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Abstract
Iris Presentation Attack Detection (PAD) algorithms address the vulnerability of iris recognition systems to presentation
attacks. With the great success of deep learning methods in various computer vision fields, neural network-based iris PAD
algorithms emerged. However, most PAD networks suffer from overfitting due to insufficient iris data variability. Therefore,
we explore the impact of various data augmentation techniques on performance and the generalizability of iris PAD.We apply
several data augmentationmethods to generate variability, such as shift, rotation, and brightness.We provide in-depth analyses
of the overlapping effect of these methods on performance. In addition to these widely used augmentation techniques, we
also propose an augmentation selection protocol based on the assumption that various augmentation techniques contribute
differently to the PADperformance.Moreover, two fusionmethods are performed formore comparisons: the strategy-level and
the score-level combination. We demonstrate experiments on two fine-tuned models and one trained from the scratch network
and perform on the datasets in the Iris-LivDet-2017 competition designed for generalizability evaluation. Our experimental
results show that augmentation methods improve iris PAD performance in many cases. Our least overlap-based augmentation
selection protocol achieves the lower error rates for two networks. Besides, the shift augmentation strategy also exceeds
state-of-the-art (SoTA) algorithms on the Clarkson and IIITD-WVU datasets.

Keywords Iris presentation attack detection · Data augmentation · Deep learning

1 Introduction

Iris recognition systems are vulnerable to presentation
attacks (PAs). An imposter can use a printed image or
replay an iris video to impersonate an enrolled user or wear
textured contact lenses to escape recognition. Therefore,
developing a reliable iris PAD algorithm is still a chal-
lenging task. Considering that neural networks successfully
improve the performance in many computer vision fields,
deep learning-based algorithms are further applied for iris
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PAD [6,15,17,30,39]. However, most neural networks suf-
fer from overfitting, where the network does not generalize
very well on an unseen test set. Several strategies are there-
fore proposed to improve the generalizability of networks,
e.g., Dropout [34], Batch normalization [25]. In contrast to
such methods, the data augmentation technique targets the
root problem and insufficient training data variability. Most
iris PAD datasets are limited to a small-scale compared to
the datasets used for general purposes, for privacy security.
Data augmentation can be categorized into data warping and
oversampling. Data warping creates more images based on
affine transformation like rotation or translation. Oversam-
pling generates synthetic images, such as using Generative
Adversarial Networks (GAN) [18]. Data augmentation tech-
niques improve the performance of modern image classifiers
without doubts [10,23,32]. In the iris PAD field, several
studies also showed the improvement of performance by aug-
mentation techniques. Gragnaniello et al. [19] utilized a data
augmentation to generate more training data by rotating the
original images for iris PAD task. Their results are slightly
improved when applying data augmentation. Raghavendra
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et al. [30], Chen et al. [6] and Choudhart et al. [7] also uti-
lized the augmentation techniques to avoid the overfitting
in training phase (see Table 1). However, the contribution
of augmentation techniques is not clear because no analysis
or experimental comparison is provided as summarized in
Table 1. It is worth noting that iris images generated by GAN
[18] cannot be used as augmented data in our application
to improve the performance, as done for general computer
vision tasks. This is because the generated iris images are
considered another type of presentation attack for imperson-
ation [37]. As a result, we chose to explore the effect of the
data warping technique on iris PAD performance due to the
restricted condition of augmentation techniques in the PAD
field.

Furthermore, the detailed effect of the data augmenta-
tion on iris PAD performance is relatively understudied.
In this regard, this work provides answers to the following
questions: (1) What is the relative effect of various data aug-
mentation techniques on the performance of iris PAD? (2)
Does the combination of all augmentation techniques at var-
ious design levels always lead to superior performance, or can
there be a formal approach to augmentation methods selec-
tion? (3) Do different augmentation strategies improve PAD
performance by bringing the “same” misclassified samples
to the correct classes? Or do they have a less overlapping
effect?

To answer these questions, we explore the impact of dif-
ferent augmentation techniques, specifically data warping
techniques, on the generalization of deep learning-based iris
PAD. The main contributions of the work are as follows: (1)
provide a first in-depth analysis of data augmentation tech-
niques role on the performance and reliability for iris PAD,
(2) propose a classification error overlap-based augmenta-
tion selection protocol, (3) demonstrate the experiments in
terms of fine-tuned and trained from scratch networks with
various augmentations on multiple cross-validation scenar-
ios datasets, (4) visualize and discuss the overlapping effect
of different augmentation techniques to provide a better
explanation of the generalizability induced by augmentation
techniques.

2 Related work

Iris recognition systems have beenwidely applied in different
recognition scenarios due to the uniqueness and high accu-
racy of iris features [2–5]. However, the operational security
of the iris recognition has raised many concerns. This sec-
tion provides a brief review of deep learning-based iris PAD
algorithms and general data augmentation techniques. The
Iris-LivDet-2017 [42] is the most recent published competi-
tion. The used competition datasets and protocols indicated
that improving the generalizability of iris PAD is a major

challenge. Some recent iris PAD competitions, such as Iris-
LivDet-2017 [42] or Iris-LivDet-2020 [11], are organized
to evaluate the generalizability of iris PAD algorithms. In
contrast to Iris-LivDet-2017 [42], the 2020 edition competi-
tion [11] did not offer any official training data and the test
data are not yet publicly available, the experiments and anal-
ysis in this work are still based on the protocols designed
in Iris-LivDet-2017 competition [42]. Hence, we focus here
on the algorithms and results in Iris-LivDet-2017. The pro-
tocols in this competition are designed under cross-dataset
and cross-PA scenarios to reflect the real-world situation.
In this competition [42], CASIA proposed to train two
SpoofNets to detect printouts and textured contact lenses sep-
arately,whileUNINArelied on theScale InvariantDescriptor
(SID) and Bag of Words (BoW) to classify the attacks.
Afterward, Kuehlkamp et al. [27] proposed to combine 61
CNN lightweight CNNs via meta-fusion to classify multi-
ple Binarized Statistical Image Features (BSIF) views of the
iris image to overcome such generalization problems. Their
results outperformed thewinners of the competition. Further-
more, Sharma et al. [31] proposed aDenseNet network-based
iris PA detector, D-NetPAD, to demonstrate the experiments
on a proprietary dataset and four public competition datasets.
They trained a D-NetPAD model on their private dataset,
including 12,772 training data. Then, this pre-trained model
was used in three ways to examine the generalizability on
the competition datasets: 1) the pre-trained D-NetPAD is
used directly on the test sets in the competition, 2) train a D-
NetPADmodel from scratch on the competition training sets,
3) fine-tune this pre-trained model on the competition train-
ing sets. As expected, the fine-tuned model performed the
best. They achieved the lowest error rate (0.30% ACER val-
ues) on the Notre Dame dataset in the competition, whereas
the second-lowest error is 3.28% from the previous Meta-
Fusion method. However, there is a slight problem that their
proprietary training data include the testing data of Notre
Dame. To fairly compare the results using the same data,
we only report the D-NetPAD trained from scratch, and
also the Meta-Fusion results later on in Table 12. Besides,
we compare our results with the multi-layer fusion (MLF)
method achieving the 2.31% ACER in Notre Dame and
the recently published micro-stripe analysis (MSA) method
([14,17]) obtaining good performance (11.13%ACERvalue)
in the IIITD-WVU dataset.

Even though such neural network-based algorithms obtain
good performance, they still suffer from overfitting. One
reason is that training data are insufficient, in quantity and
variation. For example, there are only 1200 training iris
images in the Notre Dame dataset in the competition [42],
which is quite limited compared to datasets designed for
generic computer vision tasks. Moreover, not only iris PAD
algorithms have this problem, andmost networks suffer from
overfitting leading to low generalization. Under this condi-
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Table 1 Algorithm properties including the used augmentation techniques and relation study

Author Year Algorithm Augmentation Ablation study

Gragnaniello et al. [19] 2016 Domain-aware CNN Rotate images of
multiples of 90
degrees

Yes

Raghavendra et al. [30] 2017 Three-class classification based ContensNet Rotate images
through four angles

No

Kohli et al. [26] 2017 Synthesize iris images as attacks Synthetic
oversampling by
iGCGAN

No

Chen and Ross [6] 2018 Multi-task CNN Random flipping,
cropping, color
jittering

No

Yadav et al. [39] 2018 Fuse multi-level haralick and VGG features No No

Kuehlkamp et al. [27] 2019 Ensemble multi CNNs fed with mBSIF features No No

Sharma and Ross [31] 2019 DenseNet based PA detector (D-NetPAD) No No

Yadav et al. [41] 2019 Synthesize iris images as attacks Synthetic
oversampling by
RaSGAN

No

Choudhary et al. [7] 2020 Fuse top-k features selected thorough Friedman
test

Various
transformation
(rotation, flip,
shear, etc.)

No

Fang et al. [13] 2020 Fuse features from multiple layers of CNN No No

Fang et al. [17] 2020 Train MobileNet based on Micro stripes No No

Fang et al. [14] 2020 Cross-dataset scenarios investigation in iris PAD No No

Only [19] compared the PAD performance of their proposed method without and with augmentation.

tion, data augmentation can help to reduce overfitting and
enhance the generalizability of networks byvirtually generat-
ing more training images (more variations) from the original
data. The data augmentation techniques can be categorized
into data warping and synthetic oversampling [38]. The term
data warping can be traced back to the distortion of handwrit-
ing in [1]. Thewarped data are created by applying geometric
and color augmentations, such as rotation, shift, flipping, and
changing the contrast. In addition to data warping applied in
data-space, synthetic oversampling creates images in feature-
space by using GANs. The recent iris PAD studies and their
used augmentation techniques are presented in Table 1. It
is noticed that many works did not mention applying data
augmentation, and those who did, did not study the effect of
that augmentation in an ablation study. Only [19] did mea-
sure this effect, however, as all other works, did not study
multiple augmentation methods nor provided a formal selec-
tion protocol for augmentation selection. It should be noticed
that such generated synthetic images [26,41] are classified
as a type of presentation attack in the PAD field, i.e., only
increase the number of attack sampleswithout bona fide sam-
ples. Such synthetically generated iris images are exploited
by an adversary to impersonate someone else’s identity. For
example, Yadav et al. [41] studied the impact of the synthetic
data on PAD algorithms when used as a presentation attack.

Hence, we explore the impact of augmentation techniques
on the performance of iris PAD algorithms. Nevertheless, we
only perform data warping augmentation methods due to the
imbalance generation of synthetic oversampling techniques.

As summarized in Table 1, the augmentation techniques
used in most iris PAD works are rotation, flip, and shear.
However, the exact impact of these transformations on PAD
performance is unspecified in these works. Moreover, our
experimental results (in Sect. 5) show that not all single or
combined augmentations increase the iris PAD performance.
Therefore, it is essential to find out the most contribute aug-
mentations by considering the unique characteristic of iris
data, e.g., NIR illumination, specific sensors, and no noise
background. Furthermore, as shown later in Sect. 5, these
individual data augmentations that can improve the perfor-
mance and generalizability of networks help understand the
nature of the variations in the attacks. Consequently, studying
the specific role of augmentations inspired us to fuse them
by sorting overlap classification rates.

3 Methodology

In this section, we will introduce the investigated data aug-
mentation techniques along with the augmentation selection
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and fusion protocols, as well as the three CNNs used in our
iris PAD study.

3.1 Data augmentation techniques

The collection of large-scale iris datasets is challenging for
iris research because of various factors, e.g., privacy concerns
and high demand for acquisition environment specifications.
Deep learning-based iris PAD studies are thus limited by
inadequate datasets. Compared to datasets designed for gen-
eral purposes like ImageNet dataset [12], most iris PAD
datasets have only a dozen to a hundred distinct irises (dis-
tinct subjects) as summarized in [8]. The problem of training
on small-scale datasets is overfitting, which refers to the
phenomenon that a trained network can not generalize well
on unseen data. Besides, the Iris-LivDet-2017 competition
results suggested that cross-PA and cross-dataset scenarios
can be considered the major challenges of current iris PAD
fields. To simultaneously validate against insufficient data
resources and cross scenarios, we explore the impact of data
augmentation methods on iris PAD generalization ability.

To observe the respective impact of data augmentation
strategies, we perform six geometric transformation-based
augmentation techniques. Notably, the oversampling aug-
mentation technique is neglected in this work because the
iris data generated by the GAN [18] are considered fake iris
[26,41], i.e., an attack. The explored six basic augmentations
in this study are: horizontal shift, vertical shift, brightness
adjustment, zoom in/out, and horizontal flipping. Such aug-
mentation techniques are widely used in the computer vision
fieldwith proved positive effect [10,23,32] and also in the iris
PAD field [6,7,19,30]. More reasons that lead us to choose
these augmentations are: (1) even under a controlled envi-
ronment, the irises are not in the same position and same
viewpoint. There is still a small geometric variation between
iris images. (2) the capture light condition varies between the
different datasets when performing the cross-dataset eval-
uation. (3) the size of the captured irises varies slightly
depending on the collectors. (4) iris textures are distinct
between the left and right eyes of the same person [8]. How-
ever, in some cases, only a single eye of a person is contained
in PADdatasets [12]. Hence, it is interesting to explore if hor-
izontal flipping of iris images can improve the performance
of PAD algorithms. Considering that the position, direction,
size, and illumination differences of iris images are small,
we augment the images in a relatively small degree to avoid
inducing unwanted noise. The detailed augmentation param-
eters are listed in Table 4, and the corresponding explanation
is in Sect. 4.2. Most interestingly, we look at the effect of
each of these augmentation in respect to the other methods.

3.2 Fusion and augmentation protocol

Furthermore, we investigate two methods to fuse the above
individual augmentation strategies: strategy-level and score-
level fusion. For the former category, the training data are
generated by using a combination of several augmentation
strategies. For example, an iris image can be rotated, shifted,
zoomed, and other operations simultaneously. For the lat-
ter category, the prediction scores by each network (trained
with one of the single augmentation methods) are fused to
calculate a final prediction.

On the other hand, we investigate an augmentation selec-
tion protocol. This protocol is based on the overlapping ratio
of misclassified samples caused by the different augmenta-
tions (as explained later) and thus their relative effect on the
performance. This selection step is based on two assump-
tions: (1) different augmentation techniques contribute to
different aspects of the PAD performance, (2) selecting aug-
mentations with the lower overlap of misclassified samples
to fuse may improve the results as they focus on the different
types of variability in the images.

Let A = {A1, ..., An} define a set of augmentation
techniques. I aAn

= {I a1An
, ..., I amAn

} presents a set of mis-

classified attack images with augmentation An and I b fAn
=

{I b f1An
, ..., I b fkAn

} is a set of misclassified bona fide images with
augmentation An . The misclassified attacks overlap ratio
Oa

Apq
denotes the ratio of attack samples classified incor-

rectlywith augmentation technique Ap that are also classified
wrongly with augmentation Aq . Similarly, the misclassified

bona fides overlap ratio Obf
Apq

denotes the ratio of bona fide
samples misclassified with augmentation technique Ap that
are also misclassified with augmentation Aq . The ratios can
be computed as followed equations:

Oa
Apq

=
#(I aAp

⋂
I aAq

)

#I aAp

(1a)

Obf
Apq

=
#(I b fAp

⋂
I b fAq

)

#I b fAp

(1b)

where p, q ∈ {1, ..., n}. Then, the overall overlap ratio OApq

between augmentation techniques Ap and Aq is:

OApq = (Oa
Apq

+ Obf
Apq

)/2 (2)

The detailed pseudo-code of the selection protocol can
be found in Algorithm 1. We set k = 3 in our experiment
and select the Ab with the minimum Equal Error Rate (EER)
values.
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Algorithm 1 Augmentation Selection Protocol
1: A = {A1, ...An} ← a set of augmentation techniques
2: O = {OA11 , ..., OAi j } for i, j ∈ {1, ..., n} ← a set of overall overlap

ratio values per pair of augmentations
3: Ab, b ∈ {1, ..., n} ← an augmentation achieved the best perfor-

mance
4: k, k <= n ← desired number of augmentations
5: procedure FindLeastOverlap(A, O, Ab, k)
6: S = {} � Initialize an empty set of selected augmentations
7: S ← S ∪ Ab � Start with the best augmentation
8: count ← 1
9: while count < k do
10: tempaug ← None
11: tempo ← 1 � The largest overlap ratio is 1
12: for Ap in S do
13: for Aq in (A \ S) do
14: if OApq < tempo then
15: tempaug ← A j
16: tempo ← OApq

17: S ← S ∪ tempaug
18: count ← count + 1

return S

3.3 Neural networks

To evaluate the effect of data augmentation on iris PADmore
generally, we train three neural networks: (1) fine-tuning
ResNet50, (2) fine-tuning VGG16, (3) training from scratch
MobileNetV3-small. On the one hand, ResNet and VGG
networks are used widely either as feature extractor or end-
to-end architectures in biometric research fields [29,36,39].
For example, Nguyen et al. [35] used ResNet [21], VGGNet
[33], etc., to extract image features for iris recognition.
Yadav et al. [39] fused features extracted from off-the-shelf
VGG16 model and handcrafted haralick features to detect
iris presentation attacks. Therefore, we fine-tune the pre-
trained ResNet50 [21] and VGG16 [33] to perform iris PAD.
On the other hand, most generic models trained on Ima-
geNet datasets [12] have different patterns compared to iris
images. Therefore, we train a lightweight network architec-
ture, MobileNet V3 Small [22] from scratch to target iris
PAD issues additionally.MobileNetV3 small has only 2.25M
parameters,which is suitable to deploy onmobile devices and
to be trained on limited iris data, while ResNet50 has 25.64M
parameters and VGG16 has 138M parameters. MobileNet
V3 [22] uses the depth-wise convolution and squeeze-and-
excitation to reduce parameters and preserve the accuracy
at the same time. The training hyperparameters are listed in
Table 3. In this work, we focus on the impact of various aug-
mentation techniques and aim to discover the consistency
of data augmentation effects, the augmentation selection
protocols, and the fusion protocols under diverse network
architectures and training strategies. Therefore, we opted
to intentionally select a diverse set of networks and train-
ing protocols that have shown good performances on iris
PAD in previous works [14,16,17,39]. Hence, we fine-tune

the ResNet50 and VGG16 networks and train from scratch
MobileNetV3 following the experimental settings adopted in
[14,16,17,39].

4 Experimental setup

This section describes the datasets, the used parameters in
the neural networks and data augmentation techniques, and
the evaluation metrics.

4.1 Datasets

The experiments are demonstrated on publicly available
benchmarkdatasets used in the Iris-LivDet-2017 competition
[42] to explore the impacts of different data augmentation
techniques on PADperformance. The Iris-LivDet-2017 com-
petition [42] contains four datasets: Clarkson,Warsaw, Notre
Dame, and IIITD-WVU. Because the Warsaw dataset is no
longer publicly available, we use the remaining three datasets
in our experiments. Furthermore, the Iris-LivDet-2017 are
designed for cross-PA, cross-sensor, and cross-dataset eval-
uation. Figure 1 presents iris samples from the training and
test sets of each of the used datasets. The varying appearance
between different datasets indicates the challenging task of
cross-dataset PAD. Table 2 summarizes the description of the
used datasets, including the number of images in the training
and test sets and sensors.

Clarkson dataset The Clarkson dataset is designed as
a cross-PA evaluation. The test set consists of additional
unknown attack image types that are not present in the
training set. The unknown data include visible-light image
printouts attack and the extra pattern contact lenses produced
by differentmanufactures. The bona fide visible-light images
are presented neither in the training set or the test set.

Notre damedataset TheNotreDamedataset contains bona
fide iris images (without lenses) and textured contact lens
attacks. The test set is a combination set of the known subset
and unknown subset, corresponding to the cross-PA scenario.
The unknown subset includes iris imageswith textured lenses
produced by different manufacturers (different patterns) and
not represented in the training data. Another difficulty of this
dataset is the limited training data.

IIITD-WVU dataset The IIITD-WVU dataset is an amal-
gamation of two datasets: the IIITD dataset used for training
and theWVUdataset for testing. The experiments performed
on the IIITD-WVU dataset correspond to the cross-dataset
evaluation because the sensors, data acquisition environ-
ments, subject population, and PA generation procedures for
the training and testing are different. The training set (IIITD
set) was selected from the IIIT-Delhi Contact Lens Iris (CLI)
dataset [40] and IIITD Iris Spoofing (IIS) dataset [20], where
the images were captured by multiple sensors under a con-
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Fig. 1 Samples of iris images from the used datasets. It can be seen that the bona fide and attack samples of different datasets have distinctive
appearance, which are affected by capture sensors, light conditions, and printer types, among other factors. This variation indicates the challenging
task of cross-dataset PAD

Table 2 Summarized information of the used datasets

Dataset Clarkson Notre Dame IIITD-WVU

Train Test Train Test Train Test

Bona Fide 2469 1485 600 1800 2250 702

Printous 1346 908 – – 3000 2806

Contact Lens 1122 765 600 1800 1000 701

Overall 4937 3158 1200 3600 6250 4209

Type Cross-PA Cross-PA Cross-Dataset

Sensor IrisAccess EOU2200 IrisGuard AD100, IrisAccess LG4000 Cognet, CIS 202, VistaFA2E IrisShield MK2120U

trolled environment. The test set (WVU set) was captured
using a mobile iris sensor under both controlled (indoor) and
uncontrolled (outdoor) environments. The Iris-LivDet-2017
competition results [42] indicated that the cross-dataset eval-
uation was considered the most challenging task on account
of the significant variations.

4.2 Parameters setting

To make our experimental setting compliant with the Iris-
LivDet-2017 competition [42], we use the pre-defined train-
ing and the test set as described in Sect. 4.1. Additionally,
20% of the images are selected randomly from each training
set to serve as a validation set during the training procedure.
The training hyperparameters listed in Table 3 are used to
fine-tune the ResNet50 [21] and VGG16 [33] networks, and
train the MobileNetV3-small [22] from scratch. The input
size of the three networks is 480× 640× 3, where the grey-
scale iris images are converted to three-channel images filled
with the same pixel values. The number of actual training
epochs is controlled by the early stopping method. The train-
ing stops if the validation loss does not decrease after ten
epochs or the training reaches its maximum training epochs
in our experiments.

The parameters of augmentation techniques are listed in
Table 4. An image can be shifted horizontally or vertically by
a specific ratio of the image width or height. The range of the
shift is 0 to 100%. In our case, the specific ratio sets to 10%.A

Table 3 The training hyperparameters

Parameter Value

No. epochs (max) 35

Earlystopping patience 10

Learning rate 0.001

Optimizer Adam

Batch Size 32

rotation augmentation randomly rotates the image clockwise
between0 and360degrees.We limited themaximumrotation
degree to 15 degrees. Also, the brightness of the image can
be augmented by either randomly darkening or brightening.
The range of the brightness argument is from 0 to 200%.
The brightness is not changed when the value is 100. The
values less than 100 darken the image, whereas values larger
than 100 brighten the image. Furthermore, the iris image can
be zoomed in/out with a specific ratio. The range of zoom
arguments is 0 to 200%. The image is not changed when the
zoom argument is 100%. In the experiment, we zoom the
images between 85% and 115% randomly. Finally, more iris
images can be produced by horizontally flipping. The code
is implemented based on the Keras library. 1

1 Keras: A high-level NNs API (https://keras.io/).
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Table 4 The parameters of different data augmentations

Shifth Shiftv Rotation Brightness Zoom Fliph

Unit % % Degree % % Bool

Range [0,100] [0,100] [0,360] [0, 200] [0, 200] T, F

Used 10 10 15 [70, 120] [85, 115] F

The subscripts h and v represent horizontal and vertical, respectively. The value 100 in brightness and zoom refers to an unchanged images

4.3 Evaluationmetrics

The followingmetrics are used tomeasure the PADalgorithm
performance:

– Attack Presentation Classification Error Rate
(APCER): The proportion of attack images incorrectly
classified as bona fide samples.

– Bona Fide Presentation Classification Error Rate
(BPCER): The proportion of bona fide images incor-
rectly classified as attack samples.

– Average Classification Error Rate (ACER): corre-
sponds to the average of BPCER and APCER.

The APCER, BPCER, andACER follow the standard def-
inition presented in the ISO/IEC 30107-3 [24]. The threshold
used to decide an iris image is bona fide is 0.5, as defined in
the Iris-LivDet-2017 protocol [42]. Moreover, the Detection
Equal Error Rate (D-EER) and the BPCER value by fixing
the APCER value at 1% are reported for more analysis.

Furthermore, we use the Fisher Discriminant Ratio (FDR)
to examine the achieved class separability (attack and bona
fide) induced by different augmentation settings to indicate
classification generalizability. The FDR is described in [28]
and [9] as the measurement of separability between genuine
and imposter scores. In ourwork, the high separation between
bona fide and attack scores indicates higher reliability of the
applied augmentation technique in the iris PAD system. The
FDR is described in Equ. 3:

FDR = (μb f − μa)2

(σ b f )2 + σ a)2
(3)

where μb f and μa are the respective standard deviation of
bona fide and attack scores, and σ b f and σ a are their mean
values. We also analyze the differences in the augmentation-
induced enhancement of different augmentation strategies
with the help of the confusion matrix plotted based on the
overlap misclassified samples as mentioned in Sect. 3.1. The
details of this confusion matrix are described in Sect. 5.2.

5 Experiments evaluation

This section evaluates the several augmentation techniques
using the three models on three datasets in terms of the dif-
ferent metrics. In addition to the individual augmentation
methods (seeTables 5, 6, 7, 8, 9, 10),we also report the results
of strategy-level and score-level combination in Table 11.We
also draw the ROC curves of either single augmentation tech-
nique (as appended in Fig. 2) or multiple fusion methods (as
appended inFig. 3). Furthermore,we analyze the overlapping
misclassified images by employing the confusion matrix (as
shown Fig. 6, 7 and 8).

5.1 Results

In this subsection, we first analyze the results in terms of indi-
vidual datasets per specific augmentation technique. Then,
for further study, the fusion-based results are discussed.
Finally, we compare our results with the SoTA algorithms
for an overall analysis.

Clarkson ResultsTable 5 reports the iris PAD performance in
terms of D-EER, the BPCER value at 1%APCER value, and
FDR. It can be observed that (1) translation, brightness, and
horizontal flip augmentation produce better results in some
cases, e.g., applying the MobileNetV3 model, (2) however,
not all augmentations can improve the PAD performance,
(3) the higher FDR values mostly coincide with the lower D-
EER value. By looking at Table 5 and Table 6 together, we
can find that the FDR value has a greater potential to suggest
a lower ACER value relative to the D-EER metric.

NotreDameResultsTable 7 andTable 8 describe the iris PAD
performance on Notre Dame dataset. As shown in Table 7,
the model fine-tuned without augmentation (ResNet50 and
Vgg16) outperforms than most other augmentations. In con-
trast, the performance of theMobileNetV3 (scratch) ismostly
improved compared to training without any augmentation
techniques. Moreover, unlike the lowest ACER acquired by
MobileNetV3 on the Clarkson dataset, ResNet50 achieved
the best result (9.56% ACER) in Table 8 by using brightness
augmentation on the Notre Dame dataset. The Clarkson and
Notre Dame datasets both correspond to the cross-PA scenar-
ios that include unseen cosmetic lens patterns. However, the
same network architectures show a significant difference. As
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Table 5 Iris PAD performance (%) reported in terms of D-EER, the BPCER value at 1% the APCER value on Clarkson dataset

Augmentation ResNet50 VGG16 MobileNetV3

D-EER (%) BPCER @ 1% FDR D-EER (%) BPCER @ 1% FDR D-EER (%) BPCER @ 1% FDR

No 7.44 57.54 7.02 6.42 55.62 8.03 7.31 34.75 5.87

Shifth 6.74 48.15 8.59 6.78 50.77 7.72 0.28 0.00 75.09

Shiftv 7.35 53.06 8.75 6.49 56.09 7.47 8.01 27.41 4.81

Rotation 6.93 61.75 8.19 6.87 62.30 7.13 3.26 6.53 8.36

Brightness 7.92 63.03 6.34 6.37 58.72 8.35 1.27 1.75 5.17

Zoom 8.52 24.85 4.69 6.74 50.98 7.77 6.81 29.70 6.54

Fliph 8.36 52.39 7.16 6.36 57.31 8.49 0.35 0.00 21.86

The bold values in D-EER and BPCER @ 1% column are the Top-3 lowest error rate, and the bold values in the FDR column indicate the Top-3
highest separability

Table 6 Iris PAD performance (%) reported in terms of APCER, BPCER and ACER on Clarkson dataset

Augmentation ResNet50 VGG16 MobileNetV3

APCER (%) BPCER (%) ACER (%) APCER (%) BPCER (%) ACER (%) APCER (%) BPCER (%) ACER (%)

No 11.78 2.56 7.17 10.58 1.75 6.17 12.91 2.83 7.87

Shifth 9.15 2.02 5.58 11.78 1.08 6.43 1.67 0.00 0.84

Shiftv 9.62 1.14 5.38 11.12 1.68 6.40 19.67 0.94 10.30

Rotation 10.58 1.21 5.90 11.18 1.82 6.50 11.42 0.00 5.71

Brightness 12.97 1.62 7.29 10.52 1.08 5.80 17.27 0.00 8.64

Zoom 18.23 0.61 9.42 10.52 1.89 6.21 14.76 0.27 7.52

Fliph 10.94 2.02 6.48 9.50 2.22 5.86 5.20 0.00 2.60

The bold numbers in columns are the Top-3 lowest error rates.

Table 7 Iris PAD performance (%) reported in terms of D-EER, the BPCER value at 1% the APCER value on Notre Dame dataset

Augmentation ResNet50 VGG16 MobileNetV3

D-EER (%) BPCER @ 1% FDR D-EER (%) BPCER @ 1% FDR D-EER (%) BPCER @ 1% FDR

No 3.72 12.56 2.35 6.00 20.56 4.39 14.11 56.78 1.69

Shifth 8.94 12.28 1.95 6.78 19.28 5.16 14.22 59.39 2.08

Shiftv 5.83 20.06 4.88 6.44 18.61 3.83 9.22 45.22 3.05

Rotation 7.83 40.11 2.00 7.05 27.67 3.13 12.78 77.50 3.28

Brightness 3.56 8.78 5.04 6.44 18.67 4.21 9.67 43.00 2.23

Zoom 100 0.67 2.50 7.61 26.17 3.80 9.94 50.17 3.03

Fliph 12.33 19.50 2.33 5.61 17.94 3.67 11.72 23.00 3.00

The bold values in D-EER and BPCER @ 1% column are the Top-3 lowest error rate, and the bold values in the FDR column indicate the Top-3
highest separability

shown in Table 6 and Table 8, ResNet50 performed worst on
the Clarkson and best on the Notre Dame dataset, whereas
MobileNetV3 performed best on the Clarkson and worst on
the Notre Dame. One possible reason for this opposite vari-
ation is insufficient training data for the Notre Dame dataset
(4937 training data in Clarkson and 1200 training in Notre
Dame). Another possibility is the differences in the ratio of
their unknown PA in the test set (21.03% unknown attack in
the attack test subset in Clarkson and 50% in Notre Dame).
Considering these two reasons, we argue that models pre-

trained on large-scale datasets may perform better on unseen
pattern data with insufficient training data for fine-tuning.
Besides, similar to the third finding in the Clarkson dataset,
the augmentation technique obtained with the higher FDR
values also achieves the lower ACER values determined by
a pre-defined threshold.

IIITD-WVUResultsTable 9 andTable 10 denote the results of
the IIITD-WVU dataset, which corresponds to a challenging
cross-dataset scenario. It can be observed that D-EER val-
ues and ACER values of the IIITD-WVU are higher than
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Table 8 Iris PAD performance (%) reported in terms of APCER, BPCER and ACER on Notre Dame dataset

Augmentation ResNet50 VGG16 MobileNetV3

APCER (%) BPCER (%) ACER (%) APCER (%) BPCER (%) ACER (%) APCER (%) BPCER (%) ACER (%)

No 35.72 0.06 17.89 25.72 0.56 13.14 37.78 0.06 18.92

Shifth 34.67 0.00 17.33 22.28 1.00 11.64 38.83 0.00 19.42

Shiftv 18.78 0.66 9.72 27.39 0.78 14.09 27.50 2.94 15.22

Rotation 35.33 0.00 17.67 31.77 0.61 16.19 21.39 3.39 12.39

Brightness 19.06 0.06 9.56 27.11 0.38 13.75 33.44 0.06 16.75

Zoom 33.78 0.00 16.89 27.88 0.50 14.19 26.00 1.44 13.72

Fliph 31.16 0.00 15.58 29.89 0.56 15.23 22.72 2.11 12.42

The bold numbers in columns are the Top-3 lowest error rates.

Table 9 Iris PAD performance (%) reported in terms of D-EER, the BPCER value at 1% the APCER value on IIITD-WVU dataset

Augmentation ResNet50 VGG16 MobileNetV3

D-EER (%) BPCER @ 1% FDR D-EER (%) BPCER @ 1% FDR D-EER (%) BPCER @ 1% FDR

No 13.24 46.72 1.90 21.93 50.43 1.41 13.10 42.59 2.67

Shifth 12.71 35.61 3.07 18.85 48.86 1.76 12.81 35.47 3.28

Shiftv 9.26 40.31 4.81 21.83 58.83 1.29 22.36 44.44 1.70

Rotation 12.53 41.60 3.17 21.93 59.54 1.19 13.67 45.30 3.18

Brightness 16.66 53.98 1.85 20.69 50.71 1.44 18.51 46.87 2.43

Zoom 14.38 46.72 2.70 18.37 52.85 1.70 12.95 56.70 3.48

Fliph 19.65 77.78 1.83 21.80 64.96 1.34 19.08 52.99 1.84

The bold values in D-EER and BPCER @ 1% column are the Top-3 lowest error rate, and the bold values in the FDR column indicate the Top-3
highest separability

Table 10 Iris PAD performance (%) reported in terms of APCER, BPCER and ACER on IIITD-WVU dataset

Augmentation ResNet50 VGG16 MobileNetV3

APCER (%) BPCER (%) ACER (%) APCER (%) BPCER (%) ACER (%) APCER (%) BPCER (%) ACER (%)

No 1.88 40.17 21.03 13.43 26.78 20.11 3.96 24.07 14.02

Shifth 17.54 8.55 13.05 16.97 20.09 18.53 4.25 20.37 12.31

Shiftv 14.68 5.41 10.05 22.70 21.08 21.89 6.62 25.78 16.20

Rotation 14.14 11.39 12.77 25.86 19.80 22.83 3.51 21.51 12.51

Brightness 29.31 7.21 18.22 19.82 20.94 20.38 3.91 24.50 14.20

Zoom 8.50 20.37 14.43 23.01 15.53 19.27 4.73 18.09 11.41

Fliph 28.37 7.83 18.10 14.80 26.35 20.58 15.08 20.09 17.58

The bold numbers in columns are the Top-3 lowest error rates.

the Clarkson and Notre Dame datasets. As shown in Fig. 2,
when fixing the APCER values (x-axis), the ROC curves
indicate that the IIITD-WVU dataset has higher BPCER val-
ues (the y-axis coordinate is 1-BPCER) than the Clarkson
and Notre Dame datasets. Moreover, the variation between
individual augmentation techniques is more pronounced on
the IIITD-WVU dataset. In addition to such variations on
different datasets, the variations of augmentation techniques
are slightly different acrossmethods. For example, ResNet50
and VGG16 achieve better results with vertical shift on all
datasets; however, the MobileNetV3 model performs worse

when using vertical shift (See referable AUC values). Look-
ing at Table 5, horizontal shift and zoom yields better results
with VGG16 and MobileNetV3 networks. The lowest D-
EER (9.26%) and the lowest ACER (10.05%) are achieved
by the vertical shift when fine-tunning the ResNet50 model.
Consistent with the observations in the Clarkson and Notre
Dame datasets, the higher FDR value potentially points to a
lowerACERvalue inmost cases. Therefore, we can conclude
that the FDR metric is more suitable than the D-EER metric
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Table 11 Fusion-based PAD performance (%) reported in terms of D-EER, ACER and FDR

Dataset Method ResNet50 VGG16 MobileNetV3

D-EER (%) ACER (%) FDR D-EER (%) ACER (%) FDR D-EER (%) ACER (%) FDR

Clarkson BS 6.74 5.58 8.59 6.36 5.86 8.49 0.28 0.84 75.09

ST 6.02 5.12 9.59 6.87 6.43 7.71 5.73 7.49 6.47

SC 7.28 8.07 7.28 6.46 5.98 8.43 0.28 5.08 28.36

LOST 7.44 6.96 6.56 6.17 5.81 8.49 1.04 1.49 38.97

LOSC 7.09 6.55 7.74 6.46 5.96 8.11 0.50 7.53 14.84

Notre Dame BS 3.56 9.56 5.04 5.61 15.23 5.16 9.22 12.39 3.28

ST 3.44 7.47 6.25 5.06 13.89 4.34 11.11 17.75 1.98

SC 6.56 16.72 2.89 6.06 14.50 3.90 9.33 13.42 3.61

LOST 10.56 14.44 3.28 5.72 11.64 5.24 10.83 10.28 4.29

LOSC 3.56 10.58 5.14 5.88 13.89 4.35 10.17 12.36 3.96

IIITD-WVU BS 9.26 10.05 4.81 18.37 19.27 1.70 12.81 12.31 3.28

ST 12.11 13.12 3.05 18.79 20.23 1.63 12.95 13.11 3.29

SC 13.31 13.41 2.71 20.07 20.08 1.52 14.38 11.20 2.80

LOST 15.96 16.04 2.35 20.12 20.38 1.42 10.96 10.79 3.69

LOSC 12.54 15.68 2.94 21.01 21.19 1.40 16.37 13.95 2.71

The bold values in D-EER and ACER column are the Top-2 lowest error rate, and the bold values in the FDR column indicate the Top-2 highest
separability. BS: best single augmentation, ST: strategy-level fusion, SC: score-level fusion, LOST : least overlap-based strategy-level fusion, LOSC
: least overlap-based score-level fusion

for measuring the reliability and generalizability of the PAD
algorithms.

Fusion-based Results Table 11 presents the performance
results of the Best Single augmentation (BS) for each dataset
and network, and four fusion-based methods: (1) STategy-
level fusion (ST) with all augmentations, (2) SCore-level
fusion (SC) with all augmentations, (3) Least Overlap-
based strategy-level fusion (LOST ), (4)LeastOverlap-based
score-level fusion (LOSC ). The augmentations used for
LOST and LOSC are selected by Algorithm 1 described in
Sect. 3.1. It can be observed in Table 11 that strategy-level
fusion has a greater probability to produce the best results
than the score-level fusion method. For instance, the ST
method obtains the lowest D-EER values in the Clarkson and
the Notre Dame dataset by using the ResNet50 model, and
LOST fusion achieves the best performance in the Clarkson
by VGG16 and in the IIITD-WVU by the MobileNetV3 net-
work. Moreover, for VGG16 and MobileNetV3 networks,
our augmentation selection protocol achieves one of the
two lowest ACERs for five of the six experimental setups.
Although a pre-defined threshold can influence the ACER
value, a higher FDR value always suggests a lower ACER
value. Therefore, the higher the FDR value, the higher the
reliability of the PAD algorithm.

Comparison with SoTAs We also compare our results with
several SoTA algorithms in Table 12. The first three rows are
the winners of the Iris-LivDet-2017 competition [42], fol-
lowed by four of the latest SoTAs, and then the best results

of our three networks, respectively. The detailed description
of the competition and SoTA algorithms is presented in Sect.
2. The Meta-Fusion [27] approach combined 61 CNNs to
classify multiple BSIF views of the iris images via SVM
meta-fusion. D-NetPAD method [31] adopted a DenseNet
model that is pre-trained on a private combined iris dataset.
They also trained a DenseNet model on the competition
datasets from scratch. We report these scratch D-NetPAD
results for a fair comparison on the same data resource.
MLF method [13] fused the information from multiple net-
work layers to make a PAD decision. MSA [14,17] approach
focuses on the artifacts differences in the image dynamics
around the iris/sclera border area by extracting information
from micro-stripes. Because MLF and MSA do not report
the results on the Clarkson dataset, we mark ’-’ in Table 12.

For the Clarkson dataset, the lowest ACER value (0.84%)
is produced by theMobileNet trainedwith the horizontal shift
augmentation. For the IIITD-WVU dataset, our ResNet50
model trained with vertical shift generated data achieves the
best result with the ACER value of 10.05%. However, the
MLF [13]method achieves the best results on theNotreDame
dataset, while our solutions perform worse than Anon1, D-
NetPAD, Meta-Fusion, and MSA methods. Due to the lack
of training data in the Notre Dame dataset (1200 training
data, 3600 testing data), even though data augmentations
improve the results, the model still overfits. Therefore, we
concluded that shift augmentation is worth attempting for
the improvement of the PAD performance. Also, fusing vari-
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Fig. 2 ROC curves of single augmentation technique. The columns from left to right are ResNet50, VGG16, and MobileNetV3. The rows from top
to bottom are for the Clarkson, Notre Dame, and IIITD-WVU datasets. The x-axis is the APCER values, and the y-axis is the 1− BPCER values

ous augmentations in the strategy-level is a good start for iris
PAD by considering all the previous results.

Cross-dataset evaluation In addition to inter-dataset evalu-
ation, we also report the cross-dataset results in terms of
D-EER, ACER, and FDR values in Table 13. In the cross-
dataset scenario, the training data are the training subset of
one dataset, while the test data are the test subset of the other
two datasets. For instance, the model trained on the Clark-
son dataset is used to produce the prediction scores on the
test subset of Notre dame and IIITD-WVU datasets. The
threshold is set to 0.5 as defined in the Iris-LivDet-2017 com-
petition protocol. To demonstrate the generalizability of the
different fusion strategies, we provide the results generated
by the BS, ST, SC, LOST and LOSC settings, similarly to
the inter-dataset results in Table 11. In addition to fusion
methods, the results of the training without augmentation
technique (denoting as No) are also reported for compari-
son. The bold values in the D-EER and ACER columns are

the lowest two error rates, and the FDR column’s bold val-
ues indicate the Top-2 separability measured by FDR. For
further comparison, we also provide a visual representation
of the D-EER values achieved by the different experimen-
tal settings in Fig. 4 and the ROC curves in Fig. 5. As can
be concluded from Table 13, (1) training without augmenta-
tion techniques performs worse than using augmentations in
most cases. (2) BS and ST methods achieve one of the two
lowest ACER values in half of the experimental setups. (3)
SC augmentation method obtains one of the lowest D-EER
values for nine of the eighteen experimental setups, notably
eight of the nine lowest D-EER values are produced by the
fine-tuned ResNet50 and VGG16. Furthermore, the reliabil-
ity of the FDR value is consistent with the observation of the
previous inter-dataset results that a higher FDR value hints
at a lower ACER value, even though the ACER value can be
affected by a pre-defined threshold. It can also be noticed in
Table 13 that trainingMobileNetV3 from scratch with LOST
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Fig. 3 ROC curves of multiple fusion methods (corresponding to Table 11. The rows from top to bottom are for the Clarkson, Notre Dame, and
IIITD-WVU datasets. The x-axis is the APCER values and the y-axis is the 1 − BPCER values.)

performs better than with other augmentation strategies in
most cases. Similar observation can be found in Fig. 4. SC
(yellow) and LOSC (green) methods achieve lower D-EER
values than ST (grey) and LOST (navy blue) methods for
ResNet50 and VGG16 networks. In contrast, SC and LOSC

produce higher D-EER values than ST and LOST for the
MobileNetV3 network. One possible reason is the different
training strategies of networks.

5.2 Analysis and discussion

This section explores if different augmentations lead to the
same or different kinds of performance improvements. To
do that, we analyze the overlap of misclassified samples
between different augmentation protocols, including four
fusion methods with the help of confusion matrices. Fur-
thermore, the limitations and potentials of our analyses will
be discussed. The confusion matrices for each dataset can be

seen in Figs. 6, 7 and 8. The horizontal axis (X axis) from
left to right and the vertical axis (Y axis) from top to bot-
tom correspond to the augmentation strategies: No, Shifth ,
Shiftv , Rotation, Brightness, Zoom, Fliph , ST, SC, LOST and
LOSC , respectively.

The matrices from left to right are generated by the
ResNet50, VGG16, and MobileNetV3 separately. The value
in top matrices refers to the misclassified attacks overlap
ratio Oa

Apq
computed as in Eq. (1a), and the bottom matri-

ces present the misclassified bona fides overlap ratio Obf
Apq

computed as in Eq. (1b) in Sect. 3.1.
As can be seen from the previous results, different

augmentation strategies improve the performance on the dif-
ferent datasets. In this case, shift, rotation, and horizontal flip
play a relatively prominent role. The most overlap values are
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Table 12 Iris PAD performance (%) reported in terms of APCER, BPCER and ACER in comparison with the SoTAs

Algorithms Clarkson Notre Dame IIITD-WVU

APCER BPCER ACER APCER BPCER ACER APCER BPCER ACER

CASIA [42] 9.61 5.65 7.63 11.33 7.56 9.45 23.16 16.10 19.63

Anon1 [42] 15.54 3.64 9.59 7.78 0.28 4.03 29.40 3.99 16.70

UNINA [42] 13.39 0.81 7.10 25.44 0.33 12.89 23.18 35.75 29.44

Meta-Fusion [27] 18.66 0.24 9.45 4.61 1.94 3.28 12.32 17.52 14.92

Scracth D-NetPAD [31] 5.78 0.94 3.36 10.38 3.23 6.81 36.41 10.12 23.27

MLF [13] – – – 2.71 1.89 2.31 5.39 24.79 15.09

MSA [14,17] – – – 12.28 0.17 6.23 2.31 19.94 11.13

ResNet50 (Best) 7.35 2.89 5.12 14.78 0.17 7.47 14.68 5.41 10.05

VGG16 (Best) 10.53 1.08 5.81 22.28 1.00 11.64 16.97 20.09 18.53

MobileNet (Best) 1.67 0.00 0.84 18.00 2.56 10.28 3.62 17.95 10.79

Our best results for eachmodel are comparedwith thewinners of Iris-LivDet-2017 competition [42]:CASIA,Anon1,UNINAand two state-of-the-art
algorithms: Meta-Fusion [27] and D-NetPAD [31]. The bold values are the lowest error rates in each column

between 0.2 and 0.7 in confusion matrix plots. In general,
the lower overlap rates indicate that different augmentation
techniques enhance the model to adapt to different variations
in iris samples. As shown in Figs. 6, 7 and 8, we can find
that the overlap misclassification rate on MobileNetV3 net-
work is lower (lighter blue) compared to the ResNet50 and
VGG16 for each dataset. A general observation can be made
from Figs. 6, 7 and 8, the fusion of multiple augmentation
techniques (all or by our proposed augmentation selection
protocol), especially on the score-level (SC and LOSC ), leads
to higher overlap with the basic augmentation methods. This
indicates our success in addressing a larger number of vari-
ations in the data simultaneously. This is not the case when
we apply the strategy-fusion method, as the multiple aug-
mentation methods used in the training phase might cause
confusion.

Summing up all the results, we can see that training
with augmentation techniques significantly improves PAD
performance than training only with original data. Each aug-
mentationmethod plays a positive role on a particular dataset
or network. Shift augmentation performs better than other
methods in most cases. However, the results do not exhibit

an exact consistency across all networks, augmentation tech-
niques, and datasets. One improvement can be to preserve the
created images in the memory rather than randomly augment
and fed them to the network during the training process The
advantage is the later exact knowing numbers of original and
augmented data, whereas the drawback is the higher hard-
ware requirements. The data augmentation techniques are
classed into two general categories, data warping, and over-
sampling. Because the images generated by oversampling
methods like using the GAN network should be detected as
attack images, this could easily exacerbate the imbalance in
the data. For iris PAD, only data warping can be applied
to augment the training data. However, there is no consen-
sus about the best augmentation strategy, especially no best
combination way. The reason is that the intrinsic bias in the
capture environment, subject population, or scale of datasets
is different. Consequently, the first future work is to learn
an optimal augmentation strategy in an automatic way. Also,
we need to find an optimal dataset size after augmentation
by balancing the used strategy and the available memory for
storing augmented images.Moreover, the imbalance between
bona fide and attack samples can be addressed.
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Table 13 Iris PAD performance reported in terms of D-EER (%), ACER (%) and FDR on cross-dataset scenarios

Train Test Method ResNet50 VGG16 MobileNetV3
D-EER (%) ACER (%) FDR D-EER (%) ACER (%) FDR D-EER (%) ACER (%) FDR

Clarkson Notre Dame No 10.89 14.22 4.11 16.67 20.97 1.69 46.72 47.36 0.01

BS 9.00 14.11 3.64 13.72 16.50 2.67 100.00 50.11 0.00

ST 6.89 7.89 7.08 23.67 28.78 0.83 31.77 40.33 0.23

SC 8.67 29.25 1.47 18.29 18.81 1.91 44.94 48.94 0.02

LOST 19.27 19.80 1.54 16.38 16.28 2.32 29.27 45.14 0.16

LOSC 9.17 26.17 1.61 18.11 18.17 2.01 42.72 50.03 0.07

IIITD-WVU No 15.94 20.18 2.02 26.49 29.65 0.72 100.00 46.08 0.08

BS 17.51 19.71 1.55 21.80 26.56 0.97 100.00 49.97 0.00

ST 23.43 22.69 0.92 25.21 32.68 0.64 51.51 44.91 0.08

SC 14.23 27.30 1.50 20.65 29.47 0.92 59.17 48.99 0.04

LOST 31.40 32.48 0.46 22.36 31.35 0.71 58.12 49.75 0.02

LOSC 17.00 20.43 1.98 20.58 29.04 0.94 61.17 50.02 0.04

Notre Dame Clarkson No 16.11 18.49 2.09 14.15 12.88 3.04 40.09 41.92 0.07

BS 14.94 13.81 2.60 15.64 16.26 2.31 42.02 41.18 0.08

ST 13.07 12.84 2.37 14.72 14.18 1.62 42.37 40.29 0.11

SC 11.27 12.12 3.50 15.23 15.89 2.45 48.29 48.79 0.00

LOST 21.30 35.92 0.44 16.78 16.29 2.24 41.23 49.47 0.05

LOSC 8.64 10.58 4.60 14.41 15.99 2.54 47.27 56.37 0.05

IIITD-WVU No 22.35 31.65 0.77 12.88 34.21 0.84 11.13 10.78 3.97

BS 30.55 26.47 0.92 14.17 35.30 0.73 15.86 15.65 2.25

ST 25.29 24.74 0.92 11.81 30.57 1.12 10.39 10.21 4.29

SC 21.25 21.89 1.34 11.11 33.16 1.02 9.42 8.82 5.26

LOST 25.09 25.46 1.05 10.39 31.65 1.06 12.24 12.47 3.61

LOSC 23.51 25.54 1.23 11.29 34.44 0.95 12.52 13.21 3.73

IIITD-WVU Clarkson No 15.58 37.14 0.55 23.27 26.26 0.90 45.72 50.54 0.00

BS 19.34 21.98 1.60 15.26 18.29 1.87 37.43 41.03 0.10

ST 31.79 30.63 0.58 22.10 22.87 1.15 36.35 47.67 0.08

SC 15.07 22.68 1.96 15.80 18.59 1.85 51.42 50.39 0.00

LOST 16.84 35.56 0.60 19.31 19.51 1.56 41.29 44.41 0.06

LOSC 17.32 23.79 1.57 16.18 18.96 1.75 51.29 48.18 0.01

Notre Dame No 12.44 12.28 3.47 17.17 20.22 1.53 32.28 37.36 0.23

BS 7.38 7.36 7.30 17.56 24.67 1.14 33.11 34.86 0.30

ST 13.06 15.19 2.56 13.77 18.53 2.12 23.06 31.63 0.56

SC 8.06 11.47 4.74 17.22 23.11 1.33 31.56 31.61 0.55

LOST 21.55 22.03 1.32 21.39 26.50 0.92 30.33 29.25 0.61

LOSC 7.83 10.14 4.97 17.22 23.52 1.31 27.83 35.03 0.55

The bold values in D-EER and ACER column are the Top-2 lowest error rate, and the bold values in the FDR column indicate the Top-2 highest
separability. The ACER value is determined by a threshold of 0.5

6 Conclusion

This paper addresses a clear research gap by providing an
in-depth analysis of the data augmentation role in iris PAD.

Data augmentation technique is one of the crucial steps to
address the limitation of iris attack data. We explore the
impact of widely used data augmentation strategies and
two combination methods, strategy-level, and score-level,
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Fig. 4 The histogram of performance on cross-dataset evaluations. The x-axis the different experimental settings, and the y-axis is the D-EER (%)
value

on the generalization of iris PAD. We also propose a least
overlap-based augmentation selection protocol to bring dif-
ferent types of wrongly classified samples into the correct
classification. This is based on a detailed analysis of the
overlap between the effect of different augmentation tech-
niques. The experiments are performed on three datasets in

the Iris-LivDet-2017 competition [42] and with three neu-
ral networks for comparison and analysis. The experimental
results linked certain data augmentation methods to sig-
nificant enhancement of generalizability and indicated the
relatively low-overlapping effect of these augmentations.
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Fig. 5 ROC curves of cross-dataset evaluations (corresponding to
Table 13. The rows from top to bottom are for training on Clarkson
and testing on Notre Dame and IIITW-WVU case, then training on
Notre Dame and testing on Clarkson and IIITD-WVU, and training
on IIITD-WVU and testing on Clarkson and Notre Dame cases. The

columns from left to right are ResNet50, VGG16, and MobileNetV3
networks. The row and column order are the same as in Table 13). The
x-axis in each ROC plot is the APCER values, and the y-axis is the
1 − BPCER values
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unless indicated otherwise in a credit line to the material. If material
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