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Abstract
Precisely localising solar Active Regions (AR) frommulti-spectral images is a challenging but important task in understanding
solar activity and its influence on space weather. A main challenge comes from each modality capturing a different location
of the 3D objects, as opposed to typical multi-spectral imaging scenarios where all image bands observe the same scene.
Thus, we refer to this special multi-spectral scenario as multi-layer. We present a multi-task deep learning framework that
exploits the dependencies between image bands to produce 3D AR localisation (segmentation and detection) where different
image bands (and physical locations) have their own set of results. Furthermore, to address the difficulty of producing dense
AR annotations for training supervised machine learning (ML) algorithms, we adapt a training strategy based on weak labels
(i.e. bounding boxes) in a recursive manner. We compare our detection and segmentation stages against baseline approaches
for solar image analysis (multi-channel coronal hole detection, SPOCA for ARs) and state-of-the-art deep learning methods
(Faster RCNN,U-Net). Additionally, both detection and segmentation stages are quantitatively validated on artificially created
data of similar spatial configurations made from annotated multi-modal magnetic resonance images. Our framework achieves
an average of 0.72 IoU (segmentation) and 0.90 F1 score (detection) across all modalities, comparing to the best performing
baseline methods with scores of 0.53 and 0.58, respectively, on the artificial dataset, and 0.84 F1 score in the AR detection
task comparing to baseline of 0.82 F1 score. Our segmentation results are qualitatively validated by an expert on real ARs.

Keywords Image segmentation · object detection · deep learning · weakly supervised learning · multi-spectral images · solar
image analysis · solar active regions

1 Introduction

Solar features (e.g. active regions (ARs)) detection and
segmentation are essential in studying solar weather and
behaviours. This analysis can be carried out by remotely
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monitoring the solar atmosphere continuously on multiple
wavelengths, e.g. as shown in Figs. 1 and 2, captured from
different ground- and space-based sensors.

However, unlike traditional multi-spectral scenarios such
as Earth imaging from space, e.g. [1–7], where multiple
imaging bands reveal different aspects (e.g. composition) of
a same scene, in solar physics, different bands capture the
solar atmosphere at different temperatures,which correspond
to different altitudes [8].

Indeed, the solar atmosphere consists of various atoms,
each of which emits light of a certain wavelength when they
reach a specific temperature, in a context of strong tem-
perature gradient across the solar atmosphere. Therefore,
different wavelengths show different 2D layers of the 3D
objects (e.g. ARs) that span the solar atmosphere.We refer to
this scenario asmulti-layer analysis. For this reason, handling
the multi-spectral (and multi-layer) nature of the problem is
not straightforward. Moreover, the variety in shapes, fuzzy
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Fig. 1 Ground-truth (red) andMLMT-CNN’s (green) detection of ARs
at three levels of solar activity (left to right: high, medium, low) in ran-
domly selected images from (top to bottom) SOHO/MDIMagnetogram
and PM/SH 3934 Å

boundaries, and differing brightness of ARs also make their
precise localisation complex.

Very few solutions were presented to the AR localisa-
tion problem. Most of these methods exploited single image
bands only, e.g. [8,9]. Authors justified this by the fact
that each band provides information from a different solar
altitude, they show how areas of ARs differ from band to
band [8]. We , however, argue that inter-dependencies exist
between bands, which can be exploited for increased robust-
ness.

The SPOCAmethod [10] used clustering to extract (pixel-
wise) ARs and coronal holes from SOHO/EIT 171 Å and
195 Å combined images, assuming that they should yield
identical detection. This approximation may result in a poor
analysis of at least one of these bands. SPOCA’s detection
is based on fuzzy C-means and possibilistic C-means [11],
followed by post-processing with morphological operations.
The use of fuzzy logic in SPOCA addresses the uncertainty
in defining AR boundaries [10]. The quality of results was
subjectively evaluated on 112 observations. SPOCA is now
used in the HFC online catalogue.

Generally, these methods are mainly based on cluster-
ing and morphological operations, thus are pre- and post-
processing dependant, which makes them difficult to adapt
to new image domains and hyperparameter-dependant.

In this work, we investigate the possibilities offered by
deep learning (DL) methods and exploit more bands than
previous methods, for richer information on the solar atmo-
sphere. In the past two decades, object detection has evolved
dramatically, from handcrafted feature-based detection (e.g.
Haar [12], and HOG [13]) to deep neural networks (DNN)
such as YOLO [14], SSD [15], R-FCN [16], Cornernet [17],
or Faster RCNN [18]. Generally, DL-based detectors rely on
convolutional neural networks (CNN) to analyse images.

Fig. 2 Ground-truth (red) and MLMT-CNN (green) and SPOCA’s
(white) detection of ARs at three levels of solar activity (left to right:
high, medium, low) in randomly selected images from (top to bottom)
SOHO/EIT 304 Å, 171 Å, 195 Å, and 284 Å

Thesemay be split into two categories, 1) two-stage detec-
tion, in which images are analysed in two steps, region
proposal (generate a set of suspicious locations) and a final
classification stage, and 2) one-stage detection, where aDNN
learns to regress object locations and classes in a single
step. In general, two stage detectors (e.g. Faster RCNN) can
achieve higher accuracy over single-stage detectors [19,20].
However, suchmethods aim at analysing 2D images or dense
3D volumes, and are therefore not suited to directly handle
the sparse 3D nature of the solar imaging data. Hence, we
design a specialised DL framework that can accommodate
for different DL architectures as a backbone. We demon-
strate this by applying our framework to different backbones
(Faster RCNN and U-Net) and tasks (object detection and
segmentation)

Multi-spectral images are commonly treated in a sim-
ilar fashion to RGB images, by stacking different bands
into multi-channel images, [3,5,6,21,22]. These methods are
designed under the assumption that the different image bands
capture different aspects of the same scene, which makes it
ill-suited for our multi-layer case, where spatial position-
ing indeed differs from band to band. Another common
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approach is to aggregate information from different bands at
different levels (e.g. feature level and image level) [1,2,7,22–
25]. This feature fusion strategy demonstrates the potential
for DNNs to improve localisation by exploiting the multi-
spectral aspect of the data. Some works found that feature
level fusion assists CNNs in producing a more consistent
detection than using image level fusion for pedestrian detec-
tion from RGB and thermal images [2]. Contrary, image
fusion worked best when segmenting soft tissue sarcomas
in multi-modal medical images [22]. This suggests that there
is no universal best fusion strategy. Thus, we investigate dif-
ferent types of fusion and different stages to apply fusion.
Another feature fusion strategy was used to segment coronal
holes from SDO’s 7 EUV bands and line-of-site magne-
togram in [26]. The method relies on training a CNN, using
weak labels, to segment coronal holes from a single band, fol-
lowed by fine-tuning the learned CNN over the other bands
consecutively. The feature maps of each specialised CNN are
used in combination as input to a final segmentation CNN,
resulting in a unique final prediction. This unique localisation
result for all multi-spectral images is a common limitation to
all citedworks for ourmulti-layer scenario,whichwe address
in this study with a multi-task network.

In this work, we introduce a novel multi-layer multi-task
CNN (MLMT-CNN), a multi-tasking DNN framework, as
a robust solution for the solar AR localisation problem (i.e.
detection and segmentation) that takes into consideration the
multi-layer aspect of the data and the three-dimensional spa-
tial dependencies between image bands. In a preliminary
work [27], we demonstrated its potential of analysing mul-
tiple layers simultaneously for AR detection in the form of
bounding box. In this paper, we extend on this work, apply-
ing theMLMT-CNN framework to new tasks (segmentation)
and to new datasets of different types, using new DNN back-
bones.

The 3D nature of our multi-spectral and multi-layer imag-
ing scenario, which differs from other multi-spectral cases
such asEarth observations, requires a newbenchmark.There-
fore, we introduce two annotated datasets comprised of
images of the solar atmosphere from both ground- and space-
based sensors. They cover evenly all phases of solar activity,
which follows an 11-year cycle. To the best of our knowl-
edge, no localisation ground truth was previously available
for such data. A labelling tool was hence designed to cope
with its temporal, multi-spectral, and multi-layer nature and
will be also released. The solar data with bounding box labels
were first presented in our preliminary work [27]. Here, we
further extend the datasets with additional weak segmenta-
tion labels.

Furthermore,wepropose a training approach that accounts
to the different objectives of the individual MLMT com-
ponents using their correspondent losses, in contrast to the
classical training in which all components are deemed to

reach an optimal solution simultaneously according to their
overall loss.

Our contributions may be summarised as:

1. We present a paradigm to handle multi-spectral solar
images that show several layers of a 3D object that span
the solar atmosphere (i.e. multi-layer).

2. We demonstrate the effectiveness of our approach in
MLMT, a multi-task DL framework for solar AR local-
isation. Localisation includes both detection in the form
of bounding boxes, and pixel-wise segmentation. We fur-
ther explore and demonstrate the potential of our proposed
paradigm by implementing it with different state-of-the-
art CNN backbones, as well as handling different data
types and arbitrary number of bands.

3. We propose a training strategy for MLMT that optimises
the DNNweights more effectively for each objective than
the classical training strategy.

4. To address the difficulty of producing accurate and
detailed annotations for AR segmentation, we propose
a recursive training approach based on weak labels (i.e.
bounding boxes).

5. We introduce two balanced and annotated datasets of
multi-layer images of the solar atmosphere for AR detec-
tion, from both ground- and space-based data.

6. We release a multi-spectral and multi-layer image anno-
tation tool that facilitates bounding box labelling using
temporal and spectral information.

7. We further validate our approach on an artificially created
dataset of multi-modal medical images of similar spatial
configurations to the multi-layer solar images.

2 Methodology

Our framework exploits several time-matched multi-layer
images in parallel, to predict separate, although related,
localisation results for each image. These time-matched
observations are possibly acquired by different instruments
or at different orientations of the same instrument. As such
they are spatially aligned prior to analysis. Our localisation
involves two stages: detection, in the form of bounding box
around an object and its classification of object type, followed
by a segmentation stage to produce a pixel-wise classification
map enclosed in the predicted bounding box.

For both stages, we deploy a new multi-layer and
multi-task DL framework that analyses information from
neighbouring layers (i.e. image bands). The network learns
band-specific features, and these features are then fused at
multiple levels in the network, inducing the network to learn
correlations between the different bands. Finally, the result-
ing embeddings are jointly analysed, exploiting information
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fromneighbouring layers to produce their separate but related
results.

This framework is general and may be used with various
DNN backbones. We experiment with faster RCNN and U-
Net backbones, for detection and segmentation, respectively,
demonstrating the benefits of our joint analysis scheme in
learning the inter-dependencies between the different image
bands in both stages.Our frameworkmaybe easily adopted to
serve other applications, as demonstrated with BraTS-prime
and Cloud-38-prime, cf. Section 3.

In this section, we introduce the main concepts of the
MLMT-CNN framework in Sect. 2.1, the backbone networks
used in our framework in Sect. 2.2, and the details of our
two detection and segmentation stages in Sects. 2.3 and 2.4,
respectively.

2.1 Multi-Layer-Multi-Task (MLMT) framework

While some existing works were developed for analysing
multi-spectral images, to our best knowledge, the problem of
detecting objects over multi-layer imagery, which is a sparse
3D multi-spectral case in which different bands show differ-
ent scenes (i.e. layers), was not yet addressed.We introduce a
newmulti-layer andmulti-task framework (MLMT) to tackle
this scenario. The intuition behind our framework manifests
in three key principles:

1. Extracting features from different image bands individu-
ally using parallel feature extraction branches. This allows
the network to learn independent features from each band,
according to their specific modality.

2. Aggregating the learned features from the different
branches using some appropriate fusion operator. This
assists the network to jointly analyse the extracted features
from different bands and thus learn interdependencies
between the image bands. In this work, we test fusion
by addition and concatenation, at different feature levels
(i.e. early and late fusion).

3. Generating a set of results per image band, based on a
multi-task loss, allowing the detection of different sec-
tions or layers of 3D objects within the different bands.

Points 1 and 3 are motivated by the nature of the multi-
layer data, where different bands capture different locations
in a 3D scene, each providing some unique information.
Our multi-tasking framework aims at obtaining specialised
results for each image band, in contrast to most existing
works where focus is on producing an independent predic-
tion to all image bands. This is crucial since the localisation
information may differ from one band to another in cases of
multi-layer images (e.g. solar data). Yet, all bands are cor-
related, which motivates point 2. Our framework exploits
the inter-dependencies between the different bands by its

joint analysis strategy, increasing the robustness of its per-
formance in individual bands.

Furthermore, our framework emulates how experts manu-
ally detect ARs, where a suspected region’s correlation with
other bands is evaluated prior to its final classification. This
demonstrates the usefulness and importance of accounting
for (spatially and temporally) neighbouring slices in robustly
detecting ARs.

Moreover, this framework is very modular and flexible.
It can accommodate any number of available image bands
(i.e. layers) and perform different tasks (e.g. detection and
segmentation). Additionally, since different scenarios may
require different fusion strategies (as suggested by existing
works), themodularity of our framework allows it to be easily
adapted to different cases. We demonstrate this by apply-
ing our framework to different applications in Sect. 3 (solar
ARs, BraTS-prime, and Cloud-38-prime datasets), where we
investigate the best type and level of feature fusion (e.g. addi-
tion and concatenation, early and late).

2.2 Backbone networks

Themodular design of our framework allow it to adopt differ-
ent backbone architectures. Indeed, the three key principles
are applicable to different backbones, as they are not archi-
tecture dependent. We demonstrate this in this section and
discuss different backbone networks for different tasks in
which we adopt our framework to.

2.2.1 Detection backbone: faster RCNN

For detection, we adopt the faster RCNN architecture as the
backbone. Faster RCNN is a DL-based detector that may
be trained to detect and classify a number of objects from
a (usually RGB) image. It consists of three main parts: 1)
convolutional layers extract features from the input image,
as in any CNN. From these features, 2) a region proposal
network (RPN)proposes locations thatmight contain objects,
and 3) a detection network predicts the object class of each
proposed locations. We apply our framework to the three
stages detection strategy of faster RCNN, thus generalising
it to jointly analysing multiple images that span different
locations (or layers) of a same 3D scene.

Comparing to other state-of-the-art architectures (e.g.
YOLO and SSD), the multi-stage design of faster RCNN
allows aggregating information from different bands at dif-
ferent levels, namely low- level (i.e. feature extraction stage)
and high-level information (i.e. region proposals). Addition-
ally, faster RCNN has scored the highest accuracy in [20].
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Fig. 3 MLMT for detection using the Faster RCNN backbone. The ’+’
sign denotes concatenation of the feature maps, or of the lists of region
proposals

2.2.2 Segmentation backbone: U-Net

We experiment with U-Net as the backbone of our segmenta-
tion stage. Nevertheless, other competing networks can also
be used, and we also experimented with FCN8 [28] in early
tests. U-Net [29] is a fully convolutional network that con-
sists of three main parts: 1) contraction path, 2) bottleneck,
and 3) expansion path.

In our segmentation stage, we apply our MLMT frame-
work to the building blocks from U-Net to demonstrate the
benefits of the joint analysis in segmenting ARs. MLMT
takes advantage of U-Net’s skip connections that allow com-
bining features fromdifferent semantic levelswithin the same
band. This maximises the learned information within indi-
vidual bands while combining this information with feature
fusion at the U-Net’s bottleneck stage. Thus, information
from different bands are combined for classification, while
preserving the spatial information of individual images.

2.3 MLMT-CNN: detection stage

Our detection DNN is shown in Fig. 3. It takes the pre-
processed multi-layer image as input. A CNN (ResNet50
or VGG16 in our experiments) is first used as a feature
extraction network. Parallel branches (subnetworks) produce
a feature map per image band, following the late (or fea-
ture map) fusion strategy. Since individual bands provide
different information, this allows the subnetworks’ filters to
be optimised for their input bands individually. The feature
maps are then concatenated across the bands, assisting the
network to learn correlations between them.

The combined feature map is jointly analysed by one par-
allel module per image band that performs Faster RCNN’s
RPN. The RPN stage uses three aspect ratios ([1:1], [1:2],
[2:1]) and four sizes of anchor (32, 64, 128, and 256 pixel

width). We found empirically that these match well the typ-
ical size and shape of ARs. One specialised RPN per image
band is trained.

At training, for each band, the correspondent region pro-
posals along with the combined feature map are used by
a detection module to perform the final prediction for the
band. However, at testing time, the band-specialised detec-
tor modules use the region proposals from all bands. This
combination of region proposals helps finding potential AR
locations (i.e. region proposals) in bands where they are
more difficult to identify. This aids the network to learn the
correlation between the different bands more dynamically,
benefiting from information from different bands simulta-
neously while having band-specialised region proposal and
detection models.

It is worth noting that during training, the RPN proposals
for a band are filtered (i.e. labelled as positive or negative)
with respect to their overlap with the band’s own ground-
truth. Hence, combining them in the training time would
mean implicitly inheriting the ground-truth of a band to
another, in contradiction with the band-specific ground-truth
used for training the detector module. Indeed, different bands
show distinct cuts of a 3D object in which each cut must have
its own ground-truth. Combining ground-truths of different
bands at training time may hinder the learning of both the
RPN and detector modules. Therefore, region proposals are
only combined at testing time to ensure a better learning of
the final detection modules.

Using the combined feature map aids the network to learn
the relationship between the image bands, in both region pro-
posal and classification stages, hence providing amore robust
prediction in line with the nature of the data. This prediction
is still band-specialised thanks to the different ground-truths
being used for each band at training time. We demonstrate in
Sect. 3 that this is particularly helpful in cases where an AR
is difficult to detect in a single band.

We train our MLMT framework using all input bands and
branches according to a combined loss function:

L =
∑

b

(
1

Ncls

∑

i

Lcls(pbi , p
∗
bi )

+λ
1

Nreg

∑

i

p∗
bi Lreg(tbi , t

∗
bi )

)
(1)

where b and i refer to the image band and the index of the
bounding box being processed, respectively. The terms Lcls

and Lreg are the bounding-box classification loss and the
bounding-box regression loss defined in [18]. Ncls and Nreg

represent the size of the mini batch being processed and the
number of anchors, respectively. λ balances the classification
and the regression losses (we set λ to 10 as suggested in
[18]). p and p� are the predicted anchor’s class probability
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Fig. 4 MLMT for segmentation using the U-Net backbone. The ’+’
sign denotes fusion of the feature maps. Coloured boxes are convo-
lutional blocks for each branch (band), respectively. Green and red
arrows denote max pooling and up sampling operations, respectively.
Blue arrows are skip connections, applied to the appropriate channel of
the joint feature map for each branch

and its actual label, respectively. Lastly, t and t� represent
the predicted bounding box coordinates and the ground-truth
coordinates, respectively. It is worth noting that our proposed
framework is not limited to using Faster RCNN’s loss and
may be trained with using other task-suitable loss functions.

During training, the weights of each stage (i.e. feature
extraction, region proposal, and detection) are stored inde-
pendently whenever the related Faster RCNN loss decreases.
At testing time, the best performing set ofweights is retrieved
per stage. We refer to this practice as ‘Multi-Objective
Optimisation’ (MOO). The improved performance that we
observe in Sect. 3 may be explained by each stage having
a different objective to optimise, which may be reached at
different times.

In this paper, we experiment with a 2, 3, and 4-band
pipeline. However, the approach may generalise straightfor-
wardly to n bands and new imaging modalities.

2.4 MLMT-CNN: Segmentation stage

Our segmentation framework is shown in Fig. 4. It consists
of three parts: 1—feature extraction, 2—feature fusion, and
3—mask reconstruction. The network takes as input the AR
detections (patches) produced by the detection stage. Each
detection is cropped from all image bands, and resized into
224x224 pixel before entering the segmentation network.

The feature extraction part consists of parallel U-Net con-
tracting paths (one per band), each specialised to extract a
feature map from its band individually. The resulting fea-
ture maps are then combined in the latent space (i.e. late
fusion). It is worth noting that different feature fusion opera-
tions may be used. In this work, we experiment with addition
and concatenation. The combined feature map is passed to

the mask reconstruction part where parallel U-Net expensive
paths (a specialised path per band) perform the final pre-
diction. Skip connections are utilised between each band’s
contracting path and its correspondent expensive path to pre-
serve fine details learned in early layers of that band (blue
arrows in Fig. 4 ).

To overcome the lack of dense AR annotation, we use
weak labels to train our segmentation network along with a
recursive training approach. In the first round of iterations,
weak annotations are used to guide the training. Once the net-
work converges, the training is repeated from randomweights
using the new labels predicted by the model from the pre-
vious round. This process is repeated until validation loss
stops decreasing, or starts to increase. The idea is inspired
by [30–33], where authors demonstrate that iteratively train-
ing segmentation CNNs with weak labels can achieve results
close to fully supervised.

Our weak label was carefully designed to provide a con-
servative representation of ARs, favouring a high precision
over recall, to accelerate the first training round (as detailed
in Sect. 3). Recursive training allows the network to learn a
more generalised representation by supervising itself through
the recursion process, while limiting the bias that may be
introduced by the initial weak label. This is in line with
the discovery that sampling as little as 4% of the pixels to
compute the training loss enables CNNs to achieve a close
performance to fully supervised, caused by the strong corre-
lation within the training data of a pixel-level task [34]. The
results of our recursive approach were validated by a solar
physics expert, and will be further discussed in Sect. 3.

Moreover, the solar data suffers from a class imbalance by
nature, since most of the solar disk is covered by quite sun
(solar background). The use ofARcrops (patches fromprevi-
ous detection) helps in reducing this imbalance significantly,
yet it does not solve the matter completely. Hence, we train
our model using a weighted categorical cross entropy loss
that combines information from all image bands as follows:

L(y, ŷ) = −
∑

b=0

∑

c=0

ωc

∑

i=0

yicb ∗ log (ŷicb) (2)

where y and ŷ are the actual and the predicted classes, respec-
tively, ωc is the weight of the cth class, and i and b denote
the pixel and the band being processed, respectively. We
use the values 2, 1, and 2 as the weights for the three AR,
solar background (quite sun), and image background classes,
respectively. Theseweightswere found to be best performing
by experimenting with different values based on prior com-
puted class ratios.Adding theweighting term to the combined
loss prevents any bias thatmight be caused by the dominating
solar background class.
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3 Experiments

All experiments were implemented using Tensorflow with
an NVIDIA GeForce GTX 1080 Ti GPU. The detection and
segmentation stages were trained for 3000, and 250 epochs
(∼4 and ∼0.41 days), respectively, using Adam optimiser
[35] with learning rates of 2e-5 and 4e-3, respectively.

3.1 Data

3.1.1 Labelled AR datasets

We work with images from SOHO spacecraft and Paris-
Meudon (PM) observatory. Multi-layer solar images com-
prise of measurements at different ultraviolet and X-ray
wavelengths (denoted as bands) and centred on the emission
wavelengths of ionised atoms of interest. Since these ionised
atoms exist at given temperatures, they allow imaging dif-
ferent altitude regions of the solar atmosphere, following its
temperature gradient. ARs are areas of strong magnetic field.
Therefore, the multi-spectral and multi-layer images may be
complemented bymagnetograms that inform on the intensity
and polarity of the magnetic field.With current technologies,
magnetograms are mainly available for the photosphere. The
images of this study were acquired in the 171 Å, 195 Å,
284 Å, and 304 Å bands (SOHO/EIT imager), 3934 Å band
(PM Spectroheliograph (PM/SH) imager), and the magne-
togram images (SOHO/MDI imager) as illustrated in Figs. 1
and 2. These correspond to observing the photosphere (mag-
netogram), chromosphere (3934 Å), chromosphere and base
of the transition region (304 Å), transition region (171 Å and
195 Å), and corona (284 Å). Solar observations are acquired
frequently to study the evolution of solar features and events
over time.

Our work requires ground-truth annotations of ARs in the
form of bounding boxes (detection) and pixel-wise masks
(segmentation). To the best of our knowledge, no such anno-
tated dataset is currently publicly available. Therefore, we
publish the Lower Atmosphere Dataset (LAD) and Upper
Atmosphere Dataset (UAD). Both datasets include bounding
box annotations producedwith a newmulti-spectral labelling
tool which displays, side by side, images from an auxiliary
modality and from a sequence of three previous and three
subsequent time steps. ARs have a high spatial coherence
in 3934 Å and magnetogram images due to the physical
proximity of the two imaged regions, hence they share the
same bounding boxes. The UAD additionally includes weak
segmentation labels produced by thresholding and morpho-
logical operations so as to label only pixels that have an
evident activity, i.e. being the brightest regions in the solar
disk. This is motivated by the discovery in [34] that training
data of a pixel-level task has a strong between-sample corre-
lation, and that randomly sampling as little as 4%of the pixels

to train a CNN can achieve about the same performance as
full supervision. Both datasets are augmented using north–
south mirroring, east–west mirroring, and a combination of
the two. All annotations were validated by a solar physics
expert.

We split the datasets into training and testing sets in the
following proportions. For LAD, we use 213 images (1380
bounding box) for training, and 53 images (406 bounding
box) for testing. For UAD, we use 283 images for training,
and 40 images for testing. This amounts to 2205, 1919, 2341,
and 2016 training bounding boxes in the 304Å, 171Å, 195Å,
and 284 Å bands, respectively, and 287, 262, 330, and 263
testing bounding boxes. Furthermore, in order to compare
against the localisation of SPOCA, we consider a subset of
the UAD testing set for which SPOCA detection results are
available in HFC: the SPOCA subset. It consists of 26 testing
images (181, 168, 213, and 166 bounding boxes in the 304Å,
171 Å, 195 Å and 284 Å images, respectively).

3.1.2 Weak-BraTS-prime

To further demonstrate the benefits of our joint analysis-
based approach, we create a synthetic dataset from the BraTS
multi-modal dataset [36] of similar spatial configurations to
the solar imaging bands. BraTS consists of full 3DMR image
volumes of brain in four modalities (T1GD, T1, T2, and
Flair) and three classes: enhancing tumour (ET), necrotic and
non-enhancing tumour core (NCR/NET), and peritumoural
oedema (ED). We create the synthetic dataset by selecting
one 2D slice of each image modality separated by (spatial)
gaps of size g. This emulates the solar images scenario where
each band shows ARs in a different solar altitude. We exper-
iment with g being either 1, 2, or 3 voxels, to show the
influence of the image modalities having different levels of
spatial correlation on the segmentation. For each modality,
we use a total of 11,533 and 190 training and testing images,
respectively.

3.1.3 Weak-Cloud-38

We further evaluate our recursive training approach on a third
weakly labelled dataset derived from the Cloud-38 [4] multi-
modal (4 bands) dataset. This dataset has resemblance to our
solar images in that there are a variety of cloud shapes, sizes
and densities, albeit the multi-layer (3D) aspect is missing.
It consists of 2,502 (2,382 training and 120 testing) images
per band. We augment the training set using similar transfor-
mations to solar images.

3.2 Detection stage

A detection is considered a true positive if its intersection
with a ground-truth box is greater or equal to 50% of either
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Table 1 Baseline detection performance of the single-image band
detectors

Dataset Image band Precision Recall F1

LAD 3934 Å 0.93 0.82 0.87

Magn. 0.89 0.78 0.83

UAD 304 Å 0.73 0.83 0.78

171 Å 0.84 0.89 0.86

195 Å 0.81 0.75 0.78

284 Å 0.86 0.82 0.84

SPOCA 304 Å 0.72 0.82 0.77

171 Å 0.87 0.87 0.87

195 Å 0.82 0.73 0.77

v 284 Å 0.86 0.82 0.84

the predicted or ground-truth area. NMS is used in all exper-
iments to discard any redundant detections.

All tested deep learning architectures were initialisedwith
a pre-trained CNN with ImageNet weights. (Similar transfer
learning strategy has been found useful in, for instance, depth
estimation [37].) It is worth noting that the components of
each detection branch (feature extraction network, RPN, and
detection network) adopt a similar hyper-parameter config-
uration to that suggested in faster RCNN [18].

A single-channel solar imagewas repeated along the depth
axis resulting in a three-channel image matching the pre-
trained CNN’s input depth.

HFC’s SPOCA detections were obtained from 171 Å and
195 Å images only, combined as two channels of an RGB
image, and SPOCA produces a single detection for both
bands. We compare this detection against the ground-truth
detections of each of the bands, individually. SPOCA may
only combine image bands that are located close to each
other in the solar atmosphere and for which it makes sense
to produce a common set of detection results. Thus, HFC’s
SPOCA results are only available for bands of the transition
region (171 Å) and low corona (195 Å), and no images from
the chromosphere (304 Å) or the high corona (284 Å) were
used. However, to prove the robustness and versatility of our
detector, we also experiment with a combination of chromo-
sphere, transition region, and corona bands on the SPOCA
subset in addition to the whole UAD.

3.2.1 Independent detection on single image bands

We first compare detection results produced by faster RCNN
over individual image bands (Table 1). This serves as base-
line to assess our proposed framework. Different DL-based
feature extraction networks are tested (ResNet50 and VGG),
and we present here results of the best performing, namely
ResNet50.

When comparing the detection results per image band, we
notice that 304 Å images are repeatedly amongst the most
difficult to analyse inUAD, having the lowest F1-scores in all
tests. On the other hand, 171Å shows the highest results of all
UAD bands, followed by 284Å and 195Å, respectively. This
may be explained by ARs having a denser or less ambigu-
ous appearance in 171 Å, 195 Å, and 284 Å image bands
than in 304 Å since they are higher in the corona. A similar
observation can bemade in the LADdataset when comparing
the magnetogram results to PM/SH 3934 Å, where magne-
tograms observe a lower altitude than PM/SH 3934 Å. This
demonstrates that the these bands are not equal in how diffi-
cult theymay be analysed, even though they were acquired at
the same time with same size and resolution. These observa-
tions suggest that detecting ARs using information provided
by a single band may be an under-constrained problem.

3.2.2 Joint detection onmultiple image bands

We now present the results of our framework when detecting
ARs over the UAD bands jointly. We experiment with dif-
ferent types of feature fusion and different combinations of
bands. We compare against the state-of-the-art AR detector
HFC’s SPOCA [10].We further compare against a sequential
fine-tuning method derived from [26] through adapting the
first stage of their approach to faster RCNN by sequentially
fine-tuning it over the neighbouring image bands. We eval-
uate this approach on UAD. Moreover, we compare against
faster RCNN on single bands to demonstrate the benefit of
jointly processing the image bands, taking into account their
inter-dependencies for more robust individual detections.

In our first experiment, we compare early fusion (pixel
level concatenation) against late fusion (feature level con-
catenation or addition), on the LAD dataset. Overall, the
three approaches show an enhanced performance in contrast
to single-band-based detection. However, we find that late
fusion with concatenation shows higher performance than
early fusion, having 0.90 F1-score versus 0.88 for magne-
tograms, while both scored 0.89 over 3934 Å. We further
test late fusion using element wise addition and observe a
decrease of 1% and 3% in the F1-score over 3934 Å and
magnetogram, respectively. Late fusion is thus adopted for
all following experiments.

Wealso evaluate the benefit of ourMOOstrategyusing our
two-band based architecture on the UAD dataset. As shown
in Table 2, this approach generally improves the F1-scores in
most bands comparing to the non-MOO architectures. This
behaviour may indicate that the two feature extraction stages
were indeed more effectively optimised for their different
tasks at different epochs. Thus, we use this MOO approach
for all other experiments.

On the UAD dataset, with various combinations of two
bands, we notice a general improvement over single-band
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Table 2 Detection performance of the MLMT-CNN detectors. For each band, the highest scores are highlighted in bold

Detector Fusion Dataset Bands Prec. Recall F1

MLMT-CNN (ResNet50 – MOO) Early – concat. LAD 3934 Å 0.96 0.82 0.89

Magn. 0.95 0.82 0.88

Late – concat. 3934 Å 0.97 0.82 0.89

Magn. 0.96 0.85 0.90

Late – addition 3934 Å 0.95 0.82 0.88

Magn. 0.94 0.80 0.87

MLMT-CNN (ResNet50) Late – concat. UAD 171 Å 0.92 0.77 0.84

284 Å 0.90 0.81 0.85

171 Å 0.82 0.85 0.83

195 Å 0.86 0.72 0.78

195 Å 0.88 0.67 0.77

284 Å 0.84 0.78 0.81

304 Å 0.82 0.79 0.80

195 Å 0.87 0.75 0.80

MLMT-CNN (ResNet50 – MOO) Late – concat. UAD 171 Å 0.90 0.83 0.87

284 Å 0.93 0.80 0.86

SPOCA 171 Å 0.89 0.83 0.86

284 Å 0.92 0.80 0.86

UAD 171 Å 0.86 0.77 0.82

195 Å 0.89 0.75 0.81

SPOCA 171 Å 0.83 0.77 0.80

195 Å 0.86 0.73 0.79

UAD 195 Å 0.88 0.68 0.77

284 Å 0.84 0.78 0.81

SPOCA 195 Å 0.87 0.67 0.75

284 Å 0.81 0.78 0.80

UAD 304 Å 0.82 0.78 0.80

195 Å 0.88 0.78 0.83

SPOCA 304 Å 0.79 0.78 0.79

195 Å 0.85 0.77 0.81

UAD 304 Å 0.78 0.74 0.76

171 Å 0.76 0.76 0.76

284 Å 0.79 0.78 0.78

UAD 304 Å 0.93 0.69 0.79

171 Å 0.94 0.66 0.78

195 Å 0.91 0.72 0.80

284 Å 0.93 0.66 0.77

SPOCA Early – concat. SPOCA 171 Å 0.54 0.93 0.68

195 Å 0.58 0.82 0.68

[26] using Faster RCNN (ResNet50) Sequential fine-tuning UAD 304 Å 0.73 0.83 0.78

171 Å 0.80 0.90 0.84

195 Å 0.83 0.72 0.77

284 Å 0.86 0.80 0.83
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Fig. 5 Comparison of the detection results over UAD (top) and BraTS-
prime (bottom) datasets. Each group of bars represents an imaging
modality. Different colours represent different methods

detections. In addition, the performance varies in correspon-
dence with the bands being used. Combining bands that are
difficult to analyse (304 Å or 195 Å that have lowest F1-
scores in the single-band analyses) with easier bands (171 Å
and 284 Å) unsurprisingly enhances their respective perfor-
mance.More interestingly, combining the difficult 304Å and
195 Å bands together also improve on their individual per-
formance. Similarly, when combining bands that are easier to
analyse (171 Å and 284 Å), performances are also improved
over their individual analyses. Following these settings, our
two-band based approach was able to record higher or sim-
ilar F1-scores in contrast to the best performing single-band
detector. This supports our hypothesis that joint detection
may provide an increased robustness through learning the
inter-dependencies between the image bands. Moreover, the
most dramatic improvement in F1-scores across both LAD
and UAD datasets is for the 3934 Å images when magne-
tograms are added to the analysis. This is in line with the
current understanding of AR having strong magnetic signa-
tures.

Generally, in the UAD dataset, we find that using a
combination of two bands produces the best F1 scores in
comparisonwith using three or four bands in the analysis, see
Table 2. This may be caused by the fact that optimising the

network for multiple tasks (2, 3, or 4 detection tasks) simul-
taneously increases the complexity of the problem.While the
network successfully learned to produce better detections in
the case of two bands, it was difficult to find a generalised
yet optimal model for three or four bands at the same time.
Thus, for four bands, the model obtains the best precision but
at the expense of a poor recall.

On the SPOCA subset, over the bands 171 Å and 195 Å
for which it is designed, the SPOCA method obtains the
poorest performance of allmulti-band and single-band exper-
iments. It is worth noting that this method relies on manually
tuned parameters according to the developers’ own defini-
tion and interpretation of AR boundaries, which may differ
from the ones we used when annotating the dataset. While
supervised DL-based methods could integrate this definition
during training, SPOCA could not perform such adaptation.
This may have had a negative impact on its scores. Fur-
thermore, visual inspection shows a poor performance for
SPOCA on low solar activity images, see Fig. 2. This may
be due to the use of clustering in SPOCA, since in low activ-
ity periods the number of AR pixels (if any) is significantly
smaller than solar background pixels, whichmakes it difficult
to identify clusters.

Moreover, the sequential fine-tuning approach similar to
[26] shows a close performance to single-band detection
using faster RCNN with an identical precision, recall and
F1-score over the band 304 Å and a slight decrease over
the other three bands, See Table 2 and Fig. 5. This may be
due to the fact that its transfer learning does not incorporate
the bands’ inter-dependencies when analysing the different
bands.Moreover, themethodwas designed in [26] to produce
a single prediction for the different bands, and this differs
from our usage where we predict a different set of detections
per band.

We further evaluate our detection approach with differ-
ent fusions, over the four bands of BraTS-prime dataset, and
compare it against single-band-based detection. All fusion
strategies significantly outperform single-band detectors,
with late concatenation fusion being the highest, showing an
average F1-score increase in 39% across all modalities. See
Table 3 and Fig. 5. This confirms our hypothesis that exploit-
ing inter-dependencies between the image bands by the joint
analysis may provide a superior performance in contrast to
single-band-based detection.

3.3 Segmentation stage

Our AR segmentation results were all qualitatively assessed
and validated by a solar physics expert. We also visually
compare the results against SPOCA and a sequentially fine-
tuned U-Net model (similar to the first stage of [26]).

Additionally, to quantitatively demonstrate the benefit
of the joint analysis, and due to the lack of manual AR
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Table 3 F1-scores of single-image band-based detectors against MLMT-CNN with different fusion strategies over BraTS-prime (with 1 slice gap).
All detectors are based on ResNet50. For each band, the highest scores are highlighted in bold

Bands Faster RCNN MLMLT-CNN (Early - addition) MLMLT-CNN (Early - concat.) MLMLT-CNN (Late - concat.)

T1Gd 0.73 0.74 0.83 0.89

T1 0.54 0.78 0.89 0.91

T2 0.56 0.76 0.86 0.89

Flair 0.48 0.75 0.86 0.91

Table 4 Performance of single
image segmentation over
BraTS-prime. For each class,
the highest scores are
highlighted in bold

Architecture Supervision Bands IoU score per class Mean
NCR/NET ED ET IoU

FCN8 Fully supervised T1Gd 0.54 0.43 0.70 0.56

T1 0.08 0.33 0.0 0.14

T2 0.49 0.48 0.23 0.40

Flair 0.43 0.51 0.19 0.38

U-Net Fully supervised T1Gd 0.69 0.52 0.80 0.67

T1 0.56 0.50 0.19 0.42

T2 0.63 0.56 0.36 0.52

Flair 0.50 0.59 0.29 0.46

U-Net Weakly supervised T1Gd 0.66 0.33 0.53 0.51

T1 0.58 0.39 0.0 0.32

T2 0.58 0.43 0.1 0.37

Flair 0.44 0.49 0.0 0.31

pixel-wise ground-truth, we evaluate our approach using the
BraTS-prime synthetic dataset. Weak-Cloud-38 may not be
used for this purpose because of its different bands capturing
the same scene, rather than different layers of a 3D object. It
is worth noting that we do not aim to achieve state-of-the-art
performance in tumour segmentation, but rather to confirm
the benefit of the joint analysis in scenarios similar to our
solar case, where different modalities show different cuts of
a 3D object. Since ground-truth is available for this dataset,
we follow the classical fully supervised training procedure.
Furthermore, we use Weak-BraTS-prime and Weak-Cloud-
38 to evaluate our iterative training strategy fromweak labels
against full supervision.

Its worth noting that the segmentation subnetworks adopt
the same layers configuration of their correspondent blocks
in U-Net [29].

3.3.1 Independent segmentation on single-image band

We first compare segmentation results produced by U-Net
and FCN8 over theAR andBraTS-prime (Table 4) individual
image bands, analysed independently, to evaluate different
DL-based segmentation networks. These results also serve
as baseline to assess our joint analysis-based approach in
Sect. 3.3.2.

We notice that U-Net produces higher IoU values over all
bands for BraTS-prime, as well as smoother AR boundaries,
compared to FCN8. This is expected since U-Net utilises
skip connections to help retrieving fine details in the mask
reconstruction process. Therefore,we use the building blocks
of U-Net in our joint segmentation framework.

When comparing the results of U-Net over different
modalities, we notice that the T1-Gd modality gets the high-
est IoU score for the ET class. A similar trend can be seen
when comparing the results of the NCR/NET class over dif-
ferent modalities. On the other hand, we find that Flair gets
the highest IoU for the ED class comparing to the other
modalities. This contrast in the IoU scores is in line with
the understanding that different modalities provide different
information.

3.3.2 Joint segmentation onmultiple image bands

Similar to our detection experiment,we assess our framework
using different combinations of image bands and different
types of feature fusion to evaluate their influence on the seg-
mentation performance.

Quantitative results First, we present our BraTS-prime
segmentation on combined bands using our joint analysis
approach (Table 5).Wenote that all combinations improve on
the single-band results, with the best improvement coming
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Table 5 Segmentation
performance of MLMT-CNN
(U-Net) with full supervision
over BraTS-prime for different
numbers of modalities and
feature fusions. For each class,
the highest scores are
highlighted in bold

Archi- Fusion Slice Bands IoU score per class Mean
tecture gap NCR/NET ED ET IoU

MLMT-CNN (U-Net) Early - concat. 1 T1 0.60 0.56 0.41 0.52

T2 0.59 0.59 0.39 0.52

T1 0.62 0.59 0.35 0.52

T2 0.63 0.61 0.36 0.53

Flair 0.63 0.63 0.39 0.55

T1Gd 0.75 0.66 0.78 0.73

T1 0.75 0.69 0.76 0.73

T2 0.74 0.71 0.70 0.72

Flair 0.73 0.68 0.62 0.68

Early - addition 1 T1Gd 0.74 0.64 0.78 0.72

T1 0.73 0.67 0.74 0.71

T2 0.69 0.66 0.65 0.67

Flair 0.68 0.67 0.61 0.65

Late - concat. 1 T1Gd 0.71 0.63 0.81 0.72

T1 0.73 0.65 0.74 0.71

T2 0.71 0.68 0.70 0.70

Flair 0.69 0.67 0.64 0.67

Late - addition 1 T1Gd 0.70 0.60 0.81 0.70

T1 0.71 0.63 0.73 0.69

T2 0.67 0.66 0.67 0.67

Flair 0.68 0.66 0.60 0.65

Early - concat. 2 T1Gd 0.68 0.55 0.76 0.66

T1 0.67 0.61 0.66 0.65

T2 0.64 0.65 0.55 0.61

Flair 0.57 0.62 0.46 0.55

3 T1Gd 0.63 0.51 0.73 0.62

T1 0.63 0.60 0.62 0.62

T2 0.57 0.64 0.43 0.55

Flair 0.59 0.61 0.41 0.54

[26] using U-Net Sequential fine-tuning 1 T1Gd 0.71 0.55 0.82 0.69

T1 0.56 0.50 0.19 0.42

T2 0.65 0.58 0.26 0.50

Flair 0.57 0.61 0.33 0.50

from combining all four modalities. All following BraTS-
prime experiments use a four-band architecture.

We compared four fusion strategies, namely fusing fea-
tures after one block of convolution only (early) and at the
end of convolutions (late), using addition and concatenation.
We find that early fusion with concatenation shows higher
results. This differs from our observation in the AR detec-
tion experiment, hence confirming that the fusion strategy
needs to be adapted to the analysis scenario. Accordingly,
we continue using early fusion with concatenation for all
BraTS-prime segmentation experiments.

As expected, there is a negative correlation between the
IoU score and the width of slice gap, where the overall

increase in the IoU was the highest for smaller gaps and
higher levels of spatial correlation (gap of 1 pixel). This
observation, togetherwith the improved results fromcombin-
ing bands, suggests that jointly analysing relatedmulti-modal
images in scenarios similar to our solar case may indeed aid
the network in learning the inter-dependencies between the
different modalities.

We compare against sequentially fine-tunedU-Netmodels
similar to the first stage of [26] in Table 5 and Fig. 6. They
achieved comparable IoU scores to those produced by U-
Net on single bands. Hence, they do not benefit from the
combination of modalities as our framework does.
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Fig. 6 Comparison of the segmentation results over BraTS-prime
dataset. Each group of bars represents an imaging modality. Different
colours represent different methods

Table 6 Evaluation of weakly supervised MLMT-CNN (U-Net) on
BraTS-prime. For each class, the highest scores are highlighted in bold

# train. stages Bands IoU score per class Mean
NCR/NET ED ET IoU

1 T1Gd 0.67 0.40 0.38 0.48

T1 0.66 0.41 0.40 0.49

T2 0.62 0.45 0.39 0.49

Flair 0.64 0.46 0.38 0.49

2 T1Gd 0.69 0.43 0.40 0.51

T1 0.69 0.41 0.40 0.50

T2 0.66 0.45 0.38 0.50

Flair 0.67 0.47 0.38 0.51

3 T1Gd 0.67 0.40 0.37 0.48

T1 0.67 0.40 0.37 0.48

T2 0.64 0.42 0.36 0.47

Flair 0.64 0.45 0.34 0.48

Additionally, as a mean to assess our iterative training
steps,weuseweak-BraTS-prime andweak-Cloud-38 to eval-
uate this strategy against manual annotations, and compare
it to the classical training approach.

When evaluating the recursively trained model using
weak-BraTS-primedataset against the fully supervisedmodel
on BraTS-prime manual annotations, we notice an increase
in the IoU scores after one step of recursion (i.e. two stages of
training, first using the weak labels, then using the previous
predictions as labels), achieving 71% of the fully supervised
performance (Table 6). Moreover, this iterative training pro-
cess achieves 85% of the fully supervised approach over the
Weak-Cloud-38dataset,with the best performance also being
after one round of recursion, with an increase of 1% over
the Red band (Table 7). These observations indicate that our
recursive training strategy is beneficial in cases where man-
ual annotations are not available, such as solar ARs.

Table 7 Comparison of full and weak supervision for MLMT-CNN
(U-Net) over weak-Cloud-38. For each band, the highest scores of the
weakly-supervised models are highlighted in bold

Super- # train. stages IoU score per band Mean
vision Red Green Blue NIR IoU

Fully NA 0.95 0.95 0.95 0.95 0.95

Weakly 1 0.78 0.80 0.83 0.83 0.81

2 0.79 0.80 0.83 0.83 0.81

3 0.78 0.81 0.82 0.83 0.81

Fig. 7 AR segmentation comparison between our presented method,
SPOCA, and sequentially fine-tuned DNNs similar to [26], over the
SPOCA subset. Red is AR, blue denotes the quite Sun background, and
green is outside of the solar disk

In contrast to the single-band-based segmentation of
weak-BraTS-prime (last 4 rows of Table 4), we also note
that performance still benefits from the joint analysis even
when trained—classically or recursively—with weak labels
(Table 6).

Qualitative results Lastly, we compare visually our seg-
mentation results on the SPOCA subset, using our proposed
architecture, against SPOCA and sequentially fine-tuned
DNNs similar to [26] (without their final stage of fusing the
CNNs’ individual predictions) (Fig. 7). The results show that
our framework generally finds more detailed AR shapes than
SPOCA, while at the same time being more robust to fainter
regions of ARs.

Additionally, we compare our AR segmentation results
to SPOCA by finding the IoU between the predictions pro-
duced by the two approaches over the SPOCA subset. This
may be used to indicate the agreement between the two
methods. We find that both 171 Å and 195 Å achieve a
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higher agreement of 44% and 46%, respectively, in contrast
to 304 Å and 284 Å scoring 33% and 41%, respectively. This
is expected since SPOCA was designed to segment ARs in
171 Å and 195 Å. Overall, the similarity between our predic-
tions and SPOCA’s is relatively low. However, as discussed
in Sect. 3.2.2, SPOCA was manually tuned by the develop-
ers according to their own interpretation of AR boundaries
whichmay be different fromour interpretationwhen annotat-
ing the dataset. Hence, care must be taken when interpreting
the results.

Comparison against sequentially fine-tuned CNNs in the
spirit of [26] is fairer, since the DNNs were trained on
our data. Segmentation of the sequentially fine-tuned CNNs
appears to be of similar quality to ours, although shapes of
an AR between neighbouring bands evolve more smoothly
with our method. This is an advantage of accounting for the
3D geometry of ARs in performing the 2D segmentation.

4 Conclusion

We presented a multi-layer and multi-tasking framework to
tackle the 3D solar AR detection and segmentation prob-
lem from multi-spectral images that observe different layers
of the 3D solar atmosphere. MLMT-CNN analyses multiple
bands jointly to produce consistent localisation. It is a flexible
framework that may use different CNN backbones, and may
be generalised to any number and modalities of images. We
find that by fusing information from different image bands at
different feature levels, CNNs were able to localise objects
more robustly andmore consistently across layers. Addition-
ally, our study suggests that different imaging scenarios may
require different types of feature fusion strategies. We also
show that the number of bands used in the analysis might
affect the performance and must be optimised to each case.
Furthermore, we demonstrate that CNNs may show a sat-
isfactory localisation performance when iteratively trained
from weak annotations. MLMT-CNN showed competitive
results against both baseline and state-of-the-art detection
and segmentation methods. Future research could investi-
gate the information importance of different image bands
and its influence on task learning in both multi-spectral and
multi-layer scenarios.
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