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Abstract
In unmanned aerial vehicle (UAV) flights, power lines are considered as one of the most threatening hazards and one of the
most difficult obstacles to avoid. In recent years, many vision-based techniques have been proposed to detect power lines to
facilitate self-driving UAVs and automatic obstacle avoidance. However, most of the proposed methods are typically based on
a common three-step approach: (i) edge detection, (ii) the Hough transform, and (iii) spurious line elimination based on power
line constrains. These approaches not only are slow and inaccurate but also require a huge amount of effort in post-processing
to distinguish between power lines and spurious lines. In this paper, we introduce LS-Net, a fast single-shot line-segment
detector, and apply it to power line detection. The LS-Net is by design fully convolutional, and it consists of three modules:
(i) a fully convolutional feature extractor, (ii) a classifier, and (iii) a line segment regressor. Due to the unavailability of large
datasets with annotations of power lines, we render synthetic images of power lines using the physically based rendering
approach and propose a series of effective data augmentation techniques to generate more training data. With a customized
version of the VGG-16 network as the backbone, the proposed approach outperforms existing state-of-the-art approaches. In
addition, the LS-Net can detect power lines in near real time. This suggests that our proposed approach has a promising role
in automatic obstacle avoidance and as a valuable component of self-driving UAVs, especially for automatic autonomous
power line inspection.

Keywords Line segment detection · Power line detection · Power line inspection · Deep learning · UAVs

1 Introduction

Obstacle detection and avoidance are the key to ensure low
altitude fight safety. Due to their extremely small size, power
lines are considered as one of the most threatening hazards
and one of the most difficult obstacles for unmanned aerial
vehicles (UAVs) to avoid [31].

In automatic autonomous vision-based power line inspec-
tion, power line detection is crucial, not only for ensuring
flight safety, and for vision-based navigation of UAVs, but
also for inspection to identify faults on power lines (e.g., cor-
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roded and damaged power lines) and surrounding objects,
such as vegetation encroachment [26].

In recent years, many techniques have been proposed to
detect power lines automatically. However, most of the pro-
posed methods are typically based on a common three-step
approach: First, an edge detector such as Canny [6] is applied
to produce edge maps. Then, the Hough transform [7], the
Radon transform, or a line tracing algorithm, are utilized to
detect straight lines from the edge maps. Finally, power line
constraints, such as parallel lines, are applied to eliminate
spurious lines and detect the power lines. These approaches
not only are slow and inaccurate but also require a con-
siderable amount of effort in post-processing to distinguish
between power lines and spurious lines.

With the aim of facilitating real-time and accurate power
line detection for UAV vision-based navigation and inspec-
tion, we propose in this paper LS-Net, a fast single-shot
line-segment detector, and apply it to power line detection.

The work presented in this paper is part of an ongoing
effort involving the exploitation of recent advances in deep
learning (DL) and UAV technologies for facilitating auto-
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matic autonomous vision-based inspection of power lines. In
our previous work [26], we first proposed a novel automatic
autonomous vision-based power line inspection concept that
uses UAV inspection as the main inspection method, opti-
cal images as the primary data source, and deep learning
as the backbone of data analysis. We then identified six
main challenges of DL vision-based UAV inspection: the
lack of training data; class imbalance; the detection of small
power components and faults; the detection of power lines
in cluttered backgrounds; the detection of previously unseen
components and faults; and the lack of metrics for evaluating
inspection performance.

To move forward, we proposed approaches to address the
first three challenges and built a basic automatic vision-based
inspection system with two custom-built UAVs and five DL-
based models for data analysis and inspection [27].

In this paper, we take this further by addressing the fourth
challenge of DL vision-based UAV inspection, which is
to detect power lines in cluttered backgrounds, with our
proposed LS-Net. The LS-Net is a feed-forward, fully con-
volutional neural network (CNN) [37] and consists of three
modules: (i) a fully convolutional feature extractor, (ii) a
classifier, and (iii) a line segment regressor. Due to the
unavailability of large datasets with annotations of power
lines, we render synthetic images of power lines using the
physically based rendering (PBR) approach [18] and pro-
pose a series of effective data augmentation techniques to
generate more training data. With a customized version of
the VGG-16 network [34] as the backbone, the proposed LS-
Net outperforms existing state-of-the-art DL-based power
line detection approaches and shows the potential to facil-
itate real-time power line detection for obstacle avoidance in
low-altitude UAV flights.

The contribution of this paper is fourfold. First, we
propose a novel single-shot line segment detector, called
LS-Net. The proposed LS-Net can be trained end-to-end
via a weighted multitask loss function, which is a combi-
nation of Focal loss [13] for addressing the class imbalance
in classification and Wing loss [8] for restoring the balance
between the influence of errors of different sizes in multiple
points regression. Second, we resolve the issues of single-
shot detectors, which typically employ a traditional one-grid
approach, when applied to line segment detection by propos-
ing a four-grid approach. To the authors knowledge, such
an approach is new in the single-shot approaches based on
CNNs. Thirdly, we address the lack of training data by using
synthetic data rendered by the PBR approach and applying a
series of effective data augmentation techniques to generate
more training data. Finally, this work is in our opinion paving
the way for fully automatic autonomous vision-based power
line inspection, in which high-speed UAVs equipped with
sensors, cameras, a DL vision-based UAV navigator, and a
DL-based model for data analysis, can automatically navi-

gate along power lines to collect data for offline inspections
and perform online inspections to identify potential faults
quickly.

The remainder of the paper is structured as follows: Sect. 2
presents background knowledge and relevant related work,
before we describe our proposed LS-Net in Sect. 3. Next,
in Sect. 4, we present in detail our experimental results and
ablation studies. Then, in Sect. 5, we discuss the potential of
our proposed LS-Net in UAV navigation and UAV inspec-
tion as well as in detecting other linear structures. Finally, in
Sect. 6, we conclude the paper with a summary.

2 Background and related work

In the past few years, many approaches to power line detec-
tion have been proposed. These approaches can be roughly
categorized as (i) line-based methods; (ii) piece-wise line
segment-based methods; (iii) auxiliaries assisted methods;
(iv) and DL-based methods.

2.1 Line-basedmethods

A straight-forward approach to power line detection is to
treat the power line as a straight line and apply line detection
algorithms directly. For example, Li et al. utilized the Hough
transform to detect straight lines from pulse-coupled neural
network filtered images and employed K-means clustering to
discriminate power lines fromothermistakable linear objects
[22,23].

Although this approach is effective and easy to implement,
its strong assumptions on the characteristics of power lines,
including (i) a power line has uniform brightness, (ii) a power
line approximates a straight line, and (iii) power lines are
approximately parallel to each other, make it a less practical
approach.Due to the strong assumptions, line-basedmethods
often mistakenly detect linear objects, such as metallic fence
lines [22], as power lines and misdetected power lines that
appear as arc curves due to the influence of gravity [31].

2.2 Piece-wise line segment-basedmethods

With the aim of detecting both straight power lines and
curvy ones, some researchers have proposed to segment a
power line into piece-wise line segments so that they can
be approximated by straight lines [36,42]. For example, Yan
et al. utilized the Radon transform to extract line segments
of a power line, then employed a grouping method and the
Kalman filter to link each line segment, and connect the
linked line segments into a complete line [42]. Song et al.
applied matched filter and first-order derivative of Gaussian
to detect line segments, then used a graph cut model based on
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Fig. 1 Sample augmented images (from left to right): original image; pixel-level annotation, image with Gaussian-distributed additive noise;
Gaussian blurred image; color manipulated image; elastic transformed image, image with new background, cropped and flipped image with new
background

graph theory to group the detected line segments into whole
power lines [36].

Similar to line-based methods, piece-wise line segment-
based methods also often mistakenly detect linear objects
with similar line features in the background, such as metallic
fence lines and building edges, as power lines [36].

2.3 Auxiliaries-assistedmethods

To address the existing problems of line-based and piece-
wise line segment-basedmethods,much effort has beenmade
toward utilizing correlation information and context features
provided by auxiliaries. For example, Zhang et al. proposed
to use the spatial correlation between the pylon and the
power line to improve transmission line detection perfor-
mance [45]. The proposed method outperforms line-based
and piece-wise line segment-based methods; however, the
performance drops significantly when the pylon is absent or
occluded.

To eliminate the need for manually selecting auxiliaries
and defining spatial relationships between auxiliaries and
power lines, Shan et at. proposed an optimization-based
approach for automatic auxiliaries selection and contexts
acquisition [31]. The proposed approach surpasses tradi-
tional methods that use manually assigned auxiliaries both
in terms of detection accuracy and false alarm probability;
however, it is quite slow due to the sliding window-based
object extraction and the context representation between the
auxiliaries and the hypotheses.

To further improve auxiliaries-assisted power line detec-
tion accuracy and speed, Pan et al. proposed a metric for

measuring the usefulness of an auxiliary in assisting power
line detection, named spacial context disparity, based on
two factors: spatial context peakedness and spatial context
difference and applied it for automatic selection of opti-
mal auxiliaries [29]. According to the authors, the proposed
method is robust and can achieve satisfactory performance
for power line detection.

2.3.1 DL-based methods

One of the earliest attempts to use deep learning for power
line detection was the work of Jayavardhana et al. [14]. The
authors proposed a CNN-based classifier that uses histogram
of gradient (HoG) features as the input and applied it in a
sliding window fashion to classify patches of size 32 × 32
into two classes: “Line present” and “No line present.” The
authors also fine-tuned the GoogleNet on patches of original
images for the same task. According to the authors, the pro-
posed CNN-based classifier achieves an F-score of 84.6%
and outperforms the GoogleNet, which achieves an F-score
of 81%.

Ratnesh et al. [25] treated wire detection as a semantic
segmentation task and performed a grid search over a finite
space of CNN architectures to find an optimal model for the
task based on dilated convolutional networks [44]. Themodel
was trained on synthetic images of wires generated by a ray-
tracing engine and fine-tuned on real images of wires from
the USF dataset [16]. According to the authors, the proposed
model outperforms the previous work that uses traditional
computer vision and various CNN-based baselines such as
FCNs, SegNet, and E-Net; the model achieves an average
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precision (AP) score of 0.73 on the USF dataset and runs
at more than 3Hz on the NVIDIA Jetson TX2 with input
resolution of 480 × 640.

Although treating wire detection as a semantic segmen-
tation task has been proved to be a powerful approach for
detecting wires [25], its requirement of pixel-level annotated
ground-truth datamakes it less practical than traditional com-
puter vision approaches. Sang et al. proposed to use weekly
supervised learning with CNNs for localizing power lines in
pixel-level precision by only using image-level class infor-
mation [20]. First, a classifier adapted from the VGG19 is
applied to classify subregions (128 × 128) from an input
image (512×512) by using a slidingwindowapproach. Then,
feature maps of intermediate convolutional layers of subre-
gions that are classified as “sub-region with power lines”
are combined to visualize the location of the power lines.
Although the localization accuracy of the proposed approach
is still far from an applicable level of industrial fields, it can
be applied, according to the authors, to generate ground-truth
data in pixel-level roughly.

Yan et al. proposed a power detection pipeline based on
pyramidal patch classification in [21]. First, input images are
hierarchically partitioned into patches. Next, a CNN classi-
fier is trained to classify the patches into two classes: patches
with power lines and patches without power lines. Then,
the classified patches are used as inputs for edge feature
extraction using steerable filters and line segment detec-
tion using the progressive probabilistic Hough transform
(PPHT). Finally, the detected line segments are connected
using a power line segments correlation module to form
complete power lines. The authors concluded that the pro-
posed approach significantly improves the detection rate of
the power line detection and largely decreases the false alarm
rate.

3 The line segment detector (LS-Net)

3.1 Data generation

3.1.1 Synthetic data generation

Due to the unavailability of large datasets with annota-
tions of power lines, we collaborate with Nordic Media Lab
(NMLab)1 to render synthetic images of power lines using the
physically based rendering (PBR) approach [18]. First, we
model aluminum conductor steel-reinforced (ACSR) cables,
which are typically composed of one steel center strand
and concentric layers of high-purity aluminum outer strands,
using the Autodesk 3DS Max program. To increase the real-
istic appearance of the cables, we utilize the bevel and the

1 http://nmlab.no/.

twist modifiers together with the metal brushed steel tex-
ture. Then, we randomly superimpose the cables on 71 8K
highdynamic range images (HDRIs) collected from the Inter-
net.2 Next, to further increase the realistic appearance of the
cables, we employ cube mapping to capture the reflection
and the lighting data from the HDRIs and apply them to
the cables. Finally, we apply a series of effective variations,
with respect to the camera angle, the camera distance, out-
of-focus blur, cable colors, the number of cables, and the
distance between cables, to render more synthetic images.

3.1.2 Data augmentation

Inspired by the success of data augmentation for improving
the performance of CNNs in [40] and [33], we propose a
series of effective data augmentation techniques to generate
more training data by applying transformations in the data-
space. These are all implemented using the scikit-image [38]
and the OpenCV libraries [4].

The first technique replaces the background of the gen-
erated synthetic images with real background images to
increase the diversity of the dataset and to account for var-
ious types of background variations during the inspection
(e.g., different seasons, weather conditions, and lighting con-
ditions).

The second technique adds Gaussian-distributed additive
noise to account for noisy image acquisition (e.g., sensor
noise caused by poor illumination and/or high temperature,
and/or transmission) [3]. The augmented image f (i, j) is the
sum of the true image s(i, j) and the noise n(i, j):

f (i, j) = s(i, j) + n(i, j). (1)

The noise term, n(i, j), follows a Gaussian random distribu-
tion:

pG(z) = 1

σ
√
2π

e− (z−μ)2

2σ2 , (2)

where z represents the gray level, μ is the mean value, and
σ is the standard deviation.

To account for possible out-of-focus, Gaussian blur is
employed by convolving the image with a two-dimensional
Gaussian function:

G(x, y) = 1

2πσ 2 e
− x2+y2

2σ2 , (3)

where x and y are distances from the origin in the horizontal
axis and the vertical axis, respectively, and σ is the standard
deviation [32].

2 https://hdrihaven.com/.
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To introduce invariance to changes in lighting and to cap-
ture minor color variations, especially in power lines, a series
of color manipulations including random brightness, random
saturation, random contrast, and random hue are utilized. In
addition, to further extend color invariance, we randomly
remove colors from RGB images by first converting them to
grayscale and then converting the grayscale images back to
RGB.

With the aim of training models that can detect not only
perfectly straight line segments but also curvy ones, elastic
deformations [33] are employed. First, two random displace-
ment fields for the x-axis (Δx) and y-axis (Δy) are generated
as follows:

Δx(x, y) = rand(−1,+1), (4)

Δy(x, y) = rand(−1,+1), (5)

where rand(−1, 1) is a randomnumber between−1 and+1,
generatedwith a uniformdistribution.Next, the fieldsΔx and
Δy are convolved with a two-dimensional Gaussian function
similar as shown in Eq. (3) to form elastic deformation fields.
Then, the elastic deformation fields are scaled by factorα that
controls the intensity of the deformation. Finally, the fields
Δx and Δy are applied to images.

To account for various camera distances and viewing
angles, zoom and rotation operators are employed [39]. The
zoom operator is applied by randomly cropping images and
scaling them to their original size. The rotation operator is
employed by multiplying images with a rotation matrix R:

R =
[
cos θ − sin θ

sin θ cos θ

]
,

where θ is the rotation angle. The final technique flips the
images horizontally and vertically (Fig. 1).

3.2 LS-Net architecture

Inspired by the success of single-shot object detectors such as
SSD [24] and YOLO [30] in terms of speed and accuracy, we
propose a single-shot line segment detector, named LS-Net.
The LS-Net is based on a feed-forward, fully convolutional
neural network and consists of three modules: (i) a fully con-
volutional feature extractor, (ii) a classifier, and (iii) a line
segment regressor connected as shown in Fig. 2.

The design of the LS-Net architecture is mainly inspired
by state-of-the-art single-shot object detectors such as SSD
[24] and YOLO [30]. Specifically, the LS-Net divides the
input image of sizeW ×H ×C into a grid, and each grid cell
of size C × C predicts coordinates and a confidence score
for the longest line segment in the cell. The confidence score
indicates the probability of the cell containing a line segment,
and the coordinates are the normalized distances of the two

Fig. 2 LS-Net is a feed-forward, fully convolutional neural network and
consists of three modules: (i) a fully convolutional feature extractor, (ii)
a classifier, and (iii) a line segment regressor

endpoints of the line segment to the local x-axis and y-axis
of the cell.

The traditional one-grid approach has been proven towork
well for single-shot object detectors such as SSD [24] and
YOLO [30]; however, it faces two problems when applied
to line segment detection: (i) discontinuities and gaps at cell
borders, and (ii) discontinuities and gaps at cell corners. In
the one-grid approach, due to regression errors, the detected
line segments can be shorter than the ground truths. This
can result in discontinuities and gaps in the detected lines
at borders of adjacent cells that make regression errors. In
addition, the one- grid approach ignores short line segments,
especially at cell corners, due to the lack of features. This
can also lead to discontinuities and gaps in the detected lines
(see Fig. 3 and Fig. 4).

To address the two above-mentioned problems, we pro-
pose to replace the one-grid approach by a four-grid
approach. Specifically, the four-grid LS-Net divides the input
image into four overlapping grids: a Sm×Sm grid (main grid),
a Sm × Sa grid (horizontal grid), a Sa × Sm grid (vertical
grid), and a Sa × Sa grid (center grid), where Sa = Sm − 1
(see Fig. 5). The main grid, which works exactly the same
as the grid used by SSD and YOLO for detecting objects,
is employed for detecting line segments in grid cells. The
horizontal and vertical grids are utilized for closing the gaps
at horizontal and vertical borders, respectively. The central
grid is used for detecting short line segments at cell corners
that were ignored by the main grid. All the detected line seg-
ments from the four grids are combined together to form a
line segment map. Since the four-grid LS-Net utilizes three
additional grids to detect short line segments ignored by the
main grid and close gaps at horizontal and vertical borders,
the discontinuities in the detected lines are significantly elim-
inated (see Fig. 5).
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Fig. 3 Illustration of the four-grid approach. LS-Netwith the traditional
one-grid approach (the first column) ignores short line segments at cell
corners and create gaps at cell borders in the detected lines. LS-Net with
the four-grid approach (the third column) utilizes three additional grids
(the second column) to detect line segments ignored by the main grid
and close gaps at horizontal and vertical borders, which significantly
eliminate the discontinuities in the detected lines

3.2.1 Fully convolutional feature extractor

The LS-Net feature extractor is inspired by the VGG-16
network [34]. We truncate the network before the last max-
pooling layer and substitute the remaining max-pooling
layers by strided convolutional layers with stride 2. Max-
pooling layers have been used extensively in CNNs for image
classification; however, they are not an optimal choice for the
proposed LS-Net since they throw away spatial information
that is useful for predicting line segment end-points.

With the aim of easing the optimization, enabling the net-
work to converge faster, and eliminating the dependence on
batch sizes, we adopt Group Normalization [41] before acti-
vations in every convolutional layer.

3.2.2 Classifier

The classifier sub-network takes feature maps extracted by
the fully convolutional feature extractor as input and pre-
dicts whether each grid cell contains a line segment or not.
The sub-network consists of two layers: The first is a 2 × 2
convolutional layer with stride 1 that works as a transformer
(transformation layer) and transforms the input feature maps
into four sets of feature maps corresponding to the four over-
lapping grids. The second layer is a 1×1 convolutional layer
that predicts a confidence score for each grid cell.

Fig. 4 LS-Net’s flowchart. The flowchart shows the process by which
a line segment is predicted in a grid cell. Since the LS-Net is a single-
shot detector, it predicts line segments for all the grid cells in a single
forward pass

3.2.3 Line segment regressor

The line segment regressor sub-network takes feature maps
extracted by the fully convolutional feature extractor as input
and predict coordinates of the longest line segment in each
grid cell. The sub-network also consists of two layers: The
first layer is similar to the first layer of the classifier sub-
network. The second is a 1 × 1 convolutional layer that is
responsible for predicting line segment coordinates.
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3.2.4 Summary

With the four-grid approach, the output of the LS-Net is very
similar to that of a traditional sliding-window detector of size
C × C with stride C/2; however, the LS-Net has to major
advantages over the sliding-window approach: The first is
that instead of applying a costly forward pass hundreds of
times, one for each cell, the LS-Net makes predictions for
all cells in a single forward pass, which was made possi-
ble thanks to the single-shot detector architecture and the
combination of our proposed four-grid approach and our pro-
posed transformation layers. The second advantage is that
the LS-Net, with a large effective receptive field, can take
into account contextual information when making predic-
tions. In other words, the LS-Net looks at not only the target
cell but also its neighboring cells to make predictions for the
cell.

To evaluate the effectiveness of the proposed LS-Net
architecture, we train the LS-Net on input images of size
512×512×3 to detect line segments in cells of size 32×32,
i.e., Sm = 16; however, the proposed LS-Net architecture
can be easily generalized to handle images of any sizes and
to detect line segments in cells of any sizes. A detailed con-
figuration of the LS-Net used in our experiments in this paper
is shown in Table 1. All convolutional layers in the feature
extractor are padded so that they produce an output of the
same size as the input. Padding is not applied in convolu-
tional layers in the classifier and the regressor.

Table 1 LS-Net’s Configuration. The convolutional layer parameters
are denoted as “conv(receptive field size)-(number of channels)[-
S(stride)]”. The default stride is 1

Input image (512 × 512 × 3)

Conv3-64

Conv3-64

Conv3-64-S2

Conv3-128

Conv3-128

Conv3-128-S2

Conv3-256

Conv3-256

Conv3-256-S2

Conv3-512

Conv3-512

Conv3-512-S2

Conv2-512 Conv2-512

Conv1-2 Conv1-4

3.3 LS-Net multitask loss

The LS-Net has two sibling output layers. The first sib-
ling layer outputs a discrete probability distribution, pit =
(pi , 1− pi ), for each grid cell, indexed by i , over two classes:
cell with line segments and cell without line segments. The
probability distribution pit is computed by a softmax over
the two outputs of a 1 × 1 convolution layer at the i th cell.
The second sibling layer outputs coordinates of the two end-
points of the longest line segment, ei = (eix1, e

i
y1, e

i
x2, e

i
y2),

for each grid cell, indexed by i .
Each training cell is labeledwith a ground-truth class label

yi ∈ {±1} and a ground-truth end-point regression target
t i = (t ix1, t

i
y1, t

i
x2, t

i
y2). We use a weighted multitask loss

function, L , to jointly train for cell classification and line
segment end-point regression:

L(pt , y, e, t) = Lcls(pt , y) + λ[y = 1]Lreg(e, t), (6)

where the Iverson bracket indicator function [y = 1] evalu-
ates to 1 when y = 1 and 0 otherwise.

The first task loss, Lcls , is a Focal loss [13] defined as
follows:

Lcls(pt , y) = −αt (1 − pt )
γ log (pt ), (7)

where γ ≥ 0 is a tunable focusing parameter, αt ∈ [0, 1] is
a weighting factor defined as follows:

αt =
{

α if y = 1

1 − α otherwise
, (8)

and pt ∈ [0, 1] is the model’s estimated probability defined
as follows:

pt =
{
p if y = 1

1 − p otherwise
. (9)

Since the number of cells without line segments is much
larger than the number of cells with line segments, the Focal
loss is employed instead of a standard Cross-Entropy loss
[12] to address the class imbalance during training.

The second task loss, Lreg , is a Wing loss [8] defined as
follows:

Lreg(e, t) =
{

w ln (1 + d/ε) if d < w

d − C otherwise
, (10)

where w is a nonnegative upper bound that sets the range of
the nonlinear part to (−w,w), ε is a constant that limits the
curvature of the nonlinear region, C = w − w ln (1 + w/ε)

is a constant that smoothly links the piecewise-defined linear
and nonlinear parts, and d is our proposed error function,
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Fig. 5 Illustration of the four
overlapping grids approach.
LS-Net with one grid (the
leftmost branch) ignores short
line segments at cell corners and
creates gaps at cell borders in
the detected lines. LS-Net with
four overlapping-grid approach
utilizes three additional grids to
detect line segments ignored by
the first grid and close gaps in
horizontal and vertical lines,
which significantly eliminate the
discontinuities in the detected
lines

which computes the minimum absolute difference between
the predicted end-points e = (ex1, ey1, ex2, ey2) and the tar-
get end-points t = (tx1, ty1, tx2, ty2) defined as follows:

d(e, t) = min
(∑

(|t − e|),
∑

(|t − swap(e)|)
)

, (11)

where swap(e) = (ex2, ey2, ex1, ey1) is a function that
swaps the order of the two end-points.

The error function d is employed to allow the LS-Net to
predicts the two end-points of a line segment regardless of the
order, and theWing loss is utilized instead of standard L2 [11]
or smooth L1 [10] losses to restore the balance between the
influence of errors of different sizes and to allow the model
to regress the line segment end-points more accurately.

3.4 Training and testing

The LS-Net can be trained end-to-end by backpropagation
and stochastic gradient descent (SGD) [19]. We implement
the LS-Net using the Tensorflow framework [1]. We train
the LS-Net from scratch using the Adam optimizer [17] with
initial learning rate 0.0001, 0.9 momentum1, 0.999 momen-

tum2, and batch size 8 (due to memory limitation) on a
TITAN X (Pascal) GPU. We use early stopping to prevent
the network from overfitting. Our network converges after
3.5 epochs, which takes around 48 hours of training time.

Before training,we augment our dataset by generating five
random crops and their flipped versions from each image;
we further augment the dataset by replacing the background
from each image with five randomly selected backgrounds
from our background image dataset.

During training, we apply data augmentation on-the-fly
by adding Gaussian-distributed additive noise, by applying
Gaussian blur, by performing a series of color manipulations,
and by employing elastic deformations. All the on-the-fly
data augmentation techniques are applied with a probability
of α. We use α = 0.25 in our experiments.

For 512× 512× 3 input, the LS-Net runs at 21.5 Frames
Per Second (FPS) on a TITAN X (Pascal) GPU at test time.
However, the speed can be further increased by employing
a shallower, thinner feature extractor and by decreasing the
input size.
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4 Experiments

4.1 Comparisons with the state-of-the-art results

As presented in Sect. 2, there are very few relevant DL-
based approaches for power line detection. In addition, two
approaches among the four reviewed ones apply deep learn-
ing for patch classification only, while the line detection
step is still addressed by a traditional line detection or line
segment detection algorithm such as the progressive prob-
abilistic Hough transform (PPHT) [9] or the line segment
detector (LSD) [14]. This typically results in low analysis
speed and a need for post-processing to distinguish between
power lines and spurious lines. Since our goal is to facilitate
real-time power line detection and avoidance in low-altitude
UAV flights with deep learning, in this section, we com-
pare our proposed LS-Net only to state-of-the-art DL-based
approaches for power line detection that offer high analysis
speed and require minimal effort in post-processing in terms
of FPS, pixel-level Averaged Recall Rate (ARR), pixel-level
averaged precision rate (APR), and pixel-level averaged F1
Scores:

ARR = 1

N

N∑
i=1

Ri = 1

N

N∑
i=1

T Pi
T Pi + FNi

, (12)

APR = 1

N

N∑
i=1

Pi = 1

N

N∑
i=1

T Pi
T Pi + FPi

, (13)

F1 Scores = 1

N

N∑
i=1

2 × Pi × Ri

Pi + Ri
, (14)

where Ri , Pi , T Pi , FNi , FPi are pixel-level recall, pixel-
level precision, number of true positive pixels, number of
false negative pixels, and number of false positive pixels
of the i th image, respectively, and N is the number of test
images.

First, we compare our proposed LS-Net with the weakly
supervised learning with CNNs (WSL-CNN) approach pro-
posed in [20] on the publicly available ground truth of power
line dataset (Infrared-IR andVisible Light-VL) [43], which is
one of the most widely used power line datasets. The LS-Net
and the WSL-CNN approaches share a similar objective that
is to localize power lines by using cheaper ground-truth data
(GTD) than pixel-levelGTD(e.g., image-level class informa-
tion and line end-point information). For a fair comparison,
we convert line segment maps generated by the LS-Net to
pixel-level segmentation maps using a similar procedure as
applied in [20]. First, the pixel-level segmentation maps, S,
are generated as follows:

con f (x, y) = max({con f (LSi ) | (x, y) ∈ LSi }), (15)

S(x, y) =
{
0 if (x, y) /∈ LSi ∀i ∈ [1, L]
con f (x, y) otherwise

, (16)

where L is the number of detected line segments, LSi is
the list of all pixels belonging to the i th line segment, and
con f (LSi ) is a function that returns the confidence score of
the i th line segment. Since each line segment predicted by
the LS-Net is represented by a pair of two end-points, we
apply the 8-connected Bresenham algorithm [5] to form a
close approximation to a straight line between the two end-
points. We vary the width of the straight line, Wl , from 1
to 5 and select Wl = 2 and Wl = 3 since they result in
the highest F1 scores. We call these models LS-Net-W2 and
LS-Net-W3, respectively. Then, the generated segmentation
maps are smoothed by convolving with a two-dimensional
Gaussian function, as shown in Eq. (3). Finally, the predicted
segmentation maps are binarized by using the Otsu’s method
[15,28].

Then, we implement the dilated convolution networks for
wire detection (WD-DCNN) proposed in [25] in Tensorflow.
In addition, we improve the WD-DCNN approach by adopt-
ing Group Normalization [41] to accelerate the training of
the networks and Focal loss [13] for restoring the balance
between the influence of errors of different sizes in multi-
ple points regression. We create three improved models. In
the first model, we add a group normalization layer after
each convolutional layer in the WD-DCNN model (WD-
DCNN-GN). We replace the class-balanced Cross-Entropy
loss function [44], adopted by the WD-DCNN model, by
the Focal loss to train the second model (WD-DCNN-FL).
Finally, we combine both Group Normalization and Focal
loss to train the third model (WD-DCNN-GNFL). We train
theWD-DCNNmodel and its improved versions on the same
training dataset that we use to train our proposed LS-Net. The
predicted segmentationmaps of the fourmodels are binarized
by using the Otsu’s method [15,28].

Finally, for the sake of completeness, we also compare the
LS-Net to one of the most well-known traditional approach
for line detection, thePPHT[9].Weapply the sameprocedure
described above to convert the PPHT’s detection results to
segmentation maps. The test results are shown in Table 2

As can be seen from Table 2, both our proposed LS-
Net-W2 and LS-Net-W3 models achieve state-of-the-art
performance in terms of F1 score. In addition, the LS-Net-
W2 model surpasses all the existing state-of-the-art methods
in terms of APR, while the LS-Net-W3 model attains state-
of-the-art ARRby considerablemargins. Visual comparisons
of the LS-Net-W2 model, the PPHT, and the state-of-the-art
DL-based approaches for power line detection including the
WD-DCNN, theWD-DCNN-GN, and its improved versions
are shown in Fig. 6.
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Table 2 Detection results on the ground truth of power line dataset
(Infrared-IR and Visible Light-VL). FPS was measured on a Titan X
(Pascal) GPU. *Results reported by [20]

ARR APR F1 Score FPS

WSL-CNN [20]* 0.6256 - - -

PPHT [9] 0.8409 0.3217 0.4392 8.6

WD-DCNN [25] 0.7192 0.4713 0.4835 36.5

WD-DCNN-GN 0.8292 0.4148 0.4882 19.8

WD-DCNN-FL 0.7514 0.4680 0.5079 36.5

WD-DCNN-GNFL 0.7930 0.4690 0.5218 19.8

LS-Net-W2 0.7972 0.4874 0.5344 21.5

LS-Net-W3 0.8525 0.4483 0.5256 21.5

Bold values highlight the best methods and results

The results show that even though the LS-Net is trained
for localizing the power lines instead of detecting power line
pixels, it still outperforms methods that are trained explicitly
for that task. To compare with these methods, we convert the
detected line segments to pixel-level segmentation maps by
simply drawing a line between the two end-points of every
predicted line segment. We believe that a more sophisticated
method for converting line segments to pixel-level segmen-
tation maps would increase the ARR, APR, and F1 Scores
of the LS-Net further. However, since our main goal is to
localize the power lines instead of detecting the power line
pixels. We employ a very simple conversion method to high-

light the LS-Net’s advances in power line localization. More
test results of the LS-Net on real images are shown in Fig. 7.

4.2 Ablation study

To investigate the effectiveness of the proposedLS-Net archi-
tecture and the loss function, we conducted several ablation
studies using the publicly available ground truth of power
line dataset (Infrared-IR and Visible Light-VL) [43]. We use
the approach presented in Sect. 4.1 to convert line segment
maps generated by the LS-Net to pixel-level segmentation
maps and compare different variants of the LS-Net in terms
of APR, ARR, and F1 Score. To increase the interpretability
of the comparison results, we apply a simple thresholding
method (t = 0.5) to binarize segmentation maps instead of
the Otsu method and set the width of the line segmentWl to 1
when applying the 8-connected Bresenham algorithm. This
could result in lower APR, ARR, and F1 score; however, it is
not an issue since improving the performance of the LS-Net
is not the primary goal of the ablation studies.

First, we evaluate the effects of replacing max-pooling
layers by strided convolution layers. To do this, we compare
the proposed LS-Net with strided convolutional layers (LS-
Net-S) with an LS-Net with max-pooling layers (LS-Net-P),
which is constructed by replacing each stride-2 convolutional
layer in the LS-Net-S by a stride-1 convolutional layer fol-
lowed by a max-pooling layer. The comparisons between the
LS-Net-S’ and the LS-Net-P’ performances and losses are

Fig. 6 Visual comparisons of the LS-Net-W2 model and the state-of-
the-art methods. From left to right, top to bottom are, respectively, a
the original image, b the PHT’s detection results, c the WSL-CNN’s
detection results, d the WD-DCNN’s detection results, e the WD-

DCNN-GN’s detection results, f theWD-DCNN-FL’s detection results,
g the WD-DCNN-GNFL’s detection results, and h the LS-Net’s detec-
tion results
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Fig. 7 Test results of the LS-Net on real images. The first and the third columns show the outputs from the LS-Net while the second and the fourth
columns show the original images
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Table 3 Comparisons between the LS-Net with strided convolutional
layers (LS-Net-S) and the LS-Net with max-pooling layers (LS-Net-P)

Method APR ARR F1 Score

LS-Net-P 0.7828 0.5378 0.5885

LS-Net-S 0.8004 0.5368 0.5940

Bold values highlight the best methods and results

shown in Table 3. As can be seen from Table 3, the LS-Net-S
architecture outperforms the LS-Net-P architecture in terms
of APR and F1 Score.

We observe that both LS-Net-S and LS-Net-P perform
similarly on the classification sub-task; however, the LS-Net-
S outperforms the LS-Net-P on the line segment regression
sub-task (see Fig. 8). This indicates that strided convolution is
a more suitable choice for our proposed LS-Net architecture
than the standard max pooling.

Then, we investigate the impact of the four-grid approach.
We compare against LS-Net with one, two, three, and four
grids, respectively. Table 4 shows that as the number of grids
increases, APR decreases slightly, but ARR increases dra-
matically. This results in an increase of F1 score as the
number of grids increases. Since LS-Net with more grids
makes more predictions then LS-Net with fewer grids, their
APRs are slightly lower than that of LS-Net with fewer grids.
However, as the additional grids detect short line segments
ignored by the main grid at cell corners and close gaps at hor-
izontal and vertical borders, the ARR of LS-Net with more
girds is significantly higher than that of LS-Net with fewer
grids. As can be seen from Table 4 and Fig. 9, the LS-Net
with four grids outperforms LS-Net with one, two, and three
grids in terms of ARR and F1 score and significantly elimi-
nates the discontinuities in the detected lines. This suggests
that our proposed four-grid approach is more suited for our
proposed LS-Net architecture.

Next, we show the effects of theWing loss on line segment
regression performance. We compare against LS-Net trained

Table 4 Performance of LS-Netwith the one, two, three, and four grids,
respectively. The methods are denoted as “‘LS-Net-〈number of grids〉-
〈grids〉”. M, H, V, C represent main, horizontal, vertical, and central
grids, respectively

Method APR ARR F1 Score

1 Grid

LS-Net-1-M 0.8312 0.3791 0.4847

2 Grids

LS-Net-2-MH 0.8174 0.4717 0.5540

LS-Net-2-MV 0.8173 0.4703 0.5533

LS-Net-2-MC 0.8165 0.4776 0.5574

3 Grids

LS-Net-3-MHC 0.8080 0.5121 0.5792

LS-Net-3-MVC 0.8080 0.5117 0.5791

LS-Net-3-MVH 0.8064 0.5165 0.5826

4 Grids

LS-Net-4-MHVC 0.8004 0.5368 0.5940

Bold values highlight the best methods and results

with Wing loss (LS-Net-W) and its variants: LS-Net trained
with L2 loss (LS-Net-2), L1 loss (LS-Net-1), and Smooth L1
loss (LS-Net-S) [10], respectively. Table 5 shows that LS-
Net trained with Wing loss outperforms its variants in terms
of APR; however, it performs worse in terms of ARR. Wing
loss biases the optimizer towardminimizing small regression
errors at the end of the training by increasing the gradient,
given by 1/x , as the errors approach zero error. This results in
lower regression errors that lead to a significantly higherAPR
compared to the LS-Net-1, LS-Net-2, and LS-Net-S. How-
ever, this causes the classification errors to increase as we use
a fixedweight in themultitask loss (see Eq. (6)). This leads to
a slightly lower ARR compared to the LS-Net-1, LS-Net-2,
and LS-Net-S. Since the increase in APR is much more than
the decrease in ARR, the F1 score of LS-Net trained with
Wing loss is higher than LS-Net trained with the standard
regression losses such as L2, L1, and Smooth L1. This indi-

Fig. 8 Comparisons between
LS-Net-S’ and LS-Net-P’ test
losses. LS-Net-S and LS-Net-P
perform similarly on the
classification sub-task (Focal
loss); however, the LS-Net-S
outperforms the LS-Net-P on
the line segment regression
sub-task (Wing loss)
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Fig. 9 Test results of the LS-Net with (from left to right) one, two,
three, and four grids, respectively. (The width of the line segments is
increased to 5 pixels for better visualizations.) The one-grid LS-Net
approach (the leftmost image) ignores short line segments at cell cor-

ners and leaves gaps at cell borders in the detected lines. The four-grid
LS-Net approach (the rightmost image) detects line segments ignored
by the first grid and close gaps in horizontal and vertical lines, which
significantly eliminate the discontinuities in the detected lines

Table 5 Performance of the LS-Net trained with Wing loss (LS-Net-
W), L2 loss (LS-Net-2), L1 loss (LS-Net-1), and L1 smooth loss (LS-
Net-S)

Method APR ARR F1 Score

LS-Net-2 (L2) 0.7277 0.5789 0.5866

LS-Net-1 (L1) 0.7032 0.5694 0.5765

LS-Net-S (Smooth L1) 0.7317 0.5495 0.5728

LS-Net-W (Wing loss) 0.8004 0.5368 0.5940

Bold values highlight the best methods and results

Table 6 Comparisons between LS-Net trained with Focal Loss (LS-
Net-FL) and LS-Net trained with standard Cross-Entropy loss (LS-Net-
CE)

Method APR ARR F1 Score

LS-Net-CE 0.7946 0.5353 0.5899

LS-Net-FL 0.8004 0.5368 0.5940

Bold values highlight the best methods and results

cates that the Wing loss is a more suitable choice for training
the line segment regressor in our proposed LS-Net architec-
ture; however, an adaptive weighting approach is needed for
balancing the training of the line segment regressor and the
cell classifier. We leave this for future work.

Finally,we evaluate the effect of the Focal loss on cell clas-
sification performance.We compare between LS-Net trained
with Focal loss (LS-Net-FL) and LS-Net trained with stan-
dard Cross-Entropy loss (LS-Net-CE). As can be seen from
Table 6, LS-Net trained with Focal loss outperforms LS-Net
trained with standard Cross-Entropy loss in terms of APR,
ARR, and F1 score. This indicates that theFocal loss is amore
suitable choice for training the cell classifier in our proposed
LS-Net architecture than the standard Cross-Entropy loss.

5 Discussion

With the ability to detect power line segments in near real-
time (21.5 FPS), the LS-Net shows the potential to facilitate
real-time power line detection and avoidance in low-altitude
UAVflights to ensureflight safety.DuringUAVflights, power
line segment maps produced by the LS-Net can be employed
to detect power lines and identify dangerous zones quickly,
and these information sources can be used as additional
inputs to improve the performance of obstacle avoidance and
path recovery algorithms.

In addition, the LS-Net can be utilized for vision-based
UAV navigation and for vision-based inspection of power
lines. In automatic autonomous power line inspection, the
UAV needs to flight along the power lines to take pictures for
offline inspections and performs online inspection to identify
faults on the power lines (e.g., corroded and damaged power
lines) and surrounding objects, such as vegetation encroach-
ment. When GPS-based navigation is not possible, power
line segment maps produced by the LS-Net can be employed
to navigate the UAV along the power lines. Besides, the
power line segment maps can be used for steering the cam-
eras mounted on the UAV to take higher quality pictures of
the power lines to improve the performance and reduce the
costs of both online and offline inspections.

Since the LS-Net can be trained end-to-end and performs
very well even when trained only on synthetic images, it can
potentially be adapted for detecting other linear structures.
One example is railway track detection. In recent years, the
need for automatic vision-based inspection of railway tracks
using UAVs has been increasing since UAVs do not require
separate tracks for data acquisition as in traditional inspection
methods [35]. Similar to power line inspection, the LS-Net
can be potentially applied for detecting railway tracks from
images taken from UAVs. These detections can be utilized
both for navigating the UAVs along the railway tracks and
for steering the cameras mounted on the UAVs to take pic-
tures of the railway tracks for offline inspections. Another
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example is unburied onshore pipeline detection in automatic
UAV-based gas leak inspection [2]. Since the width of gas
pipelines is relatively big in images taken from UAVs, the
LS-Net cannot be applied directly to detect gas pipelines.
However, this problem can potentially be addressed by cast-
ing the gas pipeline detection as a gas pipeline edge detection
problem. The LS-Net can be applied for detecting the edges
of gas pipelines. The edge detection results can be used for
navigating the UAVs along the pipelines, for steering other
sensors such as thermal cameras for detecting gas leaks, and
even for sizing the pipelines.

In addition to railway track detection and unburied
onshore pipeline detection, the LS-Net can potentially be
applied for road detection in low- and mid-altitude aerial
imagery which facilitates many applications of UAVs such
as traffic monitoring and surveillance, path planning, and
inspection [46]. In UAV images, roads are usually very
wide; hence, the edge detection approach as used in unburied
onshore pipeline detection can be applied. Roads in satellite
images, on the other hand, are usually very narrow and thus
can be modeled as lines or curves; this means that the LS-
Net can potentially be applied directly for detecting roads in
satellite images.

6 Conclusion

This paper introduces LS-Net, a fast single-shot line seg-
ment detector. The LS-Net is by design fully convolutional,
and it consists of three modules: (i) a fully convolutional
feature extractor, (ii) a classifier, and (iii) a line segment
regressor. The LS-Net can be trained end-to-end by back-
propagation and stochastic gradient descent (SGD) via a
weighted multitask loss function. The proposed loss func-
tion is a combination of Focal loss for addressing the class
imbalance in classification and Wing loss for restoring the
balance between the influence of errors of different sizes in
multiple points regression.

With a customized version of the VGG-16 network as
the backbone, the proposed approach outperforms existing
state-of-the-art DL-based power line detection approaches.
In addition, the LS-Net can run in near real-time (21.5 FPS),
which can facilitate real-time power line detection for obsta-
cle avoidance in low-altitude UAV flights, for vision-based
UAV navigation and inspection in automatic autonomous
power line inspection. Since the LS-Net can be trained end-
to-end and performs very well even when trained only on
synthetic images, it can potentially be adapted for detect-
ing other linear structures, such as railway tracks, unburied
onshore pipelines, and roads from low- and mid-altitude
aerial images.
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