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Abstract
Single-view computer vision models for vehicle damage inspection often suffer from strong light reflections. To resolve
this, multiple images under various viewpoints can be used. However, multiple views increase the complexity as multi-view
training data, specialized models, and damage re-identification over different views are required. In addition, traditional
point cloud applications require large computational power, being impractical for edge computing. Therefore, multi-view
damage inspection has not yet found its way into practical applications. We present a novel approach that projects the results
from widely available single-view computer vision models onto 3D representations, to combine the detections from various
viewpoints. With this, we leverage all advantages of multi-view damage inspection, without the need for multi-view training
data and specialized models or hardware. We conduct a practical evaluation using a drive-through camera setup, to show the
applicability of the methods in practice. We show that our proposed method successfully combines similar damages across
viewpoints, reducing the number of duplicate damages by almost 99%. In addition, we show that our approach reduces the
number of false positives by 96%. The proposed method leverages the existing single-view training data and single-view deep
learning models to make multi-view inspection more accessible for practical implementations.
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1 Introduction

Human decision-making often relies on various visual view-
points [1]. Despite this, most computer vision models and
visual inspection systems are still relying on a single view-
point [2]. Seeland and Mäder [1], Van Ruitenbeek [3],
Carrasco and Mery [4], and Wang et al. [5] point out
that visual damage inspection is strongly influenced by
the camera angle and light reflection. As a result, accurate
localization and classification of damages remain challeng-
ing. Therefore, a multi-view inspection system that mimics
human decision-making could improve the detection per-
formance. However, using multiple camera locations and
viewpoints increases the complexity as damages can be iden-
tified multiple times. Therefore, an identification of similar
detections between different viewpoints is required.
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Both Stent et al. [6] and Tang et al. [7] show that frag-
menting original images into smaller-sized tiles increases the
recall on small objects. Although they used multiple frag-
ments, they did not include multiple viewpoints. The effect
of multi-view image classification or object localization is
already slightly touched upon in previous research, showing
that the use of multiple viewpoints can significantly improve
both the classification and localization accuracy [8–10].

Although multi-view damage detection can result in
improvements for both precision and recall, Nassar et al.
[11] point out that alignment of detections over different
images can be challenging, especially for situations, such
as assembly lines, where the object of interest moves along
the cameras. The overlap between different viewpoints, as
well as the moving object within a static environment, com-
plicates the widely implemented image stitching approaches
[11]. Alternative approaches use point clouds for damage
inspection [12,13]. Point clouds have the benefit to firstly
combine the multiple viewpoints to a point cloud, to eventu-
ally detect the objects or damages in 3D. The construction of
point clouds from a multi-view camera setup is widely stud-
ied [13–17]. However, construction of these point clouds is
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costly on high resolutions. This makes point clouds less suit-
able for the identification of small damages.

We propose the use of ray tracing to construct a fast
multi-view detection system. Our proposed solution projects
damages from each individual viewpoint onto a 3D vehicle
representation. With this, each face in the 3D representation
receives an associated class probability from the single-view
detection model. The final multi-view prediction is obtained
by directly weighting the class probabilities on the 3D rep-
resentation. Therefore, our novel approach solely requires
a single-view CNN and a 3D representation of the object.
With this, our method largely benefits from the extensively
researched and optimized single-view object detection mod-
els of the last decade. While focusing on vehicle inspection,
our generic approach can transform any single-view inspec-
tion model into a multi-view inspection system without the
need to modify the existing model or underlying training
data.

Our proposed method enables the re-identification of
similar damages without requiring a minimum amount of
overlapping context between the individual views. Even
more, it does not require the vehicle of interest to be captured
in the same environment by each camera, as our approach is
independent of surroundings and solely requires the location
and orientation for both the camera and vehicle.

We contribute to previous research in three ways. Firstly,
we implement a single-view inspection system and quantify
how our single view CNN benefits from improved label con-
sistency, by revising labels usingmultiple annotation rounds.
Secondly, we present a uniform way to combine inspections
from different viewpoints, without the need for multi-view
training data or hardware for depth estimation, as used by
Kim et al. [16], Liu et al. [18], Chen et al. [19], Deng and
Czarnecki [20]. Lastly, we evaluate our approach in prac-
tice, on more than 3000 images, and show that our approach
successfully merges similar damages across different view-
points. Our approach successfully merges almost 99% of
the duplicate directions across all viewpoints and is able to
remove 96% percent of the false positives due to the multi-
view setup.

We first describe related work in Sect. 2, followed by a
detailed explanation of our proposed multi-view inspection
in Sect. 3. We conduct a practical evaluation of our proposed
method and present the findings in Sect. 4.

2 Related work

Various research focuses on multi-view object detection
to increase the detection and localization accuracy. Some
encode multiple viewpoints in a single CNN [7,8,10,11],
whereas others combine the detections from each individual
viewpoint in a later stage [2,4,21]. Alternative approaches

combine multiple viewpoints into a point cloud to perform
object detection directly on a point cloud level [12–17].

2.1 Multi-view object detection

Tang et al. [7] appliedmulti-view object detection to improve
detection capabilities for small objects. They segmented a
single image intomultiple overlapping fragments and applied
either Single Shot Detector (SSD) [22] or You Only Look
Once (YOLO) v2 [23] on each segment. Although they used
a fragmented object detection, they did not use different cam-
era locations or camera angles, making the merging step
relatively easy.

Accounting for different viewpoints, Zhao et al. [8] pro-
posedM-YOLO, to achievemore positioning accuracy. They
detect an object from two different viewpoints, using a front
and a side view. They map the two-dimensional bound-
ing boxes onto the reconstructed three-dimensional scene,
to form the three-dimensional object box. They perform
the mapping using the transformation matrix between the
viewpoints, in combination with the three-dimensional space
coordinates of the camera.

Nassar et al. [11] developed a multi-view object detection
model to accurately identify trees within the landscape. Their
task differs from the object detection of Savarese and Fei-Fei
[9] and Liebelt and Schmid [10], since their images are not
captured in a fixed setting. They extended the SSD model
of Liu et al. [22] to receive camera pose information. They
developed a Geo Regression network to estimate the real-
world geographical positions of the objects. Nassar et al. [11]
argue that strong changes in viewpoints, light conditions, and
scale complicate the detection task. Furthermore, they point
out that training amulti-view object detectionmodel requires
large-scale multi-view object detection datasets, which are
mostly not available.

An alternative approach is taken byKaichi et al. [2], where
a rotating table is used to capture different viewpoints for sur-
face inspection on industrial parts. They used a fixed camera
and light source location and used 3D CADmodels, in com-
bination with the predefined rotations, to track scratches and
dents over different views. Rubino et al. [21] used a mini-
mum of 2 and ideally 3 viewpoints to construct a 3D object
location. They used conics instead of bounding boxes from
the 2D images to formulate a quadric ellipsoid of the object
location. Although they did not focus on surface inspection
and solely focused on combining detections of large objects,
they were able to successfully merge detections across dif-
ferent viewpoints.

To overcome the need for optical and geometrical param-
eters when combining multiple images, Carrasco and Mery
[4] developed Automatic Multiple View Inspection (AMVI).
Their proposed AMVImodel firstly identifies defects in each
image, then extracts keypoints of the object, and uses the key-
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points to match the identifications across the images. They
validate their proposed method on aluminum wheels, while
rotating the wheel. The AMVI method takes approximately
38 s to combine the detections across 3 views, making it less
applicable in real situations.

2.2 Object detection using point clouds

Constructing point clouds or 3D geometry from multiple
viewpoints has been widely studied. Fender and Müller [24]
presentVelt, a uniform framework to combinemultipleRGB-
D viewpoints into a single point cloud. They show that
multiple viewpoints can successfully be combined on both
high and low resolutions. Similarly, Lemkens et al. [25] eval-
uate the construction of point clouds using multiple RGB-D
viewpoints and specifically focused on cross-camera interfer-
ence and noise influence when constructing the point cloud.
They showed that a larger angle between the light source and
camera increases the noise and a smaller distance between
the individual cameras increases the interference.

Other research uses depth map fusion for 3D reconstruc-
tions from multiple viewpoints [26]. The proposed solution
of Weder et al. [26] constructs foxelgrids on 320 × 240 pix-
els at 15FPS using an Nvidia Titan GPU, therefore being
applicable for real-time processing on low resolutions.

A variety of researchers focus solely on RGB images to
overcome the need for additional depth information and,
therefore, specialized cameras or sensors [27,28]. Wen et al.
[27] implement a single-view CNN to predict semantic and
geometry features, which are used to leverage cross-view
feature pooling. With this, they achieve an impressive speed
of 0.32 s to generate a single mesh from 3 viewpoints on a
214 × 214 pixel resolution, using an NVIDIA Titan Xp.

Much research has been done on object detection in point
clouds [13–17]. Both Li et al. [14], Feng et al. [15] focus on
indoor object detection and exploit the relationship between
objects to improve the 3Dobject detection.Kimet al. [16] use
RGB-D images for mask segmentation. They generate mul-
tiple foreground masks for each located bounding box and
use a corresponding point cloud to estimate the 3D location
using a Support Vector Machine (SVM) formulation.

Madrigal et al. [12] presented a method for recogniz-
ing surface defects in 3D point clouds. They introduced a
Model Point Feature Histogram (MPFH) to detect defects
using principal components and classify the point clouds into
primitives for final surface defect recognition. Their 3D sur-
face inspection has higher discriminative capabilities than
single-view surface inspection. In line with Madrigal et al.
[12], Makuch and Gawronek [13] automate inspections of
cooling towers using point cloud analysis. They construct
high-quality point clouds with fixed 3D laser scanners with
a 0.1mm accuracy. Using a sequence of algorithms, among

which PCA, a 100% recognition rate is achieved for the tar-
geted damage types.

2.3 Ray tracing

Ray Casting, initially pioneered by Appel [29], enables to
find the closest object on the path of a ray. His approach
enabled for the first time to go beyond traditional-shaped
cones and spheres and provided a way to trace rays for differ-
ently shaped objects. Foley et al. [30] extended the algorithm
of Appel [29] by adding recursive ray tracing to trace reflec-
tion, retraction, and/or shadow rays emerging from each hit.
This extension enables more realistic image rendering with
shadows and reflections. As both ray tracing and ray cast-
ing require the calculation for ray-primitive intersection, the
complexity is O(rays×primitives). By this, a brute force ray
tracing algorithm is computationally expensive. To reduce
this, several algorithms have been proposed to minimize the
number of triangle validations per ray.

Bentley [31] proposed a multidimensional binary search
tree (kd-tree) to consequently split each dimension of the
search space to construct the binary tree. The binary search
algorithm requires on average O(log(n)) operations for
search actions. As kd-trees enable range operations, it is
especially of use for ray casting/tracing. Other approaches,
considered less efficient, are theBoundingVolumeHierarchy
(BVH) of Rubin and Whitted [32] and Three-Dimensional
Digital Differential Analyzer (3DDDA) [33].

3 Methodology

Figure 1 presents the same damage using two different view-
points, indicating the complexity of multi-view detection
systems. The complexity increases with the number of view-
points and the number of identified damages per viewpoint.
To overcome this, we use single-view object detection, in
combination with a 3D object representation, to generate
multi-view object detection. We apply a sequence of oper-
ations to project the single-view damage locations onto the
3D object. These operations are graphically summarized in
Fig. 2. We define the camera and vehicle scene representa-
tion and its mathematical formulation in Sect. 3.1. Using this
formulation, the bounding boxes of the single-view damage
detection (step one) are projected onto the vehicle by ray trac-
ing in step two. Each projection is weighted with a bivariate
Gaussian distribution to generate a weighted class probabil-
ity onto the vehicle in step three. The multi-view detection is
constructed by averaging the bivariate Gaussian distributions
over all detections and taking the dominant class per face in
step four. In this step, we provide both the single-class and
multi-class damage predictions.
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Fig. 1 Single damage from two different viewpoints

Fig. 2 Graphical representation of single view damage projection onto
3D objects

We evaluate the effectiveness of the proposed approach in
a practical setting, described in Sect. 3.5.

3.1 Camera scene

Wedefine the scene andmathematical formulation to be inde-
pendent of the number of cameras, camera placement, camera
angles, and vehicle make or model. We solely assume the
location of the vehicle and cameras within the scene to be
known.

We define the scene as a xyz-plane, where the vehicle is
orientated in the z direction as visualized in Fig. 3a. Oci =〈
xci , yci , zci

〉
defines the origin of camera i within the xyz-

plane andΘci = 〈
Θ

y
ci ,Θ

z
ci

〉
the angle of camera i with respect

to the y-axis and z-axis, respectively. Both Oci and Θci are
of major importance for the proposed multi-view inspection
and can be obtained at installation of the cameras.

The camera angle encoding is graphically presented in
Fig. 3b.

3.2 Single-view damage detection

Our approach aims to provide a fast and scalable multi-
view inspection system,without the requirement of extensive
multi-view training data or multi-view computer vision
models.We aim to achieve this by leveraging existing single-
view object detection models and combining the individual
detections afterward. This approach removes the need for
advanced hardware such as lidar sensors to estimate depth
in images, as implemented by Kim et al. [18], Liu et al.
[16], Chen et al. [19], and Deng and Czarnecki [20]. We use
YOLOv5l, developedby Jocher et al. [34], for the single-view

Fig. 3 Scene representation with vehicle orientation in xy-plane (a)
and angle encoding in xyz-plane (b)

damage detection. Althoughwe outline the proposedmethod
using object detection, our method can easily be adapted to
instance segmentation models.

We aim to construct a fast multi-view object detection
algorithm, which can be executed on the edge with either
GPU or CPU devices. To achieve this, we avoid the com-
putationally expensive point clouds constructions. In line
with this, we leverage bounding box models instead of
instance segmentation model to reduce the computational
complexity. To date, the state-of-the-art object detection
model (YOLOv5) achieves 50.1 APbox with 218.8 GFLOPS
and 167 FPS (V100), whereas the state-of-the-art instance
segmentation model (SOLO V2) achieves 41.4 APbox with
10 FPS (V100) [34,35].

3.3 Bounding box projection

We denote the damage locations, obtained from the single-
view damage detection model, by di jk = 〈x1, y1, x2, y2〉,
with damage k of camera i in iteration j . Iteration j defines
the capture count of the camera over time. We encode
the coordinates as the top left and right bottom corners

of the bounding box and use �di jk =
〈
Δdxi jk,Δdy

i jk

〉
=

〈x2 − x1, y2 − y1〉 for its dimensions. The image dimensions
are represented by Dci = 〈

Hci ,Wci

〉
, where we assume a

constant image dimension over different iterations, but not
necessarily across different cameras. Similarly, we define the
camera viewing angle by αci = 〈

α
y
ci , α

z
ci

〉
. The camera view-

ing angle depends on the camera type, size, and focal length
of the lens used within the camera. Therefore, this variable is
determined upfront since it is specified by the manufacturer.

The use of rectangular boxes adds a redundancy around
the location of interest. This results in lower localization
accuracy of the projected area. Figure 4a illustrates the incor-
rect projection when solely using bounding box coordinates.
Wang et al. [36], Li et al. [37], and Liu et al. [38] tried to over-
come this redundancy of bounding boxes by encoding the
rotation angle in the prediction. Despite this rotation angle,
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Fig. 4 Projection 2D damage location on a 3D vehicle with incor-
rect prediction when using bounding box coordinates (a) and improved
localization when using all pixels within the bounding box (b)

the projection is still affected when projecting on outward
facing parts of the vehicle, such as mirrors.

To overcome this, we project the bounding box onto the
vehicle by ray tracing through each individual pixel within
the bounding box. This approach ensures that the full location
can be extrapolated, as displayed in Fig. 4b. The downside
of this approach is an increased number of rays from 4 to
Δdxi jk · Δdy

i jk . This implementation is further described in
Sect. 3.3.1. To further reduce the effect of redundancy around
the damage object, we weight the area within the bounding
box with a bivariate Gaussian distribution to decrease the
class probability as the distance to the bounding box center
increases, which is further described in Sect. 3.3.2.

3.3.1 Ray tracing projection

Weproject the boundingbox from the single-view imageonto
the 3D representation of the vehicle. This step is performed
using ray tracing, where the ray angles are obtained from
two known components. Firstly, we obtain the angle of each
pixel with respect to the camera center. Secondly, the camera
angles with respect to the xyz-plane are added to the ray
directions.

We index all pixels within the bounding box di jk and
define this matrix asMi jk (Eq. 1). The distance of each pixel
with respect to the image center is then expressed by Eq. 2.
The first term normalizes the pixel coordinates of M i jk with
respect to the bounding box dimension, where subtracting
0.5 shifts the normalized pixels to the origin. The angles of
the pixels with respect to the image center are subsequently
obtained by multiplying the normalized pixel coordinates
with the camera viewing angle (αi ) in Eq. 3.

Mi jk =
[
xu
yv

]T

u=x1,x1+1,...,x2,v=y1,y1+1,...,y2

, (1)

M̃ i jk = M i jk

Δdi jk
− 1

2
, (2)

M̃
θ

i jk = M̃ i jk · αi . (3)

In the second step, the pixel angles within the xyz-plane
are obtained by adding the camera orientation (Θci ). This

results in the angle matrix M̃
Θxyz
i jk , consisting of a single ray

angle per pixel. This final computation is given in Eq. 4,
leading to the ray directions.

M̃
θxyz
i jk = M̃θ

i jk + Θci . (4)

Using ray tracing, we shoot rays under all angles of M̃
θxyz
i jk .

Fortunately, Foley et al. [30] developed a real-time ray tracing
algorithm to determine the ray–triangle intersection point.
Using this, we obtain the face matrix Fi jk , containing a 1
if ray r hits face l, and 0 otherwise. We represent Fi jk as
a n f × nr matrix with n f the number of faces and nr the
number of rays.

3.3.2 Probability map

We weight each bounding box projection with a bivariate
Gaussian distribution to increase the weight given to the cen-
ter of the box. We combine the projected bounding boxes
from different cameras and iterations and weight each detec-
tion with its class probability. We identify the damaged
vehicle areas on the 3D representation by computing the class
probability pγ per face l using Eq. 5.

Each ray is weighted by the bivariate Gaussian probabil-
ity density function, given in Eq. 6, with x the normalized
pixel distances toward the center (M̃ i jk). This results in the
intensity matrix Fi jk1×nr which we expand to n f × nr to
eventually multiply using the Hadamard product with Fi jk .
As a result, the numerator defines the damage intensity
obtained from ray r on face l.

The number of rays that hit a 3D face strongly depends on
the size of the face. To compensate for this, we average over
the number of ray hits per face in the denominator. Based
on this, each face receives the average hit intensity from all
rays that project onto the face. Figure 5 shows the result-
ing heatmap projection for two different damages, based on
Eq. 5.

Pγ

i jk = 1n f ×1Fi jk ◦ f (M̃ i j k)1n f ×1

Fi jk1n f ×1
, (5)

f (x) = 1

2π
|�|− 1

2 exp
(

− 1

2
(x − μ)T�−1(x − μ)

)
,

x =
[
x1
x2

]
, μ =

[
μx1
μx2

]
, � =

[
σ 2
x1 ρσx1σx2

ρσx1σx2 σ 2
x2

]
. (6)

3.4 Combinemultiple views

We combine multiple camera viewpoints to move from
single-view damage detection to multi-view damage detec-
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Fig. 5 Damage projection with ray tracing on each pixel, weighted by
a heatmap probability. Damage located on left mirror (a) and left front
bumper (b)

Fig. 6 Damage projection from three viewpoints with rays departing
from camera

tion. A non-max suppression is not suitable as it does not
account for the irregular shapes of the 3D vehicle representa-
tion. Fortunately, we can directly apply Eq. 5 on all damages
from the single-view model for all available viewpoints.

A bias arises toward false negative detections from the
single-view model. To overcome this bias, we average the
detection probability ( pγ

i jk) over the number of cameras that
have a non-blocking view on the damaged face. We denote
the number of cameras that could have seen the damaged
face l by tl . We obtain the vector t by projecting a single ray
to the face from each camera and counting the number of
hits on the face. Using this, we define the multi-view class
prediction by p̃γ

l , obtained by Eq. 7 (Fig. 6).

p̃γ

l = 1

t

∑

i jk

pγ

i jk . (7)

The final dominant class prediction for face l (γl ) is then
defined by Eq. 8, where the background class is set to 0.
For multi-class prediction, the classes are solely defined by
{pγ

l | pγ

l > τ }. Redundant predictions are easily removed
by the threshold variable τ , which serves as a confidence
threshold. In other words, if the damage does not surpass
threshold τ , the damage is market by Eq. 8 as background.

γl =
⎧
⎨

⎩

argmax
γ

pγ

l ; {pγ

l | pγ

l > τ } �= Ø,

0 ; {pγ

l | pγ

l > τ } = Ø.

(8)

3.5 Practical evaluation

We construct a camera gate to evaluate the proposed solu-
tion in practice. We configure the camera gate and scene
by manually selecting Oci and Θci . We place three cam-
eras at 20, 100, and 200 centimeters from the ground
surface and place these cameras at the following locations:
(−175,−100), (−175, 100), (175,−100), and (175, 100).
The selected cameras are from the samemanufacturer, which
reports the viewing angle αci = 〈58, 80〉 and the resolution
Dci = 〈1920, 2560〉.

We compared our multi-view approach with a single-view
inspection process. The comparison is conducted using 50
vehicles, 12 cameras, and5 captures per camera. Eachvehicle
is captured while driving through the gate, with a speed of
approximately 5 kilometers an hour. With this, each vehicle
scan consists of exactly 60 images. Therefore, we conduct
the evaluation on 50 vehicle scans with a total sample size of
3000 images.

As described in Sect. 3.2, YOLOv5 [34] is used to train the
single-view object detection model. A total of 42,313 images
are used for the training of the single-view object detection
model. These images are captured by various users, with var-
ious mobile phones in different settings. This ensures that the
dataset contains different camera angles, image resolutions,
vehicle types, vehicle colors, and lightning and background
conditions. This results in a diverse dataset, to ensure that
the single-view model is not solely trained on a single cam-
era setup. Therefore, the single-view model is more robust
against different camera angles and light conditions, when
implemented in the multi-view approach.

A total of 42,313 images aremanually and disjoint labeled
by four individuals in a first annotation round. All annota-
tions are validated in a second annotation round by shuffling
the label sets over different individuals. We use this exten-
sive approach in an attempt to improve label quality and
consistency. During the second annotation round, a total of
26.2% of the images received a change for at least one of the
labels (e.g., remove/add bounding box or change of bound-
ing box shape). To validate if the consistency improved, we
conducted an additional round with a randomized subset of
1000 images, resulting in a significantly lower change rate
of 2.8%.

The full labeling process results in a total of 119,701
bounding boxes. We used transfer learning from the COCO
trainedweights andfine-tuned the detection headofYOLOv5
for 100 epochs. The full network is then trained for an
additional 50 epochs. We make use of Stochastic Gradient
Descent, image size 640, Mosaic augmentation, and apply a
grid search for {(lr , bs); lr :∈ {1e−4, 1e−3, 1e−2, 1e−1}, bs ∈
{8, 16, 32, 64}}. The learning rate, momentum, image scale,
rotation, sheering, and HSV Saturation are optimized using
Bayesian Optimization.
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We apply the Gaussian heatmap using μ1 = μ2 = 0,
σ1 = σ2 = 5, and ρ = 1. We use a relatively high σ , to put
slightly more attention on the bounding box center compared
with the corners. To enable fast ray tracing, we leverage the
latest1 ray tracing implementation of Parker et al. [39].

4 Results

We first outline the performance for single-view damage
detection and present the performance improvement that is
achieved from the label revision. Secondly, we draw the com-
parison between the single-view damage detection approach
and our proposed multi-view damage detection method.

4.1 Single-view damage detection

Table 1 presents the damage detection performance after
parameter optimization.Theperformedhyperparameter opti-
mization yields lr = 1e−3, bs = 32, momentum = 0.89,
image scale = ±40%, rotation = ±20◦, and
shearing = ±5◦. The results show that an improved label
consistency from the second annotation round reflects in a
strong performance improvement. The recall and precision
improvewith almost 23%and 12%, respectively. The annota-
tion revision does not solely improve the precision and recall,
but also improves the alignment of the bounding box. Figure
7 presents an excerpt of the label revision, where 2 false pos-
itives are removed and the alignment of one bounding box is
improved.

Table 2presents the confusionmatrix for single-viewdam-
age inspection. A total of 3000 images of 50 unique vehicles
are used in the evaluation. The test set contains 931 damages,
corresponding to 224 unique damages (e.g., some images
are captured multiple times under different angles). The pre-
sented results seem quite fair at first sight, but the underlying
problem directly arises when the individual detections are
aggregated per unique damage. Table 3 shows that 34 unique
damages (15%) have not been identified on any of the views.
Furthermore, it points out that 73%2 of the unique dam-
ages are identified more than once. Based on the used test
set, a human operator will receive each damage on average
3.5 times. These duplicate identifications directly affect the
applicability in real-world situations, since duplicates have
to be removed manually.

4.2 Multi-view damage detection

Table 3 shows that the single-view approach contains many
damages which are identified more than once. A strong

1 Version 7.0.
2 (224 − 34 − 27)/224.

Fig. 7 Excerpt of amodified class label with iteration 1 (a) and iteration
2 (b). 2 removed false positives and 1 revised bounding box dimension

Table 2 Single-view confusion matrix for 3000 Ultra HD images of 50
unique vehicles, under confidence threshold 0.2

Actual
Damaged Undamaged

Prediction

Damaged 773 312

Undamaged 158 –

A total of 931 damages are present in the ground truth test dataset. The
number of damages per image ranges between 0 and 3

reduction in duplicate identifications is achieved using the
multi-view approach, where only 8 damages are marked as
two separate damages, while belonging to the same unique
damage. In other words, our proposed method enables us to
reduce the number of duplicate identifications from 5763 to
8. This strong reduction in duplicate detections is achieved
since the single-viewmodel is not able to identify if the dam-
age in the first viewpoint is equivalent with the damage in the
second viewpoint. Furthermore, Table 4 shows that the num-
ber of false positives is reduced by 79% for the multi-view
approach, compared with the single-view approach. This
reduction is again obtained from the ability to share infor-
mation across the different viewpoints.We previously argued
that the viewpoint matters for the detection of damages, since
light reflections can results in false positives. Applying the
multi-viewmodel enables to evaluate and average thedamage
from multiple viewpoints, according to Eq. 7. This approach
reduces the number of false positives notably, since an false
positive from one viewpoint is outweighed by the other view-
points.

Table 3 shows that a lower confidence threshold reduces
the number of false negatives (0 identifications) for themulti-
view approach, while keeping the property to remove almost
all duplicate identifications. In addition, a lower confidence
threshold reduces the number of false negatives at a slightly
increased number of false positives. The effect of a lower con-
fidence threshold on the number of false positives is presented
in Table 4. Therefore, we can state that our approach retains

3 773 identifications - 197 unique detections.

123



46 Page 8 of 11 R. E. van Ruitenbeek, S. Bhulai

Table 1 Performance
comparison of single-view
damage detection, before and
after label revision

Iteration Algorithm AP.5:.95 (%) AP.5 (%) Precision (%) Recall (%)

1 YOLOv5l 16.8 31.9 28.09 40.16

2 YOLOv5l 23.4 38.5 31.36 49.32

Table 3 Number of
identifications for all 224 unique
damages, based on 3000 images,
for varying confidence
thresholds for the single-view
detection model

Approach Conf Number of identifications
0 1 2 3 4 5 6 7 8 9+

Single-view 0.20 34 27 26 29 36 24 15 9 8 12

Multi-view 0.20 61 155 8 0 0 0 0 0 0 0

Multi-view 0.15 33 183 8 0 0 0 0 0 0 0

Multi-view 0.10 27 187 10 0 0 0 0 0 0 0

Multi-view 0.05 26 187 11 0 0 0 0 0 0 0

Table 4 Number of false positives, based on 224 unique damages with
3000 images

Conf 0.2 0.15 0.10 0.05

Single-view 81

Multi-view 17 26 39 44

the same properties as the single-view approach in terms of
the false positive/false negative trade-off, while being able to
remove almost all duplicate detections.

It has to be noted that our proposed approach does not
solely remove duplicate identifications from multiple views;
it also directly removes almost all false positives on the sur-
rounding of the vehicle. The trained single-view damage
inspection model generates false positives on the surround-
ingswhen cracks or scratches are present in the concretewalls
and floors of the setup. A total of 71 false positives have been
generated on the surrounding, based on the 3000 test images.
The multi-view algorithm automatically removes 68 of the
false positives (96%) without the need for any additional
algorithms such as vehicle segmentation, which is normally
required.

Both Figs. 8 and 9 visualize the multi-view prediction for
a single dent. The heatmap predictions are combined from
multiple damages, where the damage of Fig. 8a is seen by 6
out of the 6 cameras and the damage of Fig. 9a by 4 out of 5
cameras. Both visualizations are constructedwith probability
threshold 0.10.

4.3 Robustness of the proposedmodel

Wepreviously presented howa change in the confidence level
of the single-view model (YOLOv5l) impacts the number of
duplicate detections (Table 3) and the number of false posi-
tives (Table 4). Besides this, other factors play an important
role in the performance of the multi-view model. Chang-

Fig. 8 Excerpt of a single-view (a) and associated multi-view predic-
tion (b)

Fig. 9 Excerpt of a single-view (a) and associated multi-view predic-
tion (b)

ing the underlying training dataset for the single-view model
largely influences the outcome of the multi-view model.

Table 5 shows that a smaller single-view training dataset
directly effects the performance of the multi-view model.
This results from a decreased diversity and a decreased detec-
tion performance. As a result, the number of false positives
increases and the number of false negatives increases. How-
ever, the number of duplicate dictations does not increase
to large extend. With the original dataset, a total of 8 dam-
ages are not successfully merged, against 18 with a dataset
of 10,000 images. In addition, the number of false positives
from the multi-view model with only 10,000 training images
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Table 5 Effect of the training dataset size for the single-view dam-
age detection model on the number of duplicate identifications and the
number of false positives, under confidence threshold 0.2

# Images Number of identifications False positives
0 1 2 3 4 5

42,313 61 155 8 0 0 0 17

20,000 103 113 10 0 0 0 44

10,000 129 77 18 0 0 0 76

A total of 224 damages are present in the ground truth

Table 6 Computation time complexity for both GPU and CPU imple-
mentation. Reported in seconds

Stage GPU GPU CPU
50 vehicles 1 vehicle 1 vehicle

Single-view 15.69 0.31 25.8

Preprocessing 1.28 0.03 0.18

Ray tracing 43.09 0.86 27.11

Post-processing 4.03 0.08 0.84

Total time 64.09 1.28 53.93

is still lower than the single view model trained on the full
dataset. Showing that our proposed model can already add
value for smaller datasets.

4.4 Computation time

We evaluate the computational time of our proposed solu-
tion on a Nvidia RTX 3090 GPU with an AMD 5800 CPU
and 64GB memory. We break the computation time into two
segments: the single-view stage and themulti-view stage.We
report the total time to process the 50 vehicles (3000 images),
as well as the average time per vehicle (60 images). The
resulting computational time for both the GPU and the CPU
implementation is presented in Table 6. The largest computa-
tional components are the single-view YOLOv5l model and
the ray tracing component. The ray tracing implementation
requires a relatively low number of rays to process. There
are no rebounds required to find the 3D location and the rays
are only computed over the pixels of the damage locations.
In our practical evaluation, the single-view model predicts
1085 (773 + 312) bounding boxes, resulting in 1085 boxes
for ray tracing. Despite this, the ray tracing component is still
relatively large. This is mainly due to context setup required
in our proposed solution. Themajority of the ray tracing time
is used for loading the 3D vehicle context from disk and into
the render environment. Therefore, the mentioned results are
an indicator for the performancewhich are not yet optimized.

5 Discussion

Our implementation uses pre-constructed 3D models, to
reduce computation time. Therefore, the mirror or wiper
can be differently orientated between the real situation and
pre-constructed 3D models. As a result, the damage projec-
tion becomes slightly less accurate for these areas. The same
occurs for different rim types,which is not taking into account
in our approach. The latter can easily be resolved in further
research as most vehicles have a fixed set of available rims,
giving the option to render 3Dmodels for each make, model,
and rim combination.

The detail level of the 3D object affects the damage pro-
jection accuracy. More fine-tuned 3D models lead to more
detailed damage projections. Contrary to this, amore detailed
3Dmodel increases the number of faces, which increases the
computational time of the ray tracing. Future work can focus
on quantifying the trade-off between 3D model granularity
and computational time.

6 Conclusion

We presented how computer vision models benefit from
improved label consistency, by comparing the detection per-
formance before and after label revision from a second
annotator. We showed that both the recall and precision
improve with, respectively, almost 23% and 12%.

Furthermore, we presented a novel approach to leverage
existing single-view training data and single-viewdeep learn-
ing models for multi-view damage inspection. Our practical
evaluation, conducted in a dynamic environment, shows that
similar damages are successfully grouped together, therefore
reducing the number of duplicate identifications by99%.Fur-
thermore, we showed that the multi-view approach reduces
the false positive rate by more than 96%, while maintaining
the same number of true positives. Even more, we show that
almost all false positives on the surroundings are automati-
cally removed, without the need for additional segmentation
models. Therefore, single-viewdamagedetectionmodels can
significantly benefit from our novel multi-view inspection
methodology without requiring specialized depth hardware,
multi-view deep learning architectures, or multi-view train-
ing data.

The proposed method requires relatively low computa-
tional power, as solely viewpoints with identified damage are
used in the merging process. Therefore, ray tracing is solely
performed on the damaged areas, making it applicable for
CPU and edge devices.

With the reduced number of duplicate detections, the
reduced number of false positives, and the low computational
requirements, we are able to reduce the barrier for practical
implementation of multi-view damage inspection systems.
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