structure, selectedwith a threshold operation.
Parameter ap is the area of one pixel. In thisworkap = 1 nm2

for CHs and ap = 0.64 nm2 for LSs. For selecting individual

structures, each unit cell is selected first, with a mask. Then
the following operations are performed.

3.5.1 Semiconductor metrics for CHs

The parameters present in the model of Fig. 2 have to be
retrieved for each individual contact hole. The followingmet-
rics will be used.

– TCD: 2
√
Aztop/π where ztop = 2nm.

– BCD: 2
√
Azbottom/π where zbottom = 0.75zmax, where

zmax is the deepest pixel value.
– Depth: 1/Nzbottom

∑
i j di j · mi j . Here, di j are the indi-

vidual values of the depth map D, and mi j = 1, where
di j > zbottom, otherwise mi j = 0.

– SWA: 180/π arctan(
ztop−zbottom
TCD−BCD ) degrees, when the dif-

ference TCD–BCD > 0, otherwise 90 degrees.

The critical dimension of a CH is calculated with the formula
of the area of a circle. Therefore, this metric can be seen as
average critical dimension.

3.5.2 Semiconductor metrics for LSs

The parameters occurring in the model of Fig. 4 representing
local information will be gathered as follows.

– TCD: Aztop/L where ztop = zceil + 2nm and L is the
length of the selected structure and zceil is the location of
the leftmost peak of the histogram function.

– BCD: Azbottom/L where zbottom = zfloor − 2nm, where
zfloor is the location of the rightmost peak of the histogram
function.

– Depth: Average depth difference around the line’s con-
tour, calculated with a histogram function (as described
earlier) using the area around the current LS, as an input.

– SWA: 180/π arctan(
zbottom−ztop
BCD−TCD ) degrees, when the dif-

ference BCD–TCD > 0, otherwise 90 degrees.

Additionally, global information should be derived from the
depth map to enable validation with OCD data.

– Average CD at depth z: This is P ·Nz/N where P denotes
the pitch of the pattern and N the total number of pixels
in the image.

– Average depth value: This value is calculated with the
histogram method as described earlier.
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Fig. 9 Mean absolute errors of the semiconductor metrics on the CH
dataset. Units are in nanometer, except for SWA, which is expressed in
degrees. Several models are compared on all metrics. The darker bars
represent results with a normal noise level (σ = 0.1), while the lighter
bars refer to the worst case noise level (σ = 0.2). Numerical results are
displayed for the best model, indicating absolute and relative errors for
both bars

4 Results

In this section, we present qualitative and quantitative results.
The following section elaborates on synthetic data, predom-
inantly on the experiment with the CH dataset. The second
section focuses on the experimental LS dataset.

4.1 Synthetic results

The depth estimation network is trained as explained in the
previous sections. The network did not suffer from over-
fitting, since the performance on the validation set did not
degrade at the end of the training procedure.

4.1.1 Contact holes dataset

Qualitative results of CHs are found in Figs. 1 and 12. The
mean absolute errors are displayed in Fig. 9. All provided
metrics are calculated with the post-processing method dis-
cussed in the previous section. It can be observed that a
network with only a local �1 loss works best for all met-
rics. The obtained relative error of the depth is between 4.2
and 6.1% for realistic noise levels. TCD, BCD and SWA
correlations of individual CHs for two different SEM images
are displayed in Fig. 10. We have found that TCD and BCD
always show a good correlation. Furthermore, SWA corre-
lation is reasonable, but tends to become less accurate in
images with many overhanging CHs.

In this work, we primarily focus on depth. The results
of the best performing network (yellow bars in Fig. 9 with
�1 loss) are displayed in Fig. 11. The depth inference by
the network (indicated by get depth) closely follows the
depth programmed in the geometry (indicated by set depth),
which is used to generate the simulated SEM image. It can
be observed that deeper holes result in less accurate pre-
dictions, since the average error grows with the depth. This
is explained by the fact that when the CH becomes deeper,
the change in SEM signal becomes smaller, i.e., the SEM
signal scales non-linearly with the depth of the CHs. A pos-
sible physical explanation is that the total number of detected
electrons is lower for deeper structures, while some noise
contributions are not dependent on depth, which results in
a lower SNR for deeper structures. Partially filled holes
perform well (which proves applicability of this technique
for defect detection) but are sometimes less correlated with

Fig. 10 Synthetic SEM images of CHs and their correlation plots on semiconductor metrics. Top row: CHs of 46nm deep. Bottom row: CHs of
28nm deep. From left to right: SEM image, TCD correlation, BCD correlation and SWA correlation. Measurements are done under realistic noise
conditions (σ = 0.1)
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Fig. 11 Individual CH depth analysis of the test set, predicted w.r.t.
ground truth, at realistic noise levels (σ = 0.1)

Fig. 12 Predictedmap of a simulated SEM imagewith 70nm deepCHs

the ground-truth depth because of the low number of train-
ing examples present in the dataset. Also equalizing effects
appear, which occur from situations when the height of the
partially filled hole is close to the rest of the CHs in the
geometry. The first argument can be solved by creating a
better balanced dataset with more partially filled CHs.

The network can also handle large field-of-view SEM
images. A qualitative result of simulated data is shown in
Fig. 12 and the corresponding quantitative pixel-wise abso-
lute difference with ground truth is displayed in Fig. 13.

4.1.2 Line-spaces with roughness dataset

Global model performance on the synthetic LS dataset is
summarized in Fig. 14.We observe similar behavior between
the models, also here �1 performs best on all metrics except
for TCD and SWA, where the model was trained with �2,
LSGAN and VGG loss. It is possible to combine the metrics
of different models in the post-processing to get even better
predictions for SWA, as shown by the purple bars.

Fig. 13 Absolute difference of the predicted depth map of Fig. 12. The
units of the image are pixels. The color bar with numbers indicates a
scale in nanometers (color figure online)

Fig. 14 Mean absolute errors of the semiconductor metrics on the syn-
thetic LS dataset. Units are in nanometer, except for SWA, which is
expressed in degrees. Four models are compared on all semiconductor
metrics. The results are from data with a worst-case noise level (σ =
0.2)

4.2 Experimental results

After extensive training with synthetic data, the network was
not able to give satisfactory results on experimental data.
Therefore extra training steps were required to implement,
which we explained in the methodology section. The results
of these steps are presented in the following sections.

4.2.1 Dense lines dataset

Some examples of depth maps obtained from SEM images
of dense LS patterns are displayed in Figs. 1, 8 and 17.

Figure 15 shows the performance of the model trained
with �2 loss on depth estimation for individual lines. The
depth inferred by the network (indicated by get SEM depth)
closely follows the depth measured by the OCD tool (indi-
cated by get OCD Depth). The average error is low, smaller
than 1 nm, which means this network is able to predict depth
very accurately. This is an important result because it shows
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Fig. 15 OCD depth w.r.t. the calculated average depth from the pre-
dicted SEM depth map. The mean absolute error is 0.16nm, while the
mean relative error is smaller than 1%

Fig. 16 OCD CDs w.r.t. the calculated average CDs from the predicted
SEM depth map. Mean absolute error is 0.34, 0.44, 1.68nm for TCD,
MCD and BCD, respectively. The multi-trapezoid model used by the
OCD tool is depicted in the bottom-right corner

a clear correlation between two modalities. We can also val-
idate lateral feature information of the depth map with the
OCD tool, since it additionally measures other geometric
parameters. The results of average CD predictions for indi-
vidual images are displayed in Fig. 16. Here, we used �1 loss
for training. SEM is most sensitive for TCD, since it shows a
clear correlation with the OCD data.MCD and BCD perform
reasonably well. There is some offset present in the slope of
the data points. This could be explained by the fact that the
SEM signal is less sensitive for lower structures, than the
OCD tool. Besides, the definition of MCD is not strict in the
parameter model of the OCD tool.

Fig. 17 Predicted map of a real SEM image with 23nm deep lines

Fig. 18 Absolute difference of the predicted depth map of Fig. 17. The
units of the image are pixels. The color bar with numbers indicates a
scale in nanometers (color figure online)

Also with experimental data, the network is able to han-
dle large field-of-view results. A qualitative depth map is
shown in Fig. 17, and the corresponding quantitative pixel-
wise absolute difference with ground truth is displayed in
Fig. 18.

4.2.2 Isolated trenches dataset

Qualitative results of the depth maps before and after fine-
tuning are displayed in Fig. 19. The final result shows that
the charging artifacts are completely removed through better
learning and modeling.

Since this dataset does not have sufficient variation in
depth values, only theCDvalue is interesting to evaluate. The
corresponding OCD model has only one CD value defined.
We obtain a mean absolute error of 0.46nm with minimal
slope off-set, which indicates that the lateral information in
the depthmap is in accordance with bothmodalities. Further-
more, these depth maps can be used to measure the depth of
micro-bridges inside the trenches, since the network should
be able to cope well with intermediate depths values.
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Fig. 19 Qualitative results of isolated trenches. Left: depth map predic-
tion prior to fine-tuning. Right: depth map prediction after fine-tuning
with artifact removal

5 Discussion and limitations

Although an extensive ablation study on the performance of
different loss functions was performed, as well as hyperpa-
rameter tuning of the network and training process, it cannot
be guaranteed that it is the optimal configuration for this use
case. Themost important goal of this research is to prove that
the technique presented is feasible with the type of data avail-
able. Even though the results are promising, it is important to
note that there are some caveats to the presented approach.

With the presented method, the measurements from the
OCD tool were used as a reference, by using them to create
a new ground truth. Evidently, the precision of this measure-
ment tool is also limited. Especially because the OCD value
is averaged over a much larger area of the wafer, the local
accuracy cannot be guaranteed. Ideally, this method should
be validated with a third metrology tool. For example, this
could be implemented by comparing TEM cross sections or
AFM traces with the predicted depth maps at certain points
on the wafer. It would also be possible to calibrate the net-
work with these measurements, but in the ideal case we only
want to exploit it for validation, since the cost (slow, expen-
sive, destructive, etc.) of these measurements is much higher
than that of OCD metrology.

Currently, a histogram-based approach is used to match
the predicted profile to the OCD measurement. This method
was found empirically and showed acceptable results. How-
ever, it would be more accurate to use a Maxwell solver
[49,50] for this purpose. By feeding the predicted depth map
into the solver, a virtualOCDmeasurement can bemade. This
enables more accurate comparison between the modalities.

The artifact removal method for isolated trenches works
well in the performed experiments. Nevertheless, it is
expected that this method will degrade for certain cir-
cumstances. With specific combinations of materials and
geometries, charging effects may occur more intensely, also
in the deeper structures of the depth map. A straightforward
solution is to incorporate the charging effects in the sim-
ulation models. However, this is not a trivial task due to
the complexity of the physics involved. Alternatively, data-
driven solutions, such as unsupervised domain adaptation,
are interesting future research directions for this purpose.

6 Conclusions

We have shown that deep learning models are suitable as a
conceptual solution for extracting 2D and 3D metrics from
synthetic SEM images. The final prediction network, which
is based on a image-to-image translation task, was trained
with several loss functions on different scales. For depth esti-
mation on these images, a single �1 loss turned out to be the
best choice for CHs, with a mean relative error of 4.2–6.1%
on depth. The �1 loss also works best for depth prediction
on synthetic LSs, but for TCD and SWA a combined loss
(�2 loss, perceptual loss and adversarial loss) results in the
lowest error metrics. It is also possible to combine both net-
works (�1-based and combined-based) to obtain a slightly
better performance on SWA. We also showed that the net-
work was able to detect defected contact holes in most cases,
which promises great potential for defect detection.

Furthermore, we have demonstrated that it is possible to
calibrate the model in order to cope with real experimental
data. We showed that it is possible to achieve an average pre-
diction error below1nmafter calibrationwithOCDdata. The
network can also well summarize to defects, such as micro-
bridges, even if they are not modeled in synthetic data. This
generalization power provides great potential for estimating
the height of these defects. However, ideally this hypotheses
should be validated first with a third metrology tool.

The result of this work makes it possible to use the three-
dimensional information hidden in a SEM image. While
other technologies used for this purpose have significant
shortcomings in applicability or practicability, the current
methodmay be applicable to industrial measuring equipment
with limited calibration data and executed on conventional
computing platforms.
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Appendix A: Roughness details

A.1 Contact holes

For CHs, roughness is applied by connecting N equidistant
points on a virtual circle, where N is set to N = 73. First, the
distance of each point to the center of the circle is changed by
a normally distributed variable ( f [m]), where the standard
deviation is uniformly distributed (U), which is specified by

f [m] ∼ N (0, σ 2
RA) where σRA ∼ U(0.5, 1). (A1)

The numbers f [m] with 0 ≤ m ≤ N − 1 are convolved with
a sampled Gaussian function, specified as:

gN [x] = 1

σCL
√
2π

e−(x[n]−μ)2
/
2σ 2

CL , (A2)

with a specific correlation length σCL that is normally dis-
tributed and empirically determined as σCL ∼ N (1, 9).
The corresponding convolution ensures smoothness around
the perturbed cylindrical shape between various neighboring
points, resulting in more realistic edges. This convolution is
specified by

( f ∗ gN )[n] =
N−1∑

m=0

f [m]gN [n − m]. (A3)

After adding roughness, the top and bottom structures are
connected in the z-dimension.

A.2 Line spaces

For line edge roughness (LER), the Thorsos method [51] is
applied as described in [40]. This is a power spectral density-
based method where the autocorrelation is approximated as

R(x) = σ 2e−(|x |/lc)2α . (A4)

For the correlation length (lc), roughness factor (α) and stan-
dard deviation (σ ), we have used 16.8 nm, 0.5 and 0.77 nm,
respectively. These values are closely matching with the
available experimental data.

Appendix B: Implementation details

The geometries were created with Python and Numpy and
stored as text format in *.tri files. Nebula [39] was used for
SEM simulations. The simulations were performed at a GPU
cluster with GPU K80 video cards (memory of 24 GB).
The dataset was constructed with Python and Pandas. The
electron yield numbers of SEM images were stored in 8-
bit unsigned integer format. The depth values in the maps
were stored in 32-bit float format. The depth estimation net-
work was implemented in Pytorch 1.3.0 with Python 3.6.
Tensorboard 2.0.0was used for visualization of the validation
metrics. The neural networkwas trained at aGPUclusterwith
one V100 video card (memory of 32 GB). Post-processing
was donewith Python, NumPy, SciPy andOpenCV. For visu-
alization of the data MATLAB, Matplotlib, Visio and Excel
were used.
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