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Abstract
Maritime vessel re-identification (re-ID) is a computer vision task of vessel identity matching across disjoint camera views.
Prominent applications of vessel re-ID exist in the fields of surveillance and maritime traffic flow analysis. However, the
field suffers from the absence of a large-scale dataset that enables training of deep learning models. In this study, we present
a new dataset that includes 4614 images of 729 vessels along with 5-bin orientation and 8-class vessel-type annotations to
promote further research. A second contribution of this study is the baseline re-ID analysis of our new dataset. Performances
of 10 recent deep learning architectures are quantitatively compared to reveal the best practices. Lastly, we propose a novel
multi-branch deep learning architecture, Maritime Vessel Re-ID network (MVR-net), to address the challenging problem
of vessel re-ID. Evaluation of our approach on the new dataset yields 74.5% mAP and 77.9% Rank-1 score, providing a
performance increase of 5.7%mAP and 5.0% Rank-1 over the best-performing baseline. MVR-net also outperforms the PRN
(a pioneering vehicle re-ID network), by 2.9% and 4.3% higher mAP and Rank-1, respectively.

Keywords Maritime surveillance · Deep learning · CNNs · Image retrieval · Maritime vessel re-identification

1 Introduction

In recent years, the demand for automated surveillance sys-
tems has grown rapidly. This is mainly due to the continuous
decrease of the costs of cameras and sensors, leading to
broadly available video material and the inefficiency and
high labor costs to process this enormous amount of data
by humans. To alleviate this, numerous algorithms have been
proposed to automate the analysis of video surveillancemate-
rial and the subsequent alerting for specific various events
and dangerous situations. The automated analysis of video
surveillance involves the automated detection of objects and
their classification. These objects-of-interest include peo-
ple, vehicles and maritime vessels. However, it is clear
that regardless of the target entity, creating a continuous
visual coverage of a large physical space is not feasible. In
other words, the camera field-of-views are inevitably sparse
compared to the full area where objects-of-interest may be
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present. As a result, intelligent surveillance systems need to
find the correspondences between the identities of objects
within multiple disjoint camera views. This makes the re-
identification (re-ID) of specific objects and their identities
one of the most important steps to achieve fully-automated
surveillance and higher levels of event analysis.

Today, most security applications benefit from revealing
the motion history of objects across disjoint camera views.
This valuable information can be used to search for an object-
of-interest in a larger database, to detect trajectory-based
anomalies and to reveal inter-camera trajectories for obser-
vation, surveillance and flow statistics. In recent years, due
to its prominent use-cases, the problem of re-ID increasingly
attracted scientific attention. Starting from the area of person
re-ID, the research has been extended to cover the problems
of vehicle and maritime vessel re-ID, where different envi-
ronments and added difficulties render the re-deployment of
the person re-ID algorithms ineffective. As a result, special-
ized approaches to themaritime vessel re-ID are required and
since maritime vessels are infamous tools for transporting
illegal goods [1], piracy [27] and illegal fishing [7,30], would
make an automated system for maritime vessel surveillance
highly attractive for law enforcement.
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Similar to person and vehicle re-ID in traffic on public
roads, maritime vessel re-ID is a difficult problem because
of the associated challenges. Difficulties inherent to the
re-ID task, such as occlusions, viewpoint variations, low-
resolution images, target object similarities and variable
lighting/weather conditions do also occur in maritime vessel
re-ID. Furthermore, there are additional, specific difficulties
that are unique to the maritime vessel re-ID. For example, a
large variability of aspect ratio with changing pose and large
distances between the camera and the target vessel introduce
new challenges. However, thanks to modern computer vision
techniques, faster hardware and deep learning, developing a
practical, real-time re-ID system for automated surveillance
is now possible.

In order to exploit and take advantage of deep learning
algorithms, an excessive amount of labeled data is needed.
However, to the best of our knowledge, only a few medium-
scale datasets are publicly available to researchers for the
problemofmaritime vessel re-ID. To address this issue and in
this study, we present a new maritime vessel re-ID dataset to
promote further research.Our newdataset is namedVR-VCA
(Vessel Re-identification-Video Coding and Architectures
Research Group). It includes 729 unique maritime vessel
identities, pre-labeled for their vessel-type, orientation and
identity. A total of 4,614 images are available in the dataset.

In order to assess the difficulty level of our dataset and to
provide a baseline for further studies, we evaluate 6 different
architectures with 2 different loss combinations and training
settings. This quantitative evaluation of existing approaches
reveals efficient training and network design strategies for
vessel re-ID and provides further studies with useful basic
design principles.

Lately,multi-branch architectures have gained importance
in the fields of person and vehicle re-ID. State-of-the-art
algorithms are now using spatially and/or channel-wise par-
titioned and pooled feature maps and train those individual
branches with separate losses. Such an approach is shown to
improve the re-ID accuracy significantly, since it takes advan-
tage of combining the local features with global features in
an end-to-end trained, deep learning framework. Motivated
by the superior performance of branched networks in multi-
ple image retrieval fields, we propose a new architecture that
is carefully designed to address the problem of vessel re-ID.
We summarize and present our contributions below.

– Large-scale maritime vessel re-ID dataset with anno-
tated vessel orientation and vessel-type labels has been
collected and created. This dataset ismade publicly avail-
able1.

1 http://vca.ele.tue.nl/.

– Comprehensive performance evaluation of deep learning
architectures on the new dataset, to constitute a strong
baseline.

– Novel,multi-branch architecture that is carefully designed
to solve the difficulties of themaritime vessel re-ID prob-
lem.

The remainder is structured as follows. Section 2 reviews
the person, vehicle and maritime vessel re-ID methods from
literature. In Sect. 3,we propose amulti-branch deep learning
method in detail. Section 4 introduces our new dataset and
presents statistical information on its content. Section 5 dis-
cusses a quantitative performance evaluation of our method
and selected baseline architectures. Lastly, in Sect. 6, con-
cluding remarks are given.

2 Related work

To review the existing approaches to maritime vessel re-ID,
we first briefly discuss the person and vehicle re-ID algo-
rithms.

2.1 Person and vehicle re-identification

Person re-identification Person re-ID is the task of people
identity matching across non-overlapping camera views. To
the best of our knowledge, the problem of re-ID in general
has been first introduced in [34], in the context of person
re-ID. In this work, authors assign a latent label for each
person and define a probabilistic relation between the labels
and features. Then, the re-ID problem is solved by finding
the posterior label distributions. Following [34], the field
received immense scientific attention. Inmost studies, a fixed
set of features are extracted from each of the person images,
followed by the calculation of a mathematical measure of
distance for each feature pair. Then, from the database of
known people (gallery), likely matches that have small dis-
tances to an image under consideration (query) are retrieved.
This methodology forms two main directions for person re-
ID research. On one hand, researchers focused on developing
better feature extraction approaches that are suitable for the
problem. On the other hand, studies aimed to develop better
distance metrics to yield better ranking.

In early feature extraction studies, a wide variety of differ-
ent handcrafted features are proposed to address the problem.
In [10], the authors use spatiotemporal over-segmentation to
determine viewpoint invariant regions. Then, they compute
a feature vector that uses color and structural information.
In [2], Bazzani et al. introduce Symmetry-Driven Accu-
mulation of Local Features (SDALF). SDALF features are
extracted by first applying foreground-background segmen-
tation on person bounding boxes, followed by a silhouette
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partitioning that identifies salient regions. Finally, the color
and texture features that are extracted from each salient
region are combined into a single feature vector. In [6], the
authors apply a detector based on Histogram of Oriented
Gradients (HOG) to locate the full body and other semanti-
cally meaningful partitions such as the top, the torso, legs,
the left arm and the right arm of each pedestrian. Then, the
covariance descriptor is extracted from each region, con-
sidering the position, color and gradients. Lastly, authors
employ a pyramid matching scheme with multi-granularity
features to compute distances between the detected people.
In [16] and [12], scale-invariant feature transform (SIFT),
and its modification, the speeded-up robust features (SURF)
are used to characterize the person bounding boxes. Other
popular feature extraction methods that have been used to
solve the problem of person re-ID include maximally stable
color regions (MSCR) [25], local binary patterns (LBP) [15]
and local maximal occurrence (LOMO) [23].

Besides the feature extraction-based approaches to person
re-ID, metric learning methods have also received immense
scientific attention. In such methods, the aim is to find a
transformation of the feature space, such that the transformed
feature space has better separation of different identity clus-
ters. Such approaches typically attempt to minimize the
intra-class variance of each identity, while maximizing the
separation of different identities. For instance, in [20], the
authors derive a metric learning method by exploiting an
equivalence constraint in an efficient formulation. In [37],
Zheng et al. introduce probabilistic relative distance com-
parison (PRDC)model that aims tomaximize the probability
of a matching pair, having a smaller distance than that of a
non-matching pair. In [28], the authors reformulate the chal-
lenge as a ranking problem and learn a subspace where the
potential true match is assigned the highest ranking. This
approach effectively transforms the problem into a relative
ranking problem, instead of an absolute scoring problem. In
XQDA [23], Liao et al. formulate to learn a discriminant low-
dimensional subspace by cross-view quadratic discriminant
analysis.

Following the emergence of deep learning in 2012, most
of the recent person re-ID research now utilizes deep mod-
els to solve the problem. Learning feature extraction and
suitable distance metrics simultaneously from the available
large-scale datasets, deep learning solutions to the person re-
ID provide high accuracy and reasonable computational cost
thanks to powerfulmodern hardware. This opens up newpos-
sibilities for the practical applications of re-ID, especially in
the field of surveillance.

To take advantage of the potential of deep learning, numer-
ous methods were proposed. Hermans et al. [14] introduce a
mini-batch construction strategy that is fine-tailored for the
use of triplet loss. Authors propose to use only the hardest
positive and negative sample for a given anchor image in a

carefully sampled mini-batch to improve the performance.
In [22], authors propose a harmonious attention module that
takes advantage of determining the regions-of-interest of a
given person bounding box sample. In [5], authors derive a
new loss function called the quadruplet loss. In this method,
three images for each anchor image are sampled from the
dataset, two ofwhich are negative (different identity). In [38],
authors propose a generative adversarial network (GAN) to
enhance the training dataset with artificially generated data.
In [17], Kalayeh et al. use a two-stream deep architecture,
where one of the streams generates masks for semantically
meaningful body partitions, and the other extracts features.
Then, the final feature vector for a given bounding-box image
is constructed by combining the feature vectors for each
semantic region. In [31], Su et al. take advantage of the
pose information to enhance the performance of re-ID. In
this method, authors utilize the pose estimations to partition
the bounding-box image, and learn robust global and local
feature representations. In [32], authors use triplet and soft-
max losses in amulti-branch architecture calledMGN. In this
method, each branch divides the intermediate feature volume
into multiple volumes before collapsing the spatial dimen-
sions with pooling. Then, each divided part is trained with
an independent loss to yield better feature extraction. In [26],
authors first extract convolutional neural network (CNN) fea-
tures for each person bounding box in a time sequence. Then,
a Recurrent Neural Network (RNN) is used to combine the
feature vectors of individual frames into one feature vector
to be used for re-ID. Numerous other person re-ID methods
were proposed for the problem. For further reading on the
problem of person re-ID, the reader is referred to the surveys
in [3] and [36].
Vehicle re-identification The problem of Vehicle re-ID is
the task of identity matching of vehicles across disjoint
cameras. Recently, this problem attracted increasing scien-
tific attention, due to its valuable applications in the fields
of surveillance and traffic-flow analysis. The vehicle re-ID
problem includes additional challenges, such as motion blur,
varying aspect ratio of bounding boxes, reflective surfaces of
vehicles and only subtle differences between different iden-
tities with similar model/make/year.

Although the vehicle re-ID is a relatively new problem
compared to its person variant, since research could take
advantage of the already mature person re-ID literature, the
performance has grown significantly in a short time. For
instance, in [33], authors generate orientation-based region
proposals to refine the global CNN features with respect
to the viewpoint. In [35], Zapletal et al. first extract 3D
bounding-box information of a given bounding-box image
of a vehicle. Then, the image is normalized by mapping
different visible sides of the vehicle into a fixed spatial loca-
tion. In [24], authors introduce a multi-branch architecture
called region-aware deep model (RAM). In this architecture,
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multiple branches aim to extract better features by using dif-
ferent strategies, such as spatial feature volume partitioning,
attribute learning and batch normalization. Similarly, in [4],
authors propose a two-branch architecture that, in addition
to spatial partitioning, employs partitioning of intermediate
feature volumes in the channel dimension. In [21], authors
discuss various mini-batch sampling strategies for the triplet
loss. Further, Kumar et al. also comparatively evaluate the
contrastive and triplet losses. For a detailed review of vehicle
re-ID methods, the reader is kindly referred to [18].
Maritime vessel re-identificationCompared to its person and
vehicle variants, maritime vessel re-ID is a relatively new
problem. In addition to the already challenging problems of
person and vehicle re-ID, maritime vessel re-ID introduces
additional challenges, such as low-resolution images due to
the size of the vessel and imaging distance, and high vari-
ability of the bounding-box aspect ratios with the viewpoint.

Up to this point, the maritime vessel re-ID problem has
received only fractional scientific attention compared to its
person and vehicle variants. In [9], authors propose an archi-
tecture called the identity-oriented re-identification network
that combines the triplet loss and softmax cross-entropy (CE)
loss with a ResNet50 [13] architecture. In [11], authors base
their work on [14] and extend the method with various multi-
query strategies. In [29], authors introduce a new dataset,
as well as a novel approach that employs global-and-local
fusion-based discriminative feature learning. This method
combines CE loss with a novel, orientation-guided quintu-
plet loss and performsmulti-view representation learning for
re-ID.

We conjecture that the field of maritime vessel re-ID suf-
fers from the lack of awidely-adopted, large-scale dataset. To
alleviate this, we introduce a new dataset called VR-VCA. In
accordancewith the current trends in re-ID literature, we also
provide the viewpoint and vessel-type labels for each sam-
ple to promote further research. The detailed information and
baseline analysis of our dataset is included in Sect. 4. Further,
we also propose a novel, deep learning-based, multi-branch
architecture in Sect. 3.

3 Maritime vessel re-identification

This section presents the proposed MVR-net method. In the
following subsections, we provide an overview of the pro-
posed method, after which we explain each element of the
architecture in detail.

3.1 Architecture overview

Figure 1 illustrates the architecture of the MVR-net. The
proposed network receives a mini-batch of labeled vessel
images as input. Then, it extracts a feature embedding for

the input images using a backbone feature-extraction net-
work. Afterwards, the embedding is passed through three
parallel convolutional branches. Each of these branches are
carefully designed to further discriminate the extracted fea-
ture embedding andgenerate amore indicative representation
of input images in feature space. Typical usage of branches
for specific features are the processing of height, width, and
channel information. This type of architecture is inspired
by recent multi-branch methods like MGN [32] and PRN
[4], which show significant improvement in re-identification
performance for pedestrians and vehicles, respectively. The
MGNnetwork is an example that uses height as a guiding dis-
criminating feature, while PRN employs height, width, and
channel as discriminating features. The proposed MVR-net
also exploits those three branches and uses a combination of
a triplet and a softmax loss function to calculate the gradients
required in the training procedure.

3.2 MVR-net description

This subsection explains each part of the proposed MVR-net
in detail, as illustrated in Fig. 1.
Pre-processing of input images This work is based on the
VR-VCA dataset for training. In this dataset, the majority
of vessel samples are captured with cameras deployed on
shorelines and therefore possess horizontally oriented struc-
tures. Therefore, theMVR-net first downsamples the training
images into a size of 128×384 pixels (height×width). Then,
it applies conventional standardization and augmentation
techniques (e.g. normalizing, random-horizontal flipping,
and random erasing [40]) on the resized input images. At
the beginning of each training epoch, MVR-net randomly
picks K pre-processed samples per individual vessel to gen-
erate an input batch. The pre-processing operations on input
images and the batch generation are not depicted in the net-
work architecture diagram.
Mini-batch generation To benefit from the fast training and
gradient smoothness advantages, we employ mini-batch gra-
dient training with batch-hard sampling strategy [14]. For
this, the second step in each epoch is to divide the gener-
ated batch into mini-batches of N samples. Each mini-batch
will include P unique IDs, and has a size of N/K . This
form of mini-batch generation is adopted, since our network
uses triplet loss with hard batch mining as part of its total
cost function. Finally, all mini-batches are supplied into the
backbone network for training iterations.
Backbone network Generally, CNN-based re-identification
methods extract features for input samples and further pro-
cess these features to verify if a query sample belongs to a
specific identity from the gallery database, based on feature
similarities. To this end, a CNNnetwork is required to extract
the feature representations. In order to facilitate the process,
an initial set of layers from reliable classification CNNs are
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Fig. 1 Architecture of the proposed MVR-net

frequently employed to generate the coarse portion of the
required feature representation. This will be followed by re-
identification-oriented layers, designed specifically for the
intended application.

One of the most frequently used backbones in the re-
identification literature is ResNet50 [13]. This network is
well known for its robust performance against the vanish-
ing gradients problem. Therefore, we employ ResNet50 as
our backbone network to extract the feature maps for each
image of the mini-batch. Then, we duplicate all the extracted
feature maps at the end of the Conv4_1 layer (see [13] for
details) three times, and feed these features separately into
our three re-identification branches. In other words, the lay-
ers of these branches will be constructed on top of separate
copies of the Conv4_1 layer of the ResNet-50, provided by
the same backbone network. We will refer to each of these
duplication of feature maps as a feature embedding in the
remainder of the paper. Each branch will then further pro-
cess its embedding to generate more meaningful features for
vessel re-identification in a parallel manner.
Multi-branch design As a core contribution, MVR-net pro-
poses a 3-branch architecture, specified to address the mar-
itime vessel re-identification problem.As illustrated in Fig. 1,
these branches are called Height branch, Width branch, and
Channel branch, focusing on the height-wise, width-wise,
and channel-wise structures available in their input feature
embeddings.

The Height branch performs three independent partition-
ing operations across the height dimension of its input feature
embedding. These operations generate one, two, and three
separate feature volumes, respectively. Each of these vol-
umes contain the same spatial fraction of the input feature
embedding. The Width branch applies the same partitioning

operations on the horizontal axis of the spatial dimensions. In
both of these branches, the operation of partitioning the input
feature embedding into one volumemeans copying thewhole
input feature embedding into a separate volume, which aims
at maintaining the global features of the embedding for the
next steps. Such copied volumes will be referred to as global
volumes in the remainder of this paper (e.g. the 3D block
at the left in each branch). It is also important to highlight
that these two branches spatially partition the input feature
embedding into “vertical” and “horizontal” volumes. Finally,
the Channel branch partitions its input feature embedding
into four volumes of features across the embedding depth.

After generating these 16 partitioned volumes out of the
input feature embeddings, each branch passes its feature vol-
ume through a three-phase pipeline to prepare the required
feature vectors for the loss calculation block. These three
phases are developed as follows.

Phase A: The generated feature volumes are separately
shrunk into feature vectors of size 2, 048 (for the Height
andWidth branches) and 512 (for the Channel branch) using
global max-pooling operations.

Phase B: 1x1 convolutional layers are employed to equal-
ize the vector dimensions constructed in the previous phase to
a size of 256. Additionally, a batch normalization operation
is also applied on the feature vectors. At this point, separate
copies of the two feature vectors resulting from the global
volumes of the Height and the Width branches are supplied
into a triplet loss block.

Phase C: Each of the obtained 16 vectors are transferred
into separate fully-connected layers. The output dimensions
of these fully-connected layers are equal to the number of
unique vessel identities in the training set. Then, these outputs
are carried into a softmax CE loss block. MVR-net combines
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the triplet and the softmaxCE losses to calculate the gradients
required for updating the network parameters during training.
These loss functions will be explained in detail in the next
part of this subsection.
Loss function We employ softmax CE loss and triplet loss
with the batch-hard sampling strategy as introduced in [14],
to train our architecture. The batch-hard triplet loss is defined
in Eq. (5) of [14] as:

LBH(θ; X) =
P∑

i=1

K∑

a=1

[
m + max
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D

(
fθ (x

i
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i
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j
n )
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+,
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where X , θ , P , K , m, fθ and D denote an input mini-batch,
learned network weights, number of different identities in a
mini-batch, number of images per identity in a mini-batch,
triplet loss margin, forward inference function and distance
calculation function, respectively. In addition to the triplet
loss, we use the softmax CE loss for identity classification.
Mathematically, softmax CE loss for a mini-batch X can be
specified by:

LCE(θ; X) = −
∑

x∈X
log

(
e fθ (x)[id(x)]
∑

j e
fθ (x)[ j]

)
, (2)

where function id(.) returns the identity of a given image.
Combining the two losses, the total loss is expressed as:

Ltotal(θ; X) = 1

T

T∑

t=1

Lt
BH(θ; X) + γ

C

C∑

c=1

Lc
CE(θ; X), (3)

where γ , T andC are the loss weighting parameter, the num-
ber of triplet losses and the number of softmax CE losses,
respectively.

3.3 Discussion onMVR-net architecture

Motivation for Height and Width branches As mentioned
above, the Height and Width branches of the MVR-net sep-
arately partition their input feature embeddings into one,
two, and three volumes. This idea of partitioning the feature
embeddings into several volumes is inspired by the recent
state-of-the-art methods. As an example, the well-known
PRN network consists of only two branches. These branches
partition their input feature embedding just once, and into
four spatial volumes (one branch vertically and the other
branch horizontally). However, this architecture is designed
for the vehicle re-identification problem. Surveying the vehi-
cle re-identification datasets shows that car samples contain
similar image characteristics, although cars are different.

This is due to the observation that surveillance cameras cap-
turing cars are installed at fixed locations on top of roads
and capture the cars in similar distances from the camera
lenses, yielding car samples with similar image qualities and
resolutions. However, in a vessel re-identification dataset
(e.g. our VR-VCA dataset) captured in maritime environ-
ments, vessels appear in a diverse settings of camera viewing
angles, distances to the camera, occlusions, etc. For a mar-
itime surveillance system, it is essential to identify the vessels
as soon as they enter the receptive field. This is important for
the security of harbors. Consequently, the resolution of cap-
tured vessels in our vessel-oriented dataset varies in a wide
range. This variation in input images diminishes the perfor-
mance of a network that processes the feature embeddings for
all input samples using only one limited number of partitions
(e.g. only four partitions for the PRN). This motivates why
our MVR-net has a broader partitioning to cover the various
resolution scenarios. This is implemented in MVR-net by
grasping features using a separate partitioning into different
numbers of volumes.

In order to select the optimum number of partitioning for
each spatial branch, we have trained several versions of the
MVR-net with different numbers of partitioning (which will
be discussed later in the experimental results). After this
experimental investigation, we have decided to split each
input embedding separately into one, two, and three volumes
in each spatial branch. With this, for the vessels located at
a close distance to the camera (vessels with higher resolu-
tion), the volumes obtained by splitting the input embeddings
into three spatial partitions yield more detailed features.
Similarly, the two-partition volumeswill extract useful infor-
mation for the low-resolution vessels (e.g. those located at
a far-away distance to the surveillance camera). According
to our experiments, including volumes that are obtained by
splitting the feature embeddings into more than three par-
titions (like four in PRN) diminishes the re-identification
performance for vessels. This occurs most probably because
a higher degree of partitioning reduces the influence of
coarser features (e.g. the global features) in the final feature
representation. Therefore, we can conclude that the coarser
features have a high impact on the vessel re-identification
problem (compared to the vehicle re-identification), espe-
cially if the vessel samples lack resolution.
Motivation for channel branch We know from neural style
transferring that identifying the correlations between outputs
of different filters of a convolutional layer can help to grasp
the existing style in a set of images (e.g. the common style of
the Van Gogh paintings). This concept is also adopted in re-
identification methods. To the best of our knowledge, PRN
is the first to utilize these correlations by applying channel-
wise partitioning on the feature embeddings. According to
the original PRN paper [4], the authors target the extraction
of distinct local features by these channel-wise operations.
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However, these channel-wise partitionings are performed
together with the spatial partitionings in the same channels.
Each branch of PRN splits the input embedding into one and
four spatial (one branch vertically and the other one horizon-
tally) and four channel-wise volumes. We prefer to design a
networkwith three branches, first one for detecting horizontal
structures inside the input images (Height branch), the second
one for detecting the vertical structures (Width branch), and
the third one for detecting the internal correlations between
different feature maps of the feature embedding.

4 Maritime vessel re-identification dataset:
VR-VCA

In order to train the vessel re-identification model, we have
recorded several videos at different day/year-times fromvari-
ous locations in the Netherlands. We have used two different
cameras in our recordings. The videos contain a vast vari-
ety of viewpoints on vessels. Additionally, several vessel
types with divergent sizes and distances to the cameras are
represented in this dataset. Finally, challenging scenarios
including vessel occlusion/truncation are also annotated. Fig-
ures 2 and 3 illustrate several examples of the VR-VCA
dataset.

The dataset contains a total of 4614 vessel samples from
729 unique vessel identities. Each vessel identity is repre-
sented by several samples. Additionally, we have labeled
each vessel with a bounding box, its vessel type, and ves-
sel orientation (i.e. the approximate camera viewing angle)
to facilitate future research. 2. Vessel types include the fol-
lowing eight classes: sailing vessel, passenger ship, fishing
vessel, river cargo, small boat, yacht, tug, and taxi vessel.
The vessel orientations are described with the following five
orientation labels: front view, front-side view, side view,
back-side view, and back view. Figure 4 statistically analyzes
the VR-VCA samples in terms of vessel types and orienta-
tions. Besides, we have provided the same unique ID to all
samples corresponding to each specific vessel. Moreover, a
label is assigned to each cropped sample showingwhether the
vessel is captured in its full body, or is truncated, or occluded.
The dataset is split into training, gallery, and query datasets.
The specifications of these datasets are as follows:
Training dataset The training dataset contains 2, 268 samples
from365 individual vessels. This dataset includes 184 sailing
vessels, 442 passenger ships, 30 fishing vessels, 936 river
cargos, 105 small boats, 22 yachts, 64 tugs, and 485 taxi
vessels. These samples cover 170 vessels from front view,
727 vessels from front-side view, 736 vessels from side view,
556 vessels from back-side view, and 79 vessels from back

2 Besides the discussed dataset, there is also another separatemulti-type
and orientation vessel detection dataset [8].

view. The maximum and the minimum number of samples
per unique ID are 38 and 2, respectively.
Gallery dataset Thegallery dataset is comprisedof 1, 667 sam-
ples from 364 unique vessel identities. The type statistics of
the gallery dataset samples are as follows: 144 sailing ves-
sels, 379 passenger ships, 13 fishing vessels, 722 river cargos,
57 small boats, 9 yachts, 29 tugs, and 314 taxi vessels. In
this dataset, there are 124 front views, 569 front-side views,
498 side views, 412 back-side views, and 64 back views from
vessels. The maximum and the minimum number of samples
per unique ID are 26 and 1, respectively.
Query dataset The query dataset possesses 679 samples with
364 unique vessel identities. This dataset includes 68 sail-
ing vessels, 152 passenger ships, 5 fishing vessels, 260 river
cargos, 26 small boats, 5 yachts, 13 tugs, and 150 taxi ves-
sels. These samples represent 32 vessels with front views,
157 vessels with front-side views, 243 vessels with side
views, 213 vessels with back-side views, and 34 vessels with
back views. In the query dataset, the maximum and the min-
imum number of samples per unique ID is equal to 7 and 1,
respectively.

4.1 Discussion onVR-VCA characteristics

There is a fundamental difference between a vehicle re-
identification dataset and our vessel re-identification dataset.
In vehicle re-identification, cameras are installed at fixed
locations on top or aside of roads, covering a specific back-
ground. The cars have no other way but to pass through
the receptive fields of these cameras. Under such a setting,
each car sample is also given a separate camera ID. While
performing re-identification for each query sample (which
means ranking gallery samples based on their similarities to
the input query sample), it is common to discard the gallery
images from the same car and the same camera as the query
sample. The reason is that we need the query sample to be
captured at a different camera location compared to the candi-
date gallery images.Otherwise, there is noneed for a complex
re-identification system and the task can be performed by a
simple tracker. However, in a maritime environment, vessels
move in arbitrary directions, practically making the fixed
camera option infeasible. This problem becomes even more
challenging if the maritime environment is a spacious har-
bor with different exit areas where vessels can maneuver
easily. Such cases occur rather frequently in our dataset.
Therefore, we have recorded our images by continuously
chasing themoving vessels.With this, we have captured each
individual vessel in different perspectives and with different
backgrounds. Hence, we have discarded this camera ID con-
cept in our dataset, since all our samples have a different
camera and varying background settings. In other words, we
have considered all our samples to virtually possess a differ-
ent camera ID. It is possible that some samples have similar
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Fig. 2 Four VR-VCA
examples. Each row presents
two samples of an individual
vessel in different locations

backgrounds, which comes from the fact that the vessels with
the same identity are always captured in the same neighbor-
hood.

Besides this difference tovehicle re-identificationdatasets,
there is a resemblance too. In vehicle re-identification, there
is always a possibility that cars with similar appearances
(model, color, etc.) pass through views of the same cameras.
Therefore, a vehicle re-identification dataset is generally con-
taining samples with different identities, but with almost the
same appearance (although these samples may slightly differ
because of tiny stickers or humanpassengers or other details).
This scenario becomes even more challenging in our vessel
re-identification dataset captured in city/river-type harbors.
Only a limited number of vessel models appear in such envi-
ronments, and consequently the probability and frequency
of finding vessels with the same appearance is much higher
than for cars. For example, in a considered scenario, a har-
bor is located next to a wide river passing through a city
and passenger vessels of the same model belonging to a spe-

cific company are continuously transferring people across the
river. Thus, another aspect making our dataset challenging is
the problem of having appearance-wise overlap between the
vessel samples.

Last but not least, vessel samples of the VR-VCA dataset
are cropped from outdoor surveillance images, having dif-
ferent sizes and aspect ratios. Therefore, CNN-based re-ID
systems need to resize them into a fixed footage in a data
pre-processing stage (based on system requirements and
architectural design). However, vessels appear with more
divergent aspect ratios in image frames, compared to other
conventional re-ID targets (e.g. pedestrians with mostly ver-
tical and cars with mostly squared-shape bounding boxes).
Thus, the vessel samples of the VR-VCA dataset vary from
very narrow- yet long- (horizontally or vertically) shaped
samples to quite square-shaped ones, depending on their
types and orientations. This implies a need for decision
making on the proper size for the input samples, making
VR-VCA an even more challenging dataset. This challenge
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Fig. 3 Another four VR-VCA
examples. Each row presents
two samples of an individual
vessel in different locations

may not hold for other vessel re-identification datasets, since
we deliberately capture videos such that yields vessels in a
divergent range of resolutions and aspect ratios (by covering
vessels also in far-away locations from different viewpoints).

5 Empirical validation

This section presents the empirical evaluations and discus-
sions on the outcomes in the following subsections.

5.1 VR-VCA performance analysis on baselines

This subsection benchmarks the VR-VCA data by testing
several re-ID methods on that. For choosing the methods for
comparison, we have adopted models that vary in terms of
complexity by having a different network architecture and
a different number of network layers. Table 1 presents the
performance of the selected models on VR-VCA. The table

compares six baseline models with three different losses,
both with and without re-ranking technique. First, the imple-
mentation process of designing the deep learning models is
explained. Afterwards, the results are analyzed.
Implementation details for baseline methods In order to
match each baseline architecture to the vessel re-ID problem,
we have adapted the architectures to optimize their perfor-
mances for this problem. The chosen optimization measures
are generic and apply to all baseline architectures, so that
each baseline architecture is modified in the same way for a
fair comparison.

The following measures have been implemented. (1) We
have substituted the fully-connected classifier and pooling
layers at the end of each network, and added a max-pooling
layer to incorporate both spatial dimensions in concentrated
form. (2) The latter layer produces a fixed-size feature vector
which is then used for the triplet loss training. (3) Addition-
ally, if softmax CE loss is employed during training, we have
added a fully-connected layer at the end that outputs the class
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Fig. 4 VR-VCA representation in terms of: a vessel types, and b vessel orientations

probabilities for each vessel identity. (4) We have employed
re-ranking to improve performance of the re-identification.
Re-ranking works by post-processing the initial ranking
results. Following the common practice in literature, we have
used the k-reciprocal encoding re-ranking algorithm [39]. For
a given query sample, this algorithm assumes that a correct
match in the list of top-k1 retrieved samples is likely to have
the query itself retrieved within the top-k2 positions when
queried to the re-identification module (k2 < k1). Thus,
the re-ranking step computes a derived distance metric by
separately analyzing the k-reciprocal neighbors for all sam-
ples and computing their Jaccard distance. Finally, the final
distances are computed by a weighted sum of the original
and Jaccard distances, where individual contributions are
weighted by λ and 1 − λ, respectively. (5) Our ImageNet
pre-trained baseline architectures are trained with the Adam
optimizer [19] for 25 epochs with an initial learning rate of
3 × 10−4, which is reduced to one-tenth of this value after
every 10th and 15th epochs. Batch-hard parameters P and
K are set to P = 5 and K = 4, while γ is set to unity
where applicable, the weight decay is set to 5×10−4 and the
triplet loss margin, m is set to unity. For data augmentation,
random horizontal flipping is employed during training and
all images are resized into a fixed size of 128 × 384 pixels.
During testing, we calculate the features for both the original
images and their horizontally flipped versions and average

them to compute the final feature vector for each image. The
re-ranking parameters, k1, k2, and λ are set to 20, 6, and 0.3,
respectively.

Result analysisAccording to Table 1, increasing the num-
ber of layers and thereby, the complexity of the deep models
improves the performance. For example, the slope of incre-
ment is sensible going from ResNet18 RR to ResNet50 RR,
where themAP improves by 2.1%.However, the higher num-
ber of layers in the ResNet121 RR eventuates in only a slight
growth of mAP, compared to the ResNet50 RR. Therefore,
it can be concluded that a re-identification network based on
ResNet50 can provide a more reliable performance on this
dataset. Additionally, according to our experiments, using
only a softmax CE loss cannot provide adequate discrimi-
nation in feature space. However, combining this loss with
triplet loss improves the performance of the baseline architec-
tures. For example, ResNet50 RR employing only triplet loss
generates 1.1% lower mAP compared to the combined loss
function version. It is also important to mention that employ-
ing the re-ranking technique always improves themAP,while
decreasing the rest of the metrics (Rank-1, R-3, R-5, R-10).
Our explanation for obtaining lower ranks when utilizing the
re-ranking technique is the high frequency of having ves-
sels with the same appearance but of different identities in
VR-VCA, as explained in Sect. 4.1.
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Table 1 Performances of
various network architectures,
given by percentage scores of
mAP, Rank-1 (R-1),
Rank-3 (R-3), etc. for
ResNet18, ResNet34, ResNet50,
ResNet101, ResNet152,
DenseNet121, DenseNet161,
DenseNet169, DenseNet201,
and MobileNet

Network Arch. Training: Triplet Loss Training: Triplet+Softmax CE Loss
mAP R-1 R-3 R-5 R-10 mAP R-1 R-3 R-5 R-10

ResNet18 55.0 67.3 80.6 85.9 91.5 57.3 68.9 84.7 89.1 92.6

ResNet18 (RR) 58.5 61.3 77.6 83.5 88.8 62.3 66.4 80.3 85.1 90.3

ResNet34 54.2 67.9 80.1 85.7 91.3 56.4 70.3 82.0 86.3 90.7

ResNet34 (RR) 59.1 63.9 76.9 81.9 88.2 60.6 63.8 76.0 82.5 89.3

ResNet50 58.0 71.6 84.5 89.7 94.0 58.4 71.7 84.1 88.4 93.8

ResNet50 (RR) 63.3 68.3 80.6 86.3 91.0 64.4 67.9 81.3 86.3 92.5

ResNet101 57.0 70.1 84.2 89.1 92.5 57.9 71.4 82.9 87.2 91.8

ResNet101 (RR) 62.7 65.1 80.4 85.7 91.6 63.3 68.3 78.7 84.1 89.8

ResNet152 57.4 71.6 84.0 88.5 92.9 59.8 73.1 85.6 90.0 92.9

ResNet152 (RR) 64.4 69.1 81.7 85.6 90.3 64.8 68.0 81.0 86.2 91.5

DenseNet121 59.9 73.1 85.1 90.0 94.4 61.8 75.4 86.3 91.2 95.7

DenseNet121 (RR) 66.9 70.8 84.0 88.1 92.3 68.2 72.8 83.2 87.6 92.3

DenseNet161 59.2 73.1 83.7 88.2 92.9 62.8 75.7 87.3 91.5 95.1

DenseNet161 (RR) 64.5 67.8 81.6 85.6 90.3 68.8 72.9 83.7 87.6 92.5

DenseNet169 59.9 72.2 86.2 89.7 94.1 62.8 75.9 86.5 90.6 95.3

DenseNet169 (RR) 65.3 68.8 80.3 86.2 92.8 68.7 71.4 83.2 87.3 91.3

DenseNet201 59.6 73.8 84.5 88.8 92.9 64.1 77.2 87.5 91.3 94.9

DenseNet201 (RR) 66.0 68.3 82.3 87.0 90.1 70.1 72.9 84.4 88.5 92.3

MobileNet 54.6 65.8 80.4 85.7 91.2 60.1 71.0 85.6 90.3 94.3

MobileNet (RR) 57.7 59.5 74.8 80.3 88.8 65.2 66.3 81.4 86.5 92.1

The networks are trained with (1) triplet loss only, and (2) the combination of triplet loss with softmax CE
loss. RR stands for re-ranking and is most important

5.2 Validation of MVR-net

This subsection specifically evaluates the MVR-net per-
formance on our vessel re-identification dataset. To this
end, the MVR-net is compared with two state-of-the-art re-
identification networks, PRNandMGN.The implementation
details are first provided and then the obtained results are ana-
lyzed. Finally, two separate topics are discussed: our network
design, and the batch-hard sampling strategy utilized by the
triplet loss function.
Implementation details of MVR-net The MVR-net architec-
ture is trained with the Adam optimizer for 25 epochs with
an initial learning rate of 2× 10−4, which is reduced to one-
tenth after the 15th and 20th epochs. Batch-hard parameters
P and K are set to P = 5 and K = 4. Parameter γ is set
to γ = 2, the weight decay is set to 5 × 10−4 and the triplet
loss marginm is set to unity. For data augmentation, random
horizontal flipping and random erasing are employed during
training and all images are resized to a fixed size of 128×384
pixels. During test time, we calculate the features for both the
original images and their horizontally flipped versions and
average them to compute the final feature vector for each
image.
Validation results forMVR-net Thenetwork is comparedwith
the MGN and PRN re-ID architectures. Table 2 illustrates

Table 2 Performance comparison of network architectures and our
MVR-net

Network arch. mAP R-1 R-3 R-5 R-10

MGN 62.0 75.1 87.3 91.2 95.0

MGN (RR) 65.8 71.3 82.8 87.2 93.8

PRN 67.8 76.9 89.7 92.9 95.6

PRN (RR) 71.6 73.6 84.1 87.9 92.6

MVR-net 70.5 80.9 90.0 90.1 96.3

MVR-net (RR) 74.5 77.9 87.6 90.9 95.0

Results expressed in percentage scores for mAP, Rank-1, R-3, etc. RR
stands for re-ranking and bold numbers for best score

the results, both with and without the re-ranking (RR) tech-
nique.Here, the results are only analyzed anddiscussedbased
on the models with the re-ranking technique. According to
the table, the proposed MVR-net outperforms the PRN and
MGNwith 2.9% and 8.7%mAP, respectively. The improved
performance holds also for other evaluation metrics of re-
identification. For example, MVR-net generates 4.3% and
6.6% higher Rank-1 compared to PRN and MGN, respec-
tively. This performance clearly proves the efficiency of the
MVR-net design for maritime surveillance applications.
Side experiment using triplet loss According to common
approaches in literature, we have also empowered our triplet
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loss function with the batch-hard sampling strategy. Imple-
menting this strategy, the triplet block treats all N vessel
samples of a mini-batch as an anchor sample once. This
means in practice for each of the N samples, we randomly
select an anchor image, a positive pair (i.e. another sam-
ple of the same vessel), and a negative pair (i.e. a sample
from another vessel). For example, this finds the most simi-
lar negative pairs (i.e. other samples of the mini-batch with
different identities to the anchor sample). Likewise, a similar
statement can be made for the most dissimilar positive pairs.
The intuition behind utilizing this technique is to minimize
the distance between samples with the same identity and to
maximize the distance between samples with different iden-
tities in the feature space as much as possible. Normally, this
happens by comparing the feature similarities of mini-batch
samples using metrics like Euclidean distance.

In this work, we have attempted to construct better triplets
by choosing most dissimilar positive and most similar nega-
tive pairs according to their orientation labels. Themotivation
is that employing an appearance-based differentiating met-
ric, like Euclidean distance, can result in selecting positive
and negative pairs only because of reasons like differences in
scene lighting or having extra background-pixels around the
vessel (inside the cropped image).Moreover,wemanipulated
the input mini-batch generation block to force this block cre-
ate eachmini-batch using samples having the same or at least
similar type labels.With this, we aimed at increasing the abil-
ity of the triplet block in choosingmore similar negative pairs.
However, after applying the explained type and orientation-
based strategy to the triplet loss-calculation process, we have
noticed that there is no improvement compared to the MVR-
net with the standard batch-hard sampling strategy. We think
this happens because for training of the MVR-net, more than
35k random mini-batches have been used. Therefore, the
triplet block is already trained sufficiently for different com-
binations of input images to the network, which explains the
lack of improvement. The conclusion of this side experiment
is that with batch-hard sampling and the applied triplet loss,
the re-identification of the same vessel at another harbor posi-
tion does not improve from incorporating the viewing angles,
but the proposed network finds already sufficient occurrences
of the same vessel in the dataset.
Discussion on theMVR-net designAsmentioned in Sect. 3.3,
we have designed and empirically evaluated several network
architectures to find the optimized network architecture for
the vessel re-identification problem (i.e. the MVR-net). This
part briefly reflects on these experiments with all possible
candidate designs, with a limit of splitting the feature embed-
ding up to four partitions. Table 3 illustrates the obtained
results. The tested architectures can include two or three
branches, depending on whether the channel-wise partition-
ing is implemented inside the spatial branches (as is the case
for PRN) or in a third independent channel branch. Accord-

Table 3 Performance scores (%) in mAP and Rank-1 for candidate
architectures with different branches and partitionings

Network architecture mAP R-1

B1(H1, H2), B2(V 1, V 2) 73.1 74.8

B1(H1, H2,C4), B2(V 1, V 2,C4) 71.3 75.0

B1(H1, H2, H3), B2(V 1, V 2, V 3) 73.0 75.7

B1(H1, H2, H3,C4), B2(V 1, V 2, V 3,C4) 71.1 74.7

B1(H1, ..., , H4), B2(V 1, ..., V 4) 71.6 75.7

B1(H1, ..., H4,C4), B2(V 1, ..., V 4,C4) 66.1 68.2

B1(H1, H2), B2(V 1, V 2), B3(C4) 72.9 75.8

MVR-net 74.5 77.9

B1(H1, ..., H4), B2(V 1, ..., V 4), B3(C4) 69.7 72.9

Parameters Bk , Hi , V i , and C4 stand for the kth Branch, horizontal
(H ) partitioning into i equal splits, vertical (V ) partitioning into i equal
splits, and channel-wise (C) partitioning into 4 equal splits, respectively.
Finally, separate branches are combined in a parallel manner after the
Conv4_1 layer of ResNet50, represented in table by commas. As an
example of such a parallelism, MVR-net is illustrated in Fig. 1 and
would be specified as B1(H1, H2, H3), B2(V 1, V 2, V 3), B3(C4)

ing to the table, the architecture of MVR-net yields higher
performance both in terms of mAP and R-1. This motivates
our preferred architecture that is illustrated in Fig. 1 as our
selected re-identification network for maritime surveillance.

6 Conclusions

In this paper, we have introduced two main contributions
for addressing the vessel re-identification problem. First, we
have captured, annotated, and hereby publish a novel vessel
re-identification dataset, referred to asVR-VCA.This dataset
contains 4, 614 vessel samples from 729 unique vessel iden-
tities. Additionally, we have provided eight vessel types and
five vessel orientation labels for each dataset sample. The
images of the VR-VCA dataset are captured at different
locations in the Netherlands. A divergent set of weather con-
ditions, water region types, and backgrounds are represented
in VR-VCA. In our dataset, multiple vessels occur with very
similar appearances (i.e. model, etc.). Additionally, vessels
appear in various aspect ratio distributions and are captured
in different distances and orientations to the cameras. These
broad variations make the VR-VCA a challenging vessel re-
ID dataset.

Performance of different baseline methods is bench-
markedwith the described dataset. Based on this benchmark-
ing, we have adopted ResNet50 as the backbone network
for the vessel re-ID problem. In addition to the dataset, we
have introduced a re-identification deep network, MVR-net,
specifically designed for maritime surveillance domain. This
network architecture achieves reliable re-ID performance on
maritimevessels by combining their spatial and channel-wise
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features. For extracting a better representation of vessels in
spatial dimensions, MVR-net employs two separate height-
wise and width-wise branches. Since the vessels are captured
at different resolutions, the spatial branches partition the
feature embedding into three different sets to detect more
useful features for each resolution scenario. The proposed
network outperforms PRN and MGN, two well-known re-
identification networks, with 2.9% and 8.7%mAP, and 4.3%
and 6.6% higher Rank-1, respectively. We have validated the
MVR-net efficiency by testing several alternative candidate
network designs, where it is shown that the adopted archi-
tecture yields the highest scores.

For future work, the implementation parameters of base-
line networks and the MVR-net can be further tuned.
Additionally,we aimat improving theMVR-net performance
onVR-VCA, using pose and class information of vessels, and
multi-resolution feature pyramids. Moreover, to address the
challenge that is imposed by having different vessels with
similar appearances, a model refinement focusing on detect-
ing local features of vessel images could be explored.
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