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Abstract
In a large number of scientific areas, such as immunology, forensics, paleoecology, and archeology, the study of pollen,
i.e., palynology, plays an important role: from tracking climate changes, studying allergies, to forensic investigations or
honey origin analysis. Since the mid-nineties of the last century, the idea for an automated solution to the problem of pollen
identification and classification was formulated and since then, several attempts and proposals have been made and presented,
based on different technologies, in particular in the field of Computer Vision. However, as of 2021 microscopic analyses
are performed mainly manually by highly trained specialists, although the capabilities of artificial intelligence, especially
Deep Neural Networks, are steadily increasing. In this work, we analyzed various state-of-the-art research work concerning
pollen detection and classification and compared their methods and results. The problems, such as data accessibility, different
methods ofMachine Learning, and the intended applicability of the proposed solutions are explored.We also identified crucial
issues that require further work and research. Our work will provide a thorough view on the current state of the art, its issues,
and possibilities for the future.
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1 Introduction

In the area of Computer Vision (CV) and Pattern Recog-
nition, the classification of microscopic images is a broad
topic with a large number of possible applications in various
fields. The advent of Machine Learning (ML) and espe-
cially Deep Learning (DL) is major drivers in this area,
combined with the steadily increasing computational power,
thus leveraging microscopic pollen analysis. The advantages
of automated and Artificial Intelligence (AI)-based pollen
detection and classification is manifold: In all areas of appli-
cations, it can reduce costs, expenditure of time, and increase
accuracy. A successful deployment of a pollen classification
system is based on three important factors, of which two are
mandatory: the software, i.e., the method of pollen detection
and classification, the data, and the hardware. The hardware
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aspect, however, is only important if a dedicated system (cov-
ering all the required steps, e.g., from the specimen slide
input, image acquisition, and microscope or camera control-
ling) is desired for an all-in-solution with an additional focus
on usability. If such a software is designed to be deployed on
a dedicated system that works autonomously, the question of
performance and portability becomes important as well.

Furthermore, the question of how to acquire quality
images of pollen grains outside of a laboratory has to be con-
sidered as well. The process of pollen acquisition requires
additional steps, e.g., creating a sediment from a honey sam-
ple or capturing airborne pollen; therefore, the entire system
becomes more complex.

The analysis of microscopic images is mainly done by
humans due to complicated requirements, the importance of
safe results, and the visual variability of small but important
details. An automated solution to the steady identification
of pollen is demanded in multiple areas, especially in aer-
obiology, such as local weather services, due to allergies
in the population, or the pollen composition in honey sam-
ples, which is required for a correct and valid product label.
Despite economical reasons, research work strongly indi-
cates that the number of pollen allergies will increase in the
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future, especially due to climate change [3]. The Autopollen
program1 emphasizes this importance and aims at address-
ing this issue. It started in 2018 and will run until 2022
and is aimed at establishing a standard encompassing the
entire chain—from pollen observation to pollen analysis—
byworking interdisciplinarywith various European partners.

Microscopic images of pollen grains can be processed
with AI methods, especially ML, to identify and classify
pollen classes. A major approach to tackle this problem is
Deep Neural Networks (DNN), specifically Convolutional
Neural Networks (CNN) [31], with the original concept dat-
ing back to as early as 1998 [34]. However, earlyDL attempts
are much older and can be traced back to 1965 [57]. DNNs
in the form of CNNs are multi-layer neural networks, used
to recognize visual patterns in pixel-based images. They are
widely used to classify objects, understand scenes, as well
as segment images in a semantic fashion. Over the years,
variations and improvements have been made to these net-
works, such as Fully Convolutional Networks (FCN) [61],
and establishing best practice network architectures, such as
VGG-16 and ResNet [62] [25]. However, more traditional
ML approaches are used in microscopic pollen analysis as
well: Support Vector Machines (SVM), Linear Discriminant
Classifiers (LDC), etc. These methods also require Feature
Engineering in comparisonwithDLmethods.All thesemeth-
ods have their strengths and weaknesses and their designated
use cases. In the case of pollen classification, a large variety
of these methods are utilized, yet it is still up for debate,
which method is most suitable for the task.

In the scope of this work, we elaborate the current state
of the art in the following chapters, with regard to avail-
able data sets and methods, results, as well as a comparison
of existing methods and their performances. In Sect. 2, we
discuss two common ways of acquiring pollen samples; via
extraction from substances—in our case melissopalynology
[43]—and the collection of airborne pollen, where we use the
typical Burkhard trap [27] as an example, which is still the
most used pollen trap for allergy-related weather forecasts.
In Sect. 3, we discuss pollen as biological entities and their
morphology, which forms the foundation for many Feature
Engineering methods. It will be shown that pollen grains are
complex and diverse in their features and why certain issues
in classifying them via CVmethods are rooted in their inher-
ent biological structure. The CVmethods, i.e., classifiers and
descriptors, that are most commonly used for pollen recog-
nition will be briefly discussed and summarized in Sect. 4.
In Sect. 5, we explore the majority of work that exists and
contributes significantly to the purpose of automatic pollen
recognition and classification at this juncture. In Sect. 6 we
will address the availability of data sets, their accessibility

1 URL:https://www.eumetnet.eu/activities/miscellaneous/current-acti
vities-mi/autopollen/. Accessed January 3, 2022.

and features, and compare them with each other. The same is
applied to the reviewedmethods and results. Finally, based on
our reviews and findings,we summarize our results in Sect. 7.
We will give a recommendation concerning specific actions
that should be done in order to improve the methods, from a
software, hardware, and data perspective.We believe that our
work contributes as a stepping stone for further research and
evaluation into the field of automated pollen classification.

2 Pollen analysis

2.1 Prepared pollen samples

Pollen analysis of honey, melissopalynology [43], is a spe-
cialized discipline in the field of palynology, aimed at
determining the pollen taxa via samples of honey. As of
2021, the process that is required to identify the pollen and
its geographical origin is performed manually. Beekeepers
as well as large industrial honey producers encounter prob-
lems labeling their products properly, due to the fact that
the honey composition varies strongly and requires a profes-
sional pollen analysis. However, such an analysis is seldom
done and producers often resort to using generic names, such
as summer honey or spring honey. Specialized institutes offer
pollen analysis as a commercial service which allow the
producer to label their product with the correct name and
additional information concerning allergies and geographi-
cal origin. These procedures are costly and time-consuming
since each batch of honey yield can differ in its composition.
The conventional analysis process requires observation and
discrimination of the specific features by a highly trained
palynologist. Research work, such as [21], propose methods
to improve the manual process by defining minimal require-
ments for a pollen analysis, to reduce time and labor, and still
achieve a high identification accuracy. Currently, the manual
process is still the most accurate method and the only one
which fulfills official standards and norms in certain coun-
tries, such as Germany. However, ML and DL methods are
steadily increasing in quality as well as the available compu-
tational power, which could in sum already support the work
of palynologists.

One gram of honey contains between 2,000 and 1 million
pollen grains which can stem from more than 100 differ-
ent plants. In a professional laboratory analysis, these pollen
grains are counted and identified proportionally. This pro-
cess is standardized in Germany by the norm DIN 10760,
which we use as an example. First, a pollen preparation has
to be created. For this purpose, 10g of honey is being diluted
with 20ml of distilled water and then centrifugalized for ten
minutes at 1,000g. The supernatant liquid is removed and
20ml of distilled water is added again, to dissolve the sugar
crystals completely. This is being centrifugalized again for
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five minutes at 1,000g. The pollen sediment is cleaned and
put on a specimen slide with a pipette where it is dried on a
heating plate at about 40°C and finally enclosed with glyc-
erol gelatin under a cover slip.When the pollen preparation is
solid, the identification with a light microscope (LM) is per-
formed next, with a required magnification strength of 320
to 1,000 times. A highly trained palynologist is counting and
identifying the pollen visually by their specific characteris-
tics. The goal is ultimately to determine the relative frequency
of the pollen taxa X p = A×100

n , where p is the plant, A the
number of pollen of the searched plant, and n the total num-
ber of counted pollen grains. It can also be helpful to remove
the number of pollen from nectarless plants via (n − n′),
where n′ is the number of nectarless plants, X p = A×100

(n−n′) . It
is necessary to count 500 to 1,000 pollen grains per honey
sample.

According to the DIN 10760, 500 pollen grains are the
minimum required number per sample. This requirement
could be fulfilled by beekeepers, but it is highly dependent
on the quality of the sediment process and the utilized equip-
ment. Sediment creations with non-professional equipment
(e.g., honey extractors) contain 120 to 600 pollen grains per
20μ sediment. Such amanual analysis comes with twomajor
problems: Laboratory centrifuges are generally of superior
quality and offer higher numbers of pollen per 20μ sediment,
ranging from 4700 up to 6000 pollen grains. The second
problem is the actual classification of the pollen. Also, a paly-
nologist is well-trained in determining the pollen classes by
detecting themorphological traits. Different sources are used
to support the process of classifying the pollen, such as inter-
net databases, e.g., PalDat2, reference books [26] [24], and
pollen calendars.

This DIN can be used as an exemplary instruction on how
to analyze pollen extracted from honey samples. Apart from
the biological and chemical processes, which require specific
instruments, the actual identification process is not specified
in terms of tools or equipment, as long as they fulfill the
minimum requirements mentioned above. An international
norm, ISO/TC 34/SC 193, is currently under development
with the focus of honey products and bee pollen (by relying
on, e.g., EUandChinese established norms). It is important to
watch these developments, since the requirements for a valid
pollen analysis, concerning pollen numbers and method, can
have a strong impact on automated pollen solutions. It could
deem working applications invalid, due to regulations and
requirements that are not met, e.g., better image quality or
larger quantities of samples to ensure a more stable result
and additional safety.

2 URL: https://www.paldat.org/. Accessed January 3, 2022.
3 URL: https://www.iso.org/committee/6716626.html. Accessed Jan-
uary 3, 2022.

2.2 Airborne pollen samples

Airborne pollen grains are usually not classified on the spot,
but collected via a pollen trap for, e.g., twenty-four hours.
The tape, on which the pollen grains are stuck, is removed
manually and analyzed in a laboratory by a palynologist.
However, if the pollen is supposed to be classified fast and
without human interference, the requirements for an auto-
mated solution are manifold. The system has to incorporate
the necessary hardware to take in an air stream and collect
the pollen in such a way that the system can capture images
from pollen on a special film, detect and classify pollen on
a required scale, and finally dispose them again so that the
process can start anew. Ideally, this is all done autonomously,
without human interaction. Apart from the software side, the
hardware requirements constitute an engineering problem on
its own.

The typical way of collecting pollen, which is done by
meteorological services, is to employ Burkhard pollen traps,
which are modeled by the Hirst principle [27]. Such a pollen
trap is powered by an electric engine and continuously draws
in an air flux. The pollen (as well as dust and small debris) is
collected on a slowly turning barrel which contains a plastic
film. It turns with a constant speed of 2mm per hour around
its own axis, which results in 48mm in 24 hours. These 48mm
equate to an air volume of 14.4m3. The pollen trap can collect
particles over one week until the film needs to be replaced.
A laboratory associate has to manually remove the tape from
the pollen trap and analyze it in its entirety under a LM. Due
to the length of the tape, the result of the analysis gives an
indicator for an 24-hour arithmetic mean of pollen perm3 air.
The most important pollen in this analysis is the seven most
common ones that are allergenic. For example, the German
Meteorological Service operates around 40 stations4 nation-
wide. The evaluated data from the pollen are processed and
the results communicated with the public.

All of the steps in this process require a lot of material,
work, and time, especially between collecting the pollen and
producing the actual result. However, proprietary systems
have been developed and work autonomously, such as the
BAA 500 by Helmut Hund GmbH, which is deployed in the
e-PIN system5. This system is the world’s first of its kind;
however, the costs, weight, and size of these machines are a
major drawback which limits their spread and use.

4 URL: http://www.pollenstiftung.de/pollenvorhersage/pollenmesssta
tionen-in-deutschland/. Accessed January 3, 2022.
5 URL: https://epin.lgl.bayern.de/messstandorte. Accessed January 3,
2022.
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3 Palynology

The dominating object of interest in palynology among the
palymorphs is the pollen grain. For terminology, we follow
[26] and [24]. Pollen is a flour-like mass that are produced in
the stamen, i.e., the reproductive organ of a flower, of sper-
matophytes, i.e., seed plants. The pollen grain is the carrier
of the male gametes, i.e., sperm cells. These gametophytes
make up an extra generation of the seed plant and consist
of the sporoderm, two or three cells, and the pollen tube.
Therefore, pollen grains are the male haploid counterpart of
the diploid plant body. They carry the male genetic material
and are very robust and resistant, a quality whichmakes them
especially interesting for archeological and forensic studies.
Due to their resistance to hostile environments and long life
span, it is possible to, e.g., reconstruct ancient vegetation
in the discipline of paleoecology or to collect and preserve
specific evidence from crime scenes in the area of foren-
sic palynology. The scientific exploration of pollen is also
far from complete, due to the fact, that the male gameto-
phytes are not fully investigated yet. From around 260,000
to 422,000 plant species only 10% have been investigated
and their morphology remains unknown [58].

In order to understand the scientific names of pollen
and the possible degree of classification, a quick overview
of biological taxonomy is necessary. Plants and organisms
in general are organized in the Linnaean taxonomy sys-
tem, hierarchically organized in different levels that share
physical characteristics and are related by common descent.
The order of the levels is: Kingdom–Phylum–Class–Order–
Family–Genus–Species. As an example, the scientific name
for white mustard is Sinapis alba. The kingdom is Plan-
tae, which is the sum of all plants that are living organisms,
which perform photosynthesis and cannot move. The most
common and more finer categories are: order, family, genus,
and species. For Sinapis alba, the order is Brassicales, the
family is Brassicaceae, and the genus is Sinalpis. Sinapis
alba, the binomial, is composed of the genus and its specific
botanical name.

It is common to categorize pollen in two groups: pollen
type and pollen class. However, due to the importance of
using correct terminology, the difference between class and
type needs further explanation. Pollen type is generally used
to categorize pollen by a specific combination of character-
istics and affiliating it with a taxon. The pollen class on the
other hand is a method to combine pollen by one or multi-
ple characteristics, such as shape, and aperture type. Pollen
classes are helpful in identifying key characteristics but have
no systematic value, as a pollen grain could belong to multi-
ple pollen classes.Due to the use of the termclass in computer
science and ML in general, we refer to class the same way as
it is used in non-biological use cases of object classification,
such as car, airplane, dog, cat.

Fig. 1 Alnus glutinosa pollen. Medium size (26-50 μm). Pollen class:
porate. Polarity: isopolar. P/E-ratio: oblate. Aperture number: 5. Aper-
ture type: porus

Fig. 2 Helianthus annuus pollen. Medium size (26-50 μm). Pollen
class: colporate. Polarity: isopolar. P/E-ratio: prolate. Aperture number:
3. Aperture type: colporus

There are multiple parameters which describe the mor-
phology of a pollen grain. These parameters can be used
to model features that can be later used to detect and
identify pollen types automatically via the process of Fea-
ture Engineering and Feature Matching, respectively. These
parameters are: shape, size, number, position and type of
apertures, and the pollen wall. These morphological features
are utilized to make pollen specifiable and comparative.
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3.1 Pollenmorphology

Pollen has a spheroid shape, i.e., ellipsoid with two semidi-
ameters. Therefore, the pollen shape is defined by the
P/E-ratio; the ratio of the length of the polar axis P to the
equatorial diameter E . If the polar axis is equal to the equato-
rial diameter, the pollen grain is spheroidal, i.e., isodiametric.
If the polar axis is longer than the equatorial diameter, the
pollen grain is described as prolate. In the last case, if the
polar axis is shorter than the equatorial diameter, the pollen
shape is labeled oblate.

The size of a pollen grain can vary from around 10μm to
larger than 100μm. To determine the size, the largest diam-
eter of the pollen grain is used. However, the preparation
method and the state of hydration have a large impact on the
size. The following nomenclature is recommended: <10μm
very small, 10 to 25μm small, 26 to 50μm medium, 51 to
100μm large, and >100μm very large.

In certain regions of the pollen wall, the outer layer of
the pollen wall is missing, and instead there are openings
positioned called apertures. These apertures function as the
site of germination and can vary in their number. Not all
pollen grains have apertures, therefore, the ones without are
labeled inaperturate. The position of the apertures determines
the correct terminology, e.g., a circular aperture, if positioned
equatorially, is called porus. If it is positioned away from that,
it is called ulcus. An extended aperture, positioned equatori-
ally, is called colpus; if not positioned equatorially it is called
sulcus. Poroid is the term for a circular aperture. Apertures
can also occur in combination, such as colporus (porus and
colpus) and the rare combination of colpi and colpori, called
heteroaperturate. The number of apertures can vary as well,
and a pollen grain with more than three apertures is called
stephanoaperturate. The aperture features, number, type, and
position, are fixed within a pollen species and only rarely
vary, e.g., in stephanoaperturate pollen. Due to the setup of
the apertures, there are a total of six different pollen views
possible, depending on the pollen type: In monocots (with
one equatorial aperture), there is the proximal polar, distal
polar, and two different equatorial views. Dicots usually have
one polar and one equatorial view.

The pollen wall, the sporoderm, is made up of two lay-
ers: the outer layer, exine, and the inner layer, intine. The
exine consists of sporopollenins, which is responsible for
the robustness and longevity of pollen grains due to the ace-
tolysis and decay-resistant biopolymers. The intine is made
up of cellulose and pectin. The wall, or surface of the pollen
grain, can contain certain characteristics called sculpture and
ornamentation.

Two examples and their descriptions are shown in Figs. 1
and 2.

An important, but for the correct classification of pollen
difficult, characteristic is their ability to absorb and release

Fig. 3 Pollen grain of the plant Phacelia tanacetifolia shows com-
pletely different morphological features depending on their condition.
Such aspects play an important role, especially when an automated
pollen classification or counting system is deployed in real-life scenar-
ios

water. Therefore, each pollen grain can have two different
morphological states: hydrated and dry. The reason for this
effect is to protect the male gametophyte against dehydra-
tion. This process is called harmomegathy. The change of
the pollen shape is related to its morphological aspects, e.g.,
apertures. It is possible to attain the turgescent state of the
pollen after it is dehydrated, by addingwater again. However,
this process cannot be indefinitely repeated. Pollen grains
which have a thin sporoderm can be irreparably damaged in
this procedure. The difference between hydrated and non-
hydrated state can be seen in Fig. 3.

These morphological features of pollen grains only touch
the surface of the topic. A highly trained palynologist is
required to learn a lotmore about the topic, in order to identify
pollen correctly by visually means only. The case is espe-
cially difficult when it is required to classify different pollen,
which look a lot alike in their features. A typical method to
highlight the pollen characteristics is to add fuchsine, which
tints the pollen grains in a pinkish tone and increases the
visibility of the pollen features.

4 Computer vision

4.1 Descriptors

Methods that do not utilize DL techniques to learn fea-
tures inherently require so-called descriptors which describe
mathematically a feature that can help differentiate pollen
types. These descriptors are formulated to detect certain
characteristics in an image. The descriptors can be seen as
mathematical translations of the features described in the
previous section, morphological-based, or other texture or
color-based features. Redondo et al. [48] (p. 15 et seq.) give
an overview of the most common descriptors as well as more
detailed explanations. For this purpose, we give a compact
summary in Table 1. To give an example from [48], the shape
can be defined as:
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Table 1 Shortened version of the descriptor overview given in [48]

Category Descriptor

Morphological Area, Perimeter, Shape, Eccentricity, Fullness, Contour Profile

Statistical First-Order, Second-Order Haralick

Transformed space Local Binary Pattern

Moments Hu

Space-frequency Fourier, Wavelets, Gabor

Texture Haralick

Shape = 4 · π · Area
Perimeter2

(1)

The shape indicates the elongation of the pollen grain, e.g.,
a value of 1 would indicate the pollen grain as a circle. This
definition can also appear slightly different under the term
compactness.

The list is not complete, especially due to the fact, that cer-
tain features are used with different terms by some authors,
such as geometric features, which can also be morphological
traits, e.g., region moments or boundary. Color, especially
gray-level features (brightness), can be statistical features
(first and second order). Implementation of features can also
vary by their respective authors. [52] describes also a number
of features, such as boundary moments and Fourier descrip-
tors, as well as geometric ones.

4.2 Classifiers

4.2.1 Linear discriminant analysis

Linear discriminant analysis (LDA) is one of the most com-
mon methods used in pollen classification. It is used as a
method for dimensionality reduction, which is especially
important for bioinformatics, and/or as a linear classifier.
Unlike Principal Component Analysis which is an unsuper-
vised method, LDA requires labels to compute the linear
discriminants that will maximize the separation between a
set of classes. The separability between each class has to
been calculated (between-class variance), i.e., the distance
between the mean of the classes. This is followed by the
within-class variance. Finally, Fisher’s criterion [18] aims at
maximizing the between-class variance and minimizing the
within-class variance. To make predictions, the LDA esti-
mates the probability that a new data sample belongs to a
certain class by using Bayes’ Theorem or Maximum likeli-
hood.

LDAs can be seen as an improvement to Logistic Regres-
sions (which can only handle two-class classification prob-
lems) and has a number of benefits: It is a simple prototype
classifier, the decision boundary is linear,making them robust
and fast, and the advantage of dimension reduction.

4.2.2 Support vector machines

A Support Vector Machine (SVM) algorithm tries to find
a hyperplane in a N-dimensional space which classifies the
data points. Although there are many possibilities for the
hyperplane placement, themethod aims at finding the optimal
hyperplane (line) that separates the data points by maximiz-
ing the margin, which is the distance between the hyperplane
and the support vectors (the points closest to the line from
both classes). This allows the classification of future data
points with more confidence. If the data are not linearly sep-
arable, certain kernel functions are used to transform, i.e.,
map, the data into a new space. These kernels are chosen
depending on the specific problem.

4.3 Neural networks

4.3.1 Multilayer perceptron

Feedforward neural networks, or Multilayer Perceptron
(MLP), are simple neural networks with at least one hidden
layer. Such a network is made up of a large number of neu-
rons which are organized into layers. The minimum number
of required layers is three; one input layer6, a hidden layer,
and an output layer. Such a network is not really deep, and
only the addition of further hidden layers, which can vary
largely in number, is responsible for coining the term deep
in regard to learning. For a classification task, such a net-
work can be displayed as a function y = f ∗(x; θ), where the
input x is mapped to a category y. θ is the parameter which is
learned through the process. Since every neuron is basically a
function, the network is made up of multiple connected func-
tions. This can also bewritten as f (1) for indicating themajor
function of the first layer. All of the layers can be written in
a function chain f (x) = f (3)( f (2)( f (1)(x))). The length of
this chain indicates the depth of themodel. In the actual train-
ing process, the function f ∗(x) approximates f (x; θ) with
the training data as the input, adapting θ to get f as close as
possible to f ∗. Each training example x comes also with a

6 The input layer can be excluded from being counted as a layer and
simply be referred to as the input.
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label y, which indicates what it resembles (through a numer-
ical value). Therefore, the network must produce an output
value that is close to y.

The neurons from each layer, input, hidden, as well as
output layer, are each connected to the neurons of their neigh-
boring layer. If a specific neuron in the layer B should be
activated, the weights of the connections are crucial. The
weights from each connection from layer A to the neuron in
layer B must be set in such a way, that the desired neuron is
actually activated. These weights θ1, . . . , θn have numerical
values. All the activated neurons from layer A are computed
with their according weights θ1a1 + . . . + θnan . The result-
ing value of this weighted sum gets processed by another
function, the activation function, e.g., sigmoid, or linear acti-
vation (no transformation) or typically Rectified LinearUnits
(ReLUs), which aremost common in CNNs (due tominimiz-
ing the vanishing gradient problem). Activation functions are
an abstraction of the rate of action potential, i.e., the firing of
a neuron.

4.3.2 Convolutional neural networks

Convolutional Neural Networks (CNN), first introduced in
[34], arewidely used inDL applications. Since then, research
increased the depth of neural networks [31] and developed
architectures to fit their specific scenarios [32] [10]. Most
state-of-the-art applications and solutions with the focus on
RGB image object classification are based upon CNNs, due
to their property to be most suited for handling tasks involv-
ing visual information. A CNN consists of several blocks,
i.e., layer types, which will be described in short to give an
understanding of how CNNs work and how they differ from
MLPs. For more details, see also [23].

The network takes a RGB image containing a labeled
object that the network aims at learning by generalizing its
features, to predict further, unseen instances of the same
class. The main part of the CNN is the name-giving convolu-
tions. In this layer, specific filters (or kernels) are performing
the convolution operation on the input. These kernels come
with two hyperparameters, size and stride. Depending on the
stride, these filters are applied on the input images and basi-
cally scan the image for structures, such as edges. This is done
multiple times to detectmore complex structures such as con-
tours and object parts. This creates a set of feature images
or feature maps (convolved features). The number of filters
determines the number of filtered images, which can get very
numerous and makes the following pooling layer necessary.

Pooling requires a window size (similar to the kernel)
which is usually set up as 2 × 2 or 3 × 3 and a stride of
2 pixels usually. The pooling window moves in the accord-
ing stride over every single convoluted image and chooses
the maximum value (max pooling). This results in an image,
that is smaller but contains still the same important informa-

tion in a more concentrated and dense form by discarding
unnecessary information.

The final layer in a CNN is the fully connected layer. This
layer decides the actual output of the network, depending on
the values of the filtered images, resulting from the last layer
before the fully connected one, and produces the classifica-
tion probabilities by activating the respective output neuron.
The number of neurons is identical to the number of output
classes in this layer.

An important feature inCNNs isBackpropagation to com-
pute the gradient of the loss function.Theweights are updated
to minimize the loss (i.e., the deviation from the target out-
put). Typical methods are gradient descent or stochastic
gradient descent.

4.4 Metrics

Any pollen classification method or system is put to the test,
i.e., it is evaluated preferably on a set of pollen images that
is unknown to the model. In order to give an indicator of its
performance, most methods usually use at least one of the
following four metrics: Accuracy, Precision, Recall, and F1.

Accuracy is the most common one and describes the frac-
tion of predictions that the model classified correctly:

Accuracy = Number of correct predictions

Total numbers of predictions
(2)

This metric can also be called Correct Classification Rate
(CCR) and is defined in the following form, with the number
of True Positives (TP), True Negatives (TN), False Positives
(FP), and False Negatives (FN):

Accuracy = TP + TN

TP + TN + FP + FN
(3)

Precision, however, indicates the proportion of correct
positive identifications:

Precision = TP

TP + FP
(4)

Recall indicates the proportion of true positives that were
identified correctly:

Recall = TP

TP + FN
(5)

F1 is the combination of Precision and Recall via the har-
monic mean:

F1 = 2 · Precision · Recall
Precision + Recall

(6)
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AlthoughRecall, Precision, and F1 are intended for binary
classification problems, they can be used formulti-class clas-
sification problems when averaged. The sum is calculated
over all rows/columns of the confusion matrix, e.g., the aver-
age precision is the fraction of instances where the prediction
i is correct out of all instances where i is predicted. If not
noted elsewhere, results that are using any of these three met-
rics, are averaged and refer to multi-class classification.

5 Methods

The need and the benefits of an automated pollen recognition
system were described as early as in 1996 [63]. Stillman and
Flenley mention the time-consuming process of extraction
and identification by manual preparation and analysis. The
time of such an analysis is estimated with 2 to 10 hours. The
process becomes more difficult if the identification is sup-
posed to go below genus (e.g., family). An increase in speed
would mean a decrease in costs and help palynologists in
their work. Summarized, the authors name six requirements;
the need for more sites, for fine resolution, for larger counts,
for speed, for objectivity, and finer determination. The most
important ones; speed, objectivity, and better determination,
are the objectives that can be tackled effectively with the help
of ML methods. The need for speed is obvious; however, the
need for objectivity is necessary, due to the fact that experts
can err and even groups of experts are not always of the same
opinion in their examination. This problem can possibly be
tackled by training a ML model on an adequate amount of
data, so that even the finest distinctions in pollen grains can
be learned. In particular cases, however, additional methods
could be useful, such as research into synthetical genera-
tion of (more rare) pollen grain images [64] or an additional
knowledge system (based on geography, season, and like-
lihood). The need for finer determination is related to the
previous factor; in termsof taxonomy, it is useful to determine
a pollen grain (i.e., the flower) beyond the level of family. All
of these factors weigh more or less depending on the desired
use case.

That an automated pollen analysis is feasible and can
produce real benefits was already shown in [12]. With sim-
ple image processing techniques, the authors compared the
pollen counting speedwith human analysts. Themethod pro-
duced results per image in 60 seconds, while the human eye
required 5 up to 68 minutes.

Apart from methods, such as fluorescence spectrometers,
i.e., UV lasers, ([47] [29]) which can be found in proprietary
solutions7 to identify pollen, the available methods in CV
can be placed in two categories: manual feature engineering,

7 URL: https://swisens.ch/en_uk/swisens-poleno/. Accessed January
3, 2022.

including features based on texture, color, morphology of
pollen grains as well as feature extraction and classification
via DL, where points of interest are extracted by a neural
network. Since the focus of this work is on the CV approach,
techniques such as UV lasers are ignored.

Feature-Engineering-based methods can be split further
up. Morphological ones, which use features, such as shape,
geometry, as described in Sect. 3.1 or texture-basedmethods,
which utilize the specific textural characteristics of pollen
types. Hybrid methods use a mixture of different features
(morphological, textural, statistical features, etc.), while DL
methods learn features from a set of training data on their
own. However, the process of how features in DL were gen-
erated is not comprehensible by humans in their entirety
anymore.

The task of classifying pollen can require an additional
step. Depending on the method that is used, the problem of
acquiring an adequate image of a pollen grain is the first
issue to begin with it. This defines especially the framework
of how the experiments and tests are performed and how the
proposed solution is intended to work in real-life scenarios.
The scenarios can vary, e.g., the data set of pollen images can
come already segmented, i.e., that each image contains only
one pollen, while others require segmentation of the pollen
grains from other particles (e.g., dust) [56]. Therefore, it is
important to keep the applicability in mind and the intended
use case.

A summary of all evaluatedmethods is given in Table 2. In
the following sections, we will discuss all proposed methods
in detail.

5.1 Texture-basedmethods

An early example of texture-based methods is [33], where
the authors worked with 192 scanning electron microscope
(SEM) images of six pollen taxa. The texture analysis was
performed specifically on the exine of the pollen, and for
that purpose a gray-tone spatial dependence analysis was
used. The resulting co-occurrence matrix contains informa-
tion regarding the gray levels of the images. From this, it is
possible to deduce certain features (angular second moment
and contrast). Fisher linear discriminant functions were used
as a classifier, achieving an accuracy of over 94%.

The authors of [8] used amethod to discriminate the genus
of pollen based on their texture. The proposed method works
with five different pollen types accompanying a data set of 20
pollen loads.RegionsOf Interest (ROI) are extracted from the
original images and with the combination of texture filtering
methods and feature selector FSM (floating search method)
a classification accuracy of about 87.4% was achieved. The
proposed solution has one drawback: If the number of plant
species is increased, the system performs in such a way, that
it is not applicable anymore.
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[36] conducted three experiments, all based on textural
information: texture variables with shape analysis to classify
four pollen taxa (originating from the New Zealand flora)
with LDA, texture and shape features via a neural network
classifying 13 pollen taxa, and texture alone on the same 13
pollen taxa. The authors used 18 samples for each 13 pollen
taxon, and the average number of images for training was
54%. In all three experiments, a classification rate of 100%
was achieved.

[67] apply co-training, which is used to train two separate
classifiers, in which unlabeled data are being labeled and
combined with the other classifier. This iterative algorithm
can be a suitable method, if the data lack labels, e.g., due
to complexity or nescience. To classify pollen images, the
authors utilize two major features: Haralick’s texture fea-
tures and Local Linear Transforms. The classifier for the
co-training is a Logistic Linear Classifier. The data set used
consists of seven pollen types with 196 images on average
per class (50% split into training and testing). With the adap-
tive Bayesian combination method an accuracy of 90.58% at
best with 686 training samples was achieved.

5.2 3D-feature-basedmethods

Ronneberger et al. [53] propose a general-purpose object
recognition system that uses a 3D volume data set created
with a confocal laser scanning microscope and is used to
classify airborne pollen. The system is trained on a data set
containing 26 pollen taxa with 385 samples and was evalu-
ated on15 samples per class.With the confocal laser scanning
method a 3D image can be obtained by stacking up multiple
2D image recorded from different focus planes. Utilizing 14
gray-scale invariant features and SVMs for the classification
process, the authors achieved an accuracy of 92% and for
exclusively allergy-related pollen 97.4%.

[66] proposes Discrete Spherical Fourier Descriptors
(DSFD). The surface curvature voxels of pollen are extracted
and decomposed into radial and angular components (via
Spherical Harmonic Transform). A discrete Fourier trans-
formation is applied to obtain the 3D descriptors used for
pollen recognition. A classification is performed by a SVM.
The authors used two data sets for the evaluation. One with
389 pollen grains of 25 different taxa (created under ideal
conditions) and another one with 22750 pollen grains from
33 pollen taxa (Pollenmonitor). On the first data set a CCR
of 96.3%was achieved and on the second data set a CRR rate
of 91.8%.

Adifferent approach is done by the authors of [65]. Instead
of relying on descriptors for specific features the authors uti-
lize the SIFTmethod [40] on 3Dpollen images. The approach
consists of four steps; key points (which are scale-invariant)
are found via local differential vectors, which yield the local
maximum points of the gradients. The image is divided into

blocks for each layer of the 3D Gaussian image pyramid to
extract the positive and negative differential vectors. In the
next step, local key points are obtained. Lastly, to solve the
problem of rotation the authors propose a rotation invariant
feature transform method which uses a 3D rotation matrix,
based on alterations made to the original SIFT method. This
produces a vector histogram descriptor, describing the sta-
tistical distribution of the gradient vectors for the key points.
The experiments were performed on three different data sets:
Confocal [54], Pollenmonitor [46], andCHMonitor [65] (tak-
ing 25% random images per category as training images)
achieving an average precision of 88.25% (over all data sets).

[49] uses Group Integration, which is a method to gen-
erate invariant features. The authors added two features to
the Group Integration method: Local directional information
and Spherical Harmonic Expansion for more descriptive fea-
tures, aswell as an algorithmusing importance sampling. The
3D volume data consist of 26 German pollen taxa with 385
samples. A compressed data set of 7 classes was created by
maintaining the allergologically relevant classes and merg-
ing the irrelevant ones. Using a Nearest-Neighbor Classifier
and a SVM with Histogram Intersection Kernel an accuracy
of 94.5% and 96.9% was achieved on the entire 26 classes
set and 97.4% and 99.7% on the combined 7 classes set.

In [20], the authors use a CNN to identify pollen on air-
borne pollen slides. The proposed system does not require
any pre-processing and is trained on a set of 251 videos (i.e.,
386 samples with 3375 fully visible grains, as the system
was only trained with such, any partially visible grains were
ignored); therefore, the network learns 3D information of the
pollen due to capturing the various focal planes. A second set
of 135 videos (1234 pollen grains from 11 pollen types) are
used to evaluate the method. The training and test data are
split 60%-40% (251 samples with 2037 grains and 135 sam-
ples with 1234 grains, respectively). The authors manage to
achieve a recall value of 98.54% and 99.75% precision. The
modelwhichwas deployed in thiswork is Faster R-CNN [50]
with a feature pyramid network for training and RetinaNet
[37] for evaluation with only slight alterations.

5.3 Full-solutionmethods

[1] is one of the few examples, where the authors attempt
to provide a full solution, i.e., develop a method for pollen
classification embedded in a larger system, that performs
the entire process and takes the image acquisition and the
hardware aspect into consideration. Therefore, the system
contains multiple parts: two microscopes (one to obtain a
wide view for pollen identification and a second one to
inspect the location candidates), lighting, and movements.
The image processing consists of auto-focus algorithms,
segmentation algorithms, and classification algorithms. To
perform the classification a MLP is used. In total, 43 image
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features (size, shape, and texture) are extracted from each
image and used as an input to the network. Utilizing three
pollen types, a classification rate of 90% was achieved. The
system was presented in its entirety again in [28]. The image
processing part utilized here is based upon [68]. The method
uses Z-stacks, i.e., multiple images are taken at different
focus levels. That allows a high visibility of vertical details
of the pollen grain. The best portions of the images are com-
bined into one single image. The feature set of 43 different
image features is based on texture, shape, and spatial fre-
quency. A neural network is utilized for classification, and
when tested on conventionalmicroscope images, an accuracy
of 94% was achieved.8

M. Chica [11] developed an image processing and clas-
sification system to detect fraudulent pollen. LM images
from five different pollen types were selected: Echium, Cis-
tus, Rubus, Olea, and Quercus (five of the most common
pollen types in Spain), as well as one class for outliers. A
digital camera (USB DS-Fi1) is used to acquire the images
from the microscope, a Nikon E200 (40x), at a resolution
of 2560 × 1920 pixels. Before the actual classification, the
pollen grain is segmented from the background via a group
of image processing methods: histogram equalization to
enhance the contrast and a median filter to remove unwanted
noise. It is important to notice that this entire process does
not take non-pollen objects into consideration, which could
be in, e.g., airborne pollen or other polluted pollen samples.
After the segmentation, a set of discriminative features is
calculated for each pollen type. The result is 28 features per
class (i.e., pollen type) which can be split in three categories:
shape-related features, textural and color information, and
exine descriptors. For each individual pollen type, a one-
class classifier is trained and formed into a multi-classifier.
The number of samples for each pollen type varies from 101
to 446 (1063 in total) and is split into a training and a test
set of 80% and 20%, respectively. The best result of 92.3%
accuracy was achieved with the one-class k nearest neighbor
(kNN) method.

The work of [5] and specifically [6] and [7] proposes
a semiautomatic pollen recognition system. This system is
composed of two modules: pollen slide analysis and recog-
nition. It takes aerobiological slides that are colored with
fuchsine9. To capture images, the system is equipped with
a LM with a 60x lens, a color camera with a framegrabber
card, and a micro-positioning device for placing the slide
properly under the microscope. The authors identified two
major issues: First, if the system operates autonomously, it

8 A dedicated data set by [19] was used; however, this data set is as of
2021 not accessible anymore.
9 Rosaniline hydrochloride is a magenta dye that is often used to color
pollen grain samples to highlight morphological and textural features,
e.g., for preparations in combination with glycerin gelatin.

has to adjust the focus to acquire a proper image. The authors
solved this issue by developing an algorithm that adjusts the
focus on a sharpness criterion, which finds the best focusing
position for the current sample. The second issue describes
the problem of pollen grain detection in the scene. Fuch-
sine is helpful here, since pollen is sensitive to the colorant,
e.g., dust particles can be separated. However, there are other
particles that can be sensitive to it as well. Therefore, an addi-
tional algorithm based on Markovian relaxation to localize
the pollen was conceived. The authors achieved a localiza-
tion rate of 90% during the image acquisition. The localized
pollen is then captured from multiple foci to identify the
pollen by its characteristics that become visible via its con-
structed 3D shape. This process includes general and specific
pollen knowledge, derived frompollenmorphology, to create
distinct features (e.g., compactness or convex hull area) for
classification.A recognition rate of 73% to77%was achieved
by evaluating on a reference database of 350 pollen grains
from 30 different types (via leave-one-out validation).

5.4 Hybrid methods

Hybridmethods utilize amixture of different features, includ-
ing more abstract features such as statistical gray-level
features. Therefore, these approaches are more generalized
and can utilize atypical classifiers, e.g., elaborated in [46],
with rare examples such as [39], utilizing regression trees.
The authors of [46] use a system to classify biological par-
ticles with a focus on classifying particles found in human
urine. However, the method was also trained and tested on a
set of airborne pollen. In the first step, patches that include
most likely particles are detected by a set of filteringmethods
resulting in a bounding box around a particle. Next, an invari-
ant feature vector is computed from the image. A Bayesian
classifier is used to learn and distinguish the features. The
pollen data set contains 1429 images containing 3686 pollen
grains. Three categories were used, and a correct classifica-
tion rate of 83% was achieved.

The authors of [9] used a linear normal classifier and three
different features: shape, statistical gray-level, and pore and
colpus features. The data used were categorized into three
groups: grass, birch, and mugwort pollen for allergy-related
purposes.Thedata consist of 245 isolatedpollengrain images
(79 grass, 79 birch, and 96 mugwort). Employing cross-
validation for evaluation the linear normal classifier (with
12 features) performed best among all other tested classifiers
(e.g., nearest mean classifier, quadratic normal classifier). An
average accuracy of 97.2% was achieved.

[51] combines morphological features (shape) and texture
features (sculpture, i.e., texture of the grain) to detect, count,
and classify pollen grains. The systemwas evaluated on three
different pollen taxa of theUrticaceae family, with 9, 10, and
6 images each. Each image contains around two to 16 pollen
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grains. Since the pollen used here belongs to a family that
has a specific circular morphological characteristic, a Hough
transformation (HT) is used to detect circles in the images,
followed by the extraction of the pollen silhouettes by apply-
ing the Snake-Contour approach and calculating shape and
texture features. As a classifier a MDC (Minimum Distance
Classifier), MLP (Multi-Layer Perceptron) and a SVM were
evaluated, achieving a best average accuracy of 89%.

[52] uses brightness and shape descriptors (e.g., geometric
features, region moments) based onmorphological attributes
to classify three pollen taxa (98 Parietaria Judaica, 100
Urtica membranacea, and 93 Urtica Urens pollen grains
from a total of 77 images). After pollen extraction the feature
sets are computed for each grain which the classifier uses to
label the pollen via aminimumdistance classifier (andmajor-
ity voting). The Fourier descriptors achieved the best result
of 90% correct classification rate.

The authors of [41] use geometric and textural features to
describe pollen classes. A self-created data set with 6 classes
and 584 images in total (90 to 100 images per class) was
used to evaluate the proposed method. For each pollen grain
image, a set of 98 features were generated. To reduce the
number of features the feature importance was calculated
using the Gini Index. Using the Random Forest method with
a nested cross-validation (for feature selection) a mean accu-
racy of 88.24% was achieved.

In [45] a group of semiautomatic pollen extraction meth-
ods are evaluated. After extraction and pre-processing the
authors present a set of 24 geometric- and 26 texture-based
parameters which they used to train a MLP for feature detec-
tion. Thepollen classificator actually implements 11different
networks to complement the individual results and to balance
produced errors. The data set used consists of 345 images
of 17 different pollen classes. The samples per class are
uneven, ranging from 15 to 47. The best results achieved
were between 90.54 and 92.81%. However, the scope is lim-
ited to pollen extraction and the problem of automatically
detecting pollen grains from samples is not addressed.

The authors of [48] also use a variety of features and
an additional descriptor for contour inner segmentation. To
test the proposed method, a data set of 15 pollen types
with 120 samples per type was captured. A large number
of different feature descriptors were used in various com-
binations with the added contour descriptor (in total the
number of descriptors is 6320) to experiment with the data.
The large number of experiments showed the efficiency of
the various descriptors and classifier methods as well as
the improvements that the new contour descriptor can yield.
The descriptors can be categorized as such: 6 Morphological
(Area, Perimeter, Shape, Eccentricity, Fullness, Contour Pro-
file), Statistical (13 first-order and 241 second-orderHaralick
(co-occurrence matrix)), 4 Local Binary Patterns (mean,
variance, asymmetry, kurtosis), 7 Hu Moments and Space-

frequency descriptors (Fourier, Wavelets, Gabor, each 964
(241x4)). Three different classifiers were used: Fisher clas-
sifier, Support Vector Machines (SVM), and Random Forest.
This requires a large quantity of experiments, whereas the
authors admit that the results, although often very high,
cannot be compared to other studies, due to, e.g., feature
vector discrepancies. The problem of comparability will be
addressed in detail in Sect. 6. However, the work intro-
duces a novel descriptor, theContour Profile,which describes
microstructures in the pollen grain. Due to the morpholog-
ical structure of the exine of certain pollen, the variance of
gray levels at the contour of these pollen is higher than those
pollen without a reticular surface. On its own, this descriptor
is not very effective, but in addition to other descriptors it
can raise the classification accuracy by 50%, with the best
result being 99.4%by using a combination ofmorphological,
statistical, and three space-frequency descriptors.

In [22], the authors created a data set of 805 pollen images
in total of 23 different pollen types from the Brazilian Savan-
nah called POLEN23E. For each pollen type, there are 35
images captured at different angles. Three feature extractors
(Bag of Visual Words (BOW), Color, Shape, and Texture
(CST), as well as a combination of both) and ML techniques
(two types of Support VectorMachines (SVM), decision tree,
and k-nearest neighbors (kNN)) were tested on the data set.
For the evaluation, a threefold randomized cross-validation
method was applied. The best result of 64% Correct Classi-
fication Rate (CCR) was achieved with C-SVC (SVM) and
CST+BOW.

[2] utilizes low-level features, such as color and tex-
ture. A set of descriptors is used: Gray-level Co-Occurrence
Matrices (GLCM), Local Binary Patterns (LBP), Auto Color
Correlograms (ACC), andWeber’s Local Descriptor (WLD).
The data sets (Duller’s data set [16] and POLEN23E [22])
were split 80% and 20%, for training and testing, respec-
tively,with a fivefold cross-validation. The authors used three
different classifiers: SVM, Random Forests, and Logistic
Regression. On Duller’s data set, the authors achieved 96%
accuracy using GLCM and Logistic Regression. The ensem-
ble of classifiers also yielded 96% and did not perform better,
which is an interesting fact. On the POLEN23E data set, the
highest achieved accuracy is 74%, with the following combi-
nations; LBP + SVM, ACC + Logistic Regression, andWLD
+SVM,withRandomForest performing theworst. The com-
bination of all descriptors (ensemble rule, i.e., majority rule)
manages to achieve an accuracy of 79%.

5.5 Deep learningmethods

In one of the earliest attempts, as early as 1999, the authors
of [35] use a neural network to determine pollen grains. The
authors used four New Zealand pollen types with 18 sample
images each (total of 72 texture images). The authors picked
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pollen taxa that can be easily differentiated by their shapes
and utilized a 5-4-4-3 feedforward Multi-Layer Perceptron
(MLP). An accuracy of 100% was achieved.

The authors of [59] work on the same data set as [22] and
improve the results by utilizing Convolutional Neural Net-
works (CNN). To evaluate their model accuracy, the authors
used a 10-fold cross-validation and achieved a CCR rate of
97%.

The authors of [14] used a CNN with seven layers and
used two different data sets: one LM and one scanning elec-
tron microscope (SEM). The LM set has 1,000 images but
was artificially increased via image transformation methods
to 14,000 samples. A second architecture was used based
on the ImageNet model [31] and trained via transfer learn-
ing. A classification rate of 90% was achieved on the LM
set (and 94% on the SEM set). An average precision and
F score of 92% and 89% were achieved. Two years later,
the same authors worked with sequential images and utilized
z-stacking (i.e., multifocal images) [15]. Two different net-
works were used: a CNN and a Recurrent Neural Network
(RNN). The CNN learns the visual characteristics, while the
RNN (with 512 units of long-short-term memory (LSTM))
is necessary to establish the sequential information from the
multifocal z-stack, due to the specific feature of RNNs of
taking temporal information into consideration. The CNN is
based on the VGG-16 architecture and was fine-tuned via
transfer learning with 392 z-stacked sequences of 10 differ-
ent pollen types, containing 10 images per sequence. In total
2940 images for training and 980 images for evaluation were
used. The authors achieved a classification accuracy of 100%.

[30] provides another attempt at utilizing DL methods to
classify pollen. The authors manually created a data set of
11 plant species pollen with 1774 images in total. Instead
of utilizing an existing network (via transfer learning), the
authors created their own network and gave an overviewof its
architecture, enabling others to recreate their work in theory.
The data were also augmented by shifting and rotating the
images to achieve an average number of 200 images per class.
The data are organized in three sets: one containing five, one
containing nine, and another one containing 11 classes. On
the 5 class set an accuracy of 99.8% was achieved; however,
on the 11 class set an accuracy of 95.9%was achieved, a drop
by 3.9% in accuracy by adding 6 more classes. As a reason,
the authors mention the morphological similarities of a large
number of pollen.

[4] introduce their own data set, POLLEN13K, aswell as a
benchmarkon thedatawith variousMLmethods.Thedata set
contains around 13,000 images of four different pollen taxa
and an additional class for debris, bubbles, and other non-
pollen objects. The authors evaluate a number of algorithms
on the data set, based on two different feature sets: HOG [13]
and LBP [44]. Amultitude ofmethodswas evaluated—linear
SVM, RBF SVM, Random Forest, Adaboost, MLP—each

with LBP and HOG features. The best accuracy of 87% was
achieved with HOG and RBF SVM. When using CNNs, the
best accuracy was achieved with AlexNet [31] (30 epochs
training) of 90% and a smaller VGG-net (20 epochs training)
of 90% as well.

In one of the newest works [60], the authors use themicro-
scope system (now known as Classifynder) as described in
[28]. However, the authors used the system only to create
the image set used in their work, which consists of 19,500
images from 46 different pollen types (with varying num-
bers of images per taxon by 40 to 1700)10. The DL model
AlexNet [31] was used to automatically extract features.
After the transfer learning process, the features are extracted
and fed into a LDC. For evaluation the data set was split
into 90% training and 10% validation and utilizing a 10-fold
cross-validation. On the validation set, a CCR of 97.86%was
achieved and a precision of 0.979.

6 Evaluation

6.1 Data sets

The research of the current state of the art makes one strong
deficit clear: the lack of a high-quality benchmark data set.
The large majority of works evaluate their method either on
unpublished data or on data sets that are as of 2021 not avail-
able anymore. Only a few works evaluate their method on
the same data set (e.g., POLEN23E [22] or Pollenmonitor
[46][55]), which allows a meaningful comparison of the pro-
posedmethods. Under the current circumstances it is difficult
to compare the methods and make general assumptions. For
object classification in real-life scenarios, e.g., RGB images
with labeled objects such as chairs, planes, etc., benchmark
data sets are a longtime standard, e.g., the PASCALVOCdata
set [17] or MS COCO [38]. The rapid success in these areas
can be attributed, among other aspects, to the availability of
such large data sets that are used in various works for train-
ing and evaluation. Therefore, proposed pollen classification
solutions should be evaluated on uniform data sets that are
accessible to the scientific community. The specifics of a data
set (e.g., the geographical origin) could be overcome as well,
by adding a large variety of pollen covering all major geo-
graphical habitats. If the pollen taxa get reduced to, e.g., the
number of allergy relevant pollen, a worldwide data set could
be established and be helpful not just for automatic pollen
classification. The recent data sets POLLEN13K [4] and the
New Zealand pollen set [60] are steps in the right direction.
Especially the latter, due to its large number of pollen taxa,

10 The data set is available at: https://figshare.com/articles/
New_Zealand_pollen/12370307. Accessed January 3, 2022.
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Table 3 Comparison between the most common used pollen data sets.
Although most works use their own individual data sets, these data
sets go by a specific name. As of 2020, the POLLEN13K as well as

POLEN23E are easily accessible, whereas Pollenmonitor, Confocal,
and especially CHMonitor remain not readily accessible

Data set No. of images Classes Availability Info

POLEN23E [22] 805 23 Yes Brazilian Savannah

POLLEN13K [4] >12,000 4 (+ debris) Yes Corylus avellana (well-developed +
anomalous), Alnus, Cuprissaceae

Duller et al. [16] 630 7 n/a Plantago lanceolata, Quercus robor,
Alnus glutenosa, Polypodium vulgare,
Rumex acetosella, Conopodium majus,
Dactylis glomerata

Confocal [54] 385 26 n/a 26 most relevant German pollen taxa

Pollenmonitor [46] 22,750 33 n/a Online Pollenmonitor

CHMonitor [65] n/a 28 n/a Real-time sampling image data set from
China

New Zealand set (NZ) [60] 19,500 46 Yes New Zealand and Pacific region

Fig. 4 Distribution of the evaluated methods by the number of pollen
taxa (trained and tested on) and the best achieved accuracy. It is dif-
ferentiated by the method type, ML with Feature Engineering and DL
with automatic feature extraction. A cross indicates that the data set is
available online

could be used as a benchmark data set. However, its applica-
bility is of course limited by its regional focus.

An overview of the data sets is shown in Table 3.

6.2 Methods and verifiability

The question of verifiability is a difficult one and depends on
multiple factors, which we will elaborate one by one. Deep
Neural Networks in general have a reputation of being non-
transparent due to their intrinsic feature extraction ability.
Additionally, the training phase of a neural network (together
with the hyperparameter tuning) is critical in the accuracy of a
network and can decide the final results drastically. The train-

Fig. 5 Distribution of achieved results by data sets. Orange points indi-
cate that the data set is available online. Multiple points do not have to
resemble differing authors, but can also indicate multiple methods by
the same authors

ing of, e.g., 20 epochs is never the same due to the stochastic
nature of mostML algorithms. Hardware, e.g., the CPU type,
and the software version have an impact due to rounding dif-
ferences. This makes it difficult, if a proposed and trained
network is not available, to recreate the exact results. The
lack of important hyperparameter information is contribut-
ing to that as well.

Most researchwork is trained and evaluated on the authors
exclusive data, which are often not publicly available. This is
a large problemwhen one has to decide which method works
most efficiently. It is not certain that a specific method can
be transferred from the authors scenario into a different use
case scenario. The method could be too data-dependent or
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specifically fine-tuned to that very issue. This is a problem
of inner-work comparability.

Of all the reviewed works, only six work on data sets that
have a distinct name and are, or used to be, available to verify.
However, of these six data sets, only three are accessible via
download, POLEN23E, POLLEN13K, and the NewZealand
Pollen data set. Since POLLEN13K and the New Zealand
data have been released 2020, new research work utilizing
these images has not been produced yet, thus making the
POLEN23E data set the only onewheremore than one author
evaluated their proposed method.

The summary of our findings is visualized in Figs. 4 and 5.
As mentioned, most research work is done on data sets that
cannot be validated. A few data sets, such as POLEN23E,
POLLEN13K, and the New Zealand pollen set, are available
online and it is probably only a question of time, until further
work is performed on these data sets. When the achieved
results are compared with each other in Fig. 4, we notice a
large number of results by ML methods were achieved with
less than 10 pollen taxa, and a varying accuracy between
82% and 100%. However, an accuracy of more than 97%
was achieved with 46 pollen taxa by utilizing DL methods
on an online available data set, while the large majority of
the ML methods utilize proprietary data sets.

When we look at two results more closely, that is the work
of [22] and [59], which both utilized the POLEN23E data set,
we can compare individual results. We will refer to [22] as
the MLmethod with Feature Engineering and [59] as the DL
method for better readability.

For all 23 classes, the DL method evaluates 30 samples.
Six classes are 100% correctly classified with the remainder
ranging from 24 to 29 correctly classified samples. The two
worst predictions wereMatayba, of which four were falsely
classified as Eucalyptus and two as Arrabidaea, as well as
Myrcia, which was three times falsely classified as Faramea
and two times as Protium.

TheMLmethod used 33 samples per class. The five worst
results were 17 (out of 33) for Hyptis, 13 for Faramea, 15
for Myrcia, 13 for Qualea, and 17 for Urochloa.

Although the ML method achieved 20 correct classifica-
tions out of 33 for Matayba, and therefore performing just
slightly worse than the DL method, the issue with correctly
classifying Myrcia is overlapping in both methods. Myrcia
is a genus that consists of around 770 species. The images
for this class contain a large variety of optical characteristics,
which makes it difficult to establish a set of features, that are
valid for each perspective in every case.A few examples of its
variety are shown in Fig. 6. However, due to the small amount
of data, the DL method has problems and probably cannot
establish a proper generalization. Especially when compared
to Eucalyptus, we can see significant similarities that make a
distinct classification problematic. An example is shown in
Fig. 7. Static Feature Engineering can reach its limits here,

Fig. 6 Large variety of Myrcia pollen grains. Images taken from the
POLEN23E [22] data set. Myrica gale, e.g., is described as monad,
porate, isopolar, and aperture number 3

Fig. 7 Comparison between an Eucalyptus and a Myrcia pollen grain.
Apart from color and texture, the exine and the apertures show strong
similarities. Eucalyptus globulus, e.g., is described as monad, synaper-
turate, and aperture number 3. Both shapes are described as triangular
(polar view) and the dominant orientation as oblique. Images taken from
the POLEN23E [22] data set

due to the large varieties of position, perspective, and foci of
pollen grain when observed under a LM.

This issue could be solved in two ways: More work has to
be put into Feature Engineering, especially hybrid solutions
that utilize a large spectrum of features, such as innovative
ones as Group Integration. The authors of [42] show that
textural features (when multiple ones combined) can reach
a high classification accuracy around 95%, ignoring other
feature classes such as morphological ones. However, the
data set lacks validation by other methods, but the possibility
of handling difficult pollen classes via Feature Engineering
does exist. The other path is the DL approach11; in order
to generalize and learn features, it requires a larger number
of training samples to cover a wide range of positions and
perspectives. In total, 35 images per class are not enough to
solve this problem. Increasing the number of training samples
can solve such issues. The addition of a knowledge system
(e.g., a pollen calendar) can also help in the classification
process.

The harmomegathic effect, described in Sect. 3.1, is hardly
ever mentioned in the methods; therefore, we assume the
preferred state of the pollen is hydrated. We assume this,

11 It is important to notice that although CNNs work like a black-box,
it is assumed that they have a texture bias instead of a shape bias, at
least in the case of AlexNet[31].
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due to the effects involved in analyzing pollen samples, e.g.,
from honey. In a laboratory pollen can also easily be dried.
However, when pollen classification is supposed to be per-
formed on the spot (airborne samples), harmomegathy can
be an additional problem, due to rain or moisture in the air.

7 Conclusion and discussion

The data we cited point strongly at an ever increasing impor-
tance of pollen analysis in various disciplines, frommedicine
and forensics to climate change research. Therefore, it is
important to research and introduce automated and smart
solutions for pollen analysis in all possible fields of applica-
tion. In this work, we analyzed a large number of CV-based
pollen classification methods in the area of ML and DL. To
illustrate the problem in detail, we selected two specific use
cases: the analysis of pollen samples in a laboratory for food
analysis and safety (i.e., pollen samples from honey), and
the analysis of airborne pollen samples for allergy-related
weather forecasts. The actual use of AI-based pollen clas-
sification systems by countries or institutes is limited. The
participation, results, and proposals that are shown by the
partners of the AutoPollen project (see Sect. 1) show that.
We stressed the importance for national and international
standards that can help to standardize the process via fixed
requirements.

As late as 2020, data sets such as POLLEN13K and the
New Zealand data set emerged and offer benchmark-like
quality.Most of the researchwork is done on proprietary data
that cannot be evaluated properly.Many proposed techniques
should be re-evaluated on one of the mentioned data sets.
However, the data sets are limited in their actual applicability,
since they are limited to a specific geographical flora.Apossi-
ble solution would be to combine data sets together, if certain
quality criteria are met, to offer a world wide data set, or at
least a world wide data set that includes most allergy-related
pollen, as it was already done for Germany (but not pub-
licly available anymore). Such an international data setwould
make it easier for researchers to validate their methods with
their own test samples and the specific data from the bench-
mark set. However, differences in image quality, resolution,
and pollen coloring (e.g., fuchsine) can be problematic. The
best solutionwould be to create one large benchmark set with
uniform image standards and quality. Different data augmen-
tation methods, such as synthetic image generation, require
further investigation as well.

The comparison of the achieved results indicates that DL
methods are favored and produce better quality results, espe-
cially when it comes to larger data sets with a higher number
of pollen taxa. Promising results are also performed on data
sets that are online available and can be evaluated. However,
most works achieve an accuracy above 80%, which indicates

that the issues could be in the details and specifics of certain
pollen types and data limitation.

For the purpose of research, a groupof interesting possibil-
ities are left untouched and require work such as a low-power
pollen classification system. From the reviewedworks, only a
very fewoffer an entire system that incorporates all necessary
steps (e.g., image acquisition, pre-processing, hardware-
related components) for a real-world deployment. However,
these system are usually powered by a strong PC, not a
low-power system, and also the applied neural networks
require a large amount of computational power and energy,
for (continuous) training and inference. For stationary use,
such systems work, but when viewed under the premise of
low-energy, energy-harvesting, low-cost, or portability, a dif-
ferent approach might be necessary.
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