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Abstract
Neurodegenerative disorder such as Parkinson’s disease (PD) is among the severe health problems in our aging society. It is
a neural disorder that affects people socially as well as economically. It occurs due to the failure of the brain’s dopamine-
producing cells to produce enough dopamine to enable the motor movement of the body. This disease primarily affects vision,
speech, movement problems, and excretion activity, followed by depression, nervousness, sleeping problems, and panic
attacks. The onset of Parkinson’s disease is diagnosed with the help of speech disorders, which are the earliest symptoms of
it. The essential goal of this paper is to build up a viable clinical decision-making system that helps the doctor in diagnosing
the PD influenced patients. In this paper, a specific framework based on grid search optimization is proposed to develop an
optimized deep learning Model to predict the early onset of Parkinson’s disease whereby multiple hyperparameters are to be
set and tuned for evaluation of the deep learning model. The grid search optimization consists of three main stages, i.e., the
optimization of the deep learning model topology, the hyperparameters, and its performance. An evaluation of the proposed
approach is done on the speech samples of PD patients and healthy individuals. The results of the approach proposed are
finally analyzed, which shows that the fine-tuning of the deep learning model parameters result in the overall test accuracy of
89.23% and the average classification accuracy of 91.69%.
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1 Introduction

Parkinson’s disease (PD) is the most common neurological
disorder which affects the central nervous system [1]. There
is a considerable rise in the number of its sufferers, mainly
in the developing nations. The prior symptoms of Parkin-
son’s disease are trembling, impaired mental response, and
improper posture [2]. It is a severe medical condition that is
prevalent in advanced as well as progressing nations, where
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around 10 million people have been diagnosed [3]. The lead-
ing cause of the disease is not traceable yet, but from the signs
and symptoms related to it, this disease can be cured if discov-
ered at the initial stages. It is uncertain to predict whether PD
is a genetic or hereditary disease, and there is no treatment for
its control and prevention yet [4]. The customary determina-
tion of PD includes a doctor taking a neurological history of
the patient and carrying out an assessment of an assortment
ofmotor skills. Several types of blood or clinical studies have
been shown to assist with the detection of PD. Parkinson’s
disorder can be challenging to diagnose correctly, especially
in the early stages. Sometimes, doctors can ask for brain
scans or laboratory tests to eliminate other diseases. The use
of blood tests, cognitive imaging methods such as MRI and
PET scan may be used to avoid medical conditions such
as a coma or depression that are close to Parkinson’s dis-
ease [5]. Since there is no complete analytic test, the task
is frequently troublesome, especially in the beginning peri-
ods, when motor symptoms are not extreme. Signs can be so
unobtrusive in these first stages that they go unnoticed, leav-
ing the disease undiagnosed for expanded periods. Clinical
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conditions prompting misdiagnosis or undiscovered are one
of the broadest areas where medical expert frameworks get
increasing interest.

The investigation of real-life datasets in a clinical setting
by utilizing deep learning and machine learning strategies,
techniques, and tools help in developing an appropriate and
informative framework that can help clinicians in decision
making. The new developments in deep learning have made
it applicable very quickly in the medical fields as it proves
very advantageous in preparing higher dimensional data by
capturing essential features [6]. The models based on deep
learning are prepared appropriately for recognition tasks of
medical images, dermatology, and visual disorders. Up until
this point, very fewmodels based on deep learning have been
utilized for determining cerebrum issues like Alzheimer’s
disease, mental disorder, and Parkinson’s disease [3, 6–10].
Even though these models have recorded high accuracy for
separating brain disorders from healthy individuals, their
medical applicability has not yet been set up because of a few
reasons. One of the basic confinements in the present deep
learning-based demonstrative models is that a large number
of parameters will be produced during the initialization of the
deep learning model [10, 11], these parameters must be opti-
mized to achieve a higher rating of accuracies [12, 13]. In this
paper, amulti-stage optimization procedure using grid search
is being proposed to develop a deep learningmodel to predict
the early onset of Parkinson’s disease.While most of the pre-
vious related works [14–19] consider prediction accuracy as
the sole objective; however, the proposed approach optimizes
the deep learning model for both accuracy and complexity
in multiple stages. In the first stage, the topology of the net-
work will be optimized to determine the number of layers,
number of neurons in every layer, and the type of activation
function for each layer. For each optimization algorithm, it
is the goal of the second stage to optimize the learning rate.
Ultimately, the model output with the optimized topology
and learning rate is evaluated in the third stage with dif-
ferent optimization algorithms utilizing various epochs and
batch sizes. At last, the results are compared and validated
with three publicly available real-life datasets and some other
machine learning approaches. The main contributions of the
proposed approach are as follows:

1.1 Proposed an efficient approach based on hyperparame-
ter tuning of the deep learning model for the prediction
of Parkinson’s disease.

1.2 Comparative analysis of different hyperparameter val-
ues is performed, and the optimal parameters are
selected.

1.3 Experimental results are performed on three different
real-life data sets. It is shown that the proposed approach
is efficient in terms of processing time and can find
optimal hyperparameters with high precision.

1.4 A significant reduction in the search time by 30 s and
an improvement of 5% in the classification accuracy
is achieved by the proposed approach when compared
with the other state-of-the-art methods.

1.5 An optimized deep learning model proves its ability
to be used as an early prediction tool for Parkinson’s
disease, thereby providing an opportunity for early ther-
apeutic intervention.

The rest of the paper is organized as follows. Section 2
represents the contribution of previous studies on the clas-
sification of Parkinson’s disease and the method of grid
search optimization discussed in previous articles. Section 3
describes our primary grid search optimization technique to
optimize and refine the deep learning model. Section 4 pro-
vides the results and analysis of the work done. The paper
ended with our conclusion and suggested future work, as
discussed in Section 5.

2 Related works

Some previously completed research has aided the progress
of this paper in directing the proposedmethods and augment-
ing the understanding of the deep learning model.

The kernel-based support vector machine for the treat-
ment of Parkinson’s disease was proposed by Little et al. [20]
to identify dysphonia. For experimentation, the investigators
used continuous phonations from 23 individuals with Parkin-
son’s disease and eight control persons. The new measure of
dysphonia, such as pitch frequency and another ten steps,
are found to boost classification accuracy, as suggested in
many telemonitoring applications. Harel et al. [4] reported
that PD signs are visible for up to 5 years before profes-
sional diagnosis, including reduced loudness, elevated voice
tremor, and breathability. The author uses a data set of 263
phonations from 43 subjects (17 females, 26 males, and ten
healthy controls, 33 identifiedwith Parkinson’s disease) from
the local voice and speech center. A comparative analysis of
different classification algorithms, including decision tree,
neural networks, DMneural, and regression in the diagno-
sis of Parkinson’s disease, was carried out by Das [17]. The
authors have used experimental voice tests of Parkinson’s
disease patients who are suffering from speech disorder for
research. The analysis results show that the neural network
exceeds other classifiers with regards to its accuracy in clas-
sification. Yadav et al. [18] said that only in the middle and
late mid-aged Parkinson’s disease signs emerged, making it
difficult for researchers to foresee this. There are a variety
of recommendations for PD. The study focused on the artic-
ulation of the voice and attempted to establish a standard
through three methods of data mining. The three methods
for data mining are derived from three distinct data mining

123



Hyperparameter optimization of deep learning model for prediction of Parkinson’s disease Page 3 of 15 32

environments, i.e., from themathematical classifier, tree, and
SVMclassifier. The three performancemetrics, i.e., accuracy,
specificity, and sensitivity, are used in measuring the output
performances of the three classifiers. The primary purpose
of this study [18] is to create the best network for Parkin-
son’s disease individuals. Nevertheless, the only condition
treated was the vocal sample, and other symptoms such as
environmental and age factors, difficulties with speech and
development and trembling arms, legs, hands were not taken
into account. However, still, the cases are reported with an
inappropriate determination. The authors of this paper have
achieved 82.051% accuracy. In essence, another investigator
Ramani et al. [21] have taken a telemonitor for calculating
six features of significance algorithms and a total output of
thirteen classification algorithms to overcome the above con-
straints.

Khemphila et al. [21] have used artificial neural network
with back backpropagation to segregate healthy individu-
als from those with PD. Information gain was used to pick
those important characteristics dependent on entropy val-
ues. Nonetheless, incidents with the wrong diagnosis are still
identified. The authors of this article also received a preci-
sion of 82.05%. Rustempasic et al. [22] has proposed the
Artificial Neural Network to distinguish healthy individuals
and persons with the disorder of Parkinson. The principal
component analysis is used to select relevant features before
classification. The technology proposed resulted in a classi-
fication accuracy of 81.33%.

When assessing the presence of PD, Sriram et al. [10]
used the patient voice. The work included the method of
machine learning, which in the last decade has been designed
to improve the understanding of the PDdata set. Research has
led to more considerable heterogeneity in Parkinson’s dis-
ease samples in the parallel coordinates. In contrast to most
k-NNalgorithms, SVMhas achieved good accuracy (88.9%).
The algorithm of classification, like RandomForest, has been
more precise (90.26%) with less precision (69.23%) shown
by Naïve Bayes. It is therefore evident that several studies
have been conducted which have used disordered voice sam-
ples to identify Parkinson’s disease.

Shahbakhi et al. [23] also picked four tailored attributes
by using a genetic algorithm. Classification is carried out
with the aid of a vector supporting machine that generated
83.66% accuracy with four optimized characteristics. Sug-
anya et al. [24] suggested a different optimization algorithm
for the classification of PD by taking the adverse conse-
quences of making the adverse consequences of artificial
neural networks into account. The study carried out the algo-
rithm for metaheuristic information mining to detect and
classify Parkinson’s diseases (Table 1).

As it is seen, several techniques of diagnosing Parkinson’s
disease are now being used in medical research and public
health. Deep learning models generally play an ever more

Table 1 Asummary of existing Parkinson’s disease identificationmeth-
ods

Authors Methods Accuracy (%)

Little et al. [20] SVM 81

Das et al. [17] Decision tree, neural
networks, DMneural, and
regression

82.9

Yadav et al. [18] Statistical classifier, tree
classifier, support vector
machine

82.56

Khemphila et al. [21] Artificial neural network 82.05

Sriram et al. [10] SVM, k-NN, Random
forest, Naïve Bayes

84.26

Shahbakhi et al. [23] Genetic algorithm, SVM 86.23

Suganya et al. [24] Ant-colony Optimization,
Artificial
Bee-optimization, Particle
Spam optimization,

86.77

critical role in the field of healthcare. The objective of this
paper is to create and implement an end-to-end deep learning
model that can enable the doctors and clinicians to have faster
and more accurate predictions.

2.1 Preliminaries and background

2.1.1 Hyperparameters optimization of deep learning
models

Let h1,…, hk denotes the hyperparameters of the deep learn-
ingmodel and α1,…αn be their respective domains. The deep
learning model is trained with hyperparameter h on training
voice samples (Dtrain) of PD patients and healthy individuals.
The validation accuracy of the deep learning model is signi-
fied as λ (h, Dtrain,Dval). Themain aim of the hyperparameter
optimization of the deep learning model is to find a hyper-
parameter setting h* to maximize the validation accuracy
λ on voice samples of PD patients and healthy individuals
[25–27].

2.1.2 GSO-based parameter optimization model

The grid search optimization algorithm takes into consid-
eration the hyperparameter optimization in the respective
stages with training data in increased amounts. In the first
stage, a small subset of training data is used by applying
sequential optimization for quick identification of an initial
set of promising hyperparameters settings. These settings are
further utilized to initialize the grid search optimization algo-
rithm on the next stages to operate with a better knowledge
to merge to the most favorable solution [1] rapidly.
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The initial arrangement of hyperparameter settings h1,…,
hk impact the grid search optimization algorithm, where all
the hyperparameter settings are indicated with many assign-
ments by each context. From there on, the assessment of
the underlying parameters on the validation data is done, fol-
lowed by recording their accuracies. Tomark the correctness,
the algorithm at that point advances in rounds to continually
change in deep learning model. The grid search optimization
algorithm recommends another hyperparameter setup with
the assistance of procurement work, whereby the exactness
of the new setting is determined on validation data bringing
about new accuracy [11, 28].

Algorithm 1 (Grid Search Optimization)
Input:-Hyper-parameters h1:k , 
Iterations per stage X=<X1,…,Xz>,
Total number of stages Z,
Training data per stage Dtrain= <Dtrain

1,.., Dtrain
z>,

Validation data Dval, 
Validation accuracy λ
Output:-Hyper-parameters ℎ∗

for stage z=1 to Z do
for i=1 to ℓ          

λi=evaluate λ(hi , , )
end 
for j=ℓ+1 to Xz  

ɡ=grid-search(ℎ , ) =1

hj=max argsh€α a(h, ɡ) 
λi=evaluate λ (hi , , )

End 
Reset h1:k = best k configs €( h1,……….. hXz) 
// according to validation accuracy λ
End 
Return  ℎ∗= max args h €( ℎ , … … . ℎ  ) λj 

During each stage z, the k best arrangements dependent on
validation accuracy passed from the antecedent stage � are
first assessed on the current stage’s training dataDtrain. After
that, the grid search algorithm is introduced with these k set-
tings and connected for Xs –L iterations on Dtrain, where Xs

are all number of repetitions for stage z. At that point, the top
configurations dependent on validation accuracy are utilized
to instate the subsequent stage’s run. In the wake of running,
all S arranges the calculation ends and outputs the config-
uration with the most exceptional validation accuracy from
all hyperparameters investigated by all stages. Toward the
end of the considerable number of steps, the algorithm ends
with output the configuration with the most astounding vali-
dation accuracy [29]. Algorithm 1 above describes the GSO
based parameter determination technique for deep learning
models. The calculation is introduced for Parkinson’s infec-
tion forecast utilizing voice tests of PD patients and healthy
individuals. The situation will be wholly investigated in the
following section [3].

Voice samples of 
Healthy and 

PARKINSON’S 

Deep Learning Model

Grid search stage 1:-Optimizing the 
topology for each layer 

Grid search stage 2:-optimizing the 
learning rates of the optimization 
algorithm

Grid search stage 3: optimizing the 
performance using various Batch sizes and 

number of epochs

Optimized Deep Learning Model

Performance Evaluation

Fig. 1 The overall workflow of our approach

3 The proposed approach

Figure 1 illustrates the overall workflow of the proposed
approach. Inputs are used for speech recordings of people
with stable and Parkinson’s disease that are obtained from
the UCI machine learning center. The classification of the
Parkinson’s disease is achieved by using optimized deep
learning model. Grid search is an optimization technique for
hyperparameters. It can be used in different areas such as
the number of layers, the number of neurons of the single
layer, the types of activation function, the different learning
rates, the batch sizes, the number of epochs, and finally, the
optimization algorithm type. In compliance with the unusual
circumstances, the following concept is split into three stages
[12].

Grid search optimization is done in stages because each
stage of the network requires a vast number of operations
due to a large number of tuned hyperparameters, and costs
in the other levels would further compound this. It indicates
that the code should be developed with the use of concurrent
algorithms and high-performance computing equipment and
GPU-capable computers to address this obstacle. In the first
stage, the topology of the network will be optimized to deter-
mine the layer numbers, neuron numbers in every layer, and
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the type of activation function for every segment. For each
optimization algorithm, it is the goal of the second stage
to optimize the learning rate. Ultimately, the model output
with the optimized topology and learning rate is evaluated in
the third stage with different optimization algorithms utiliz-
ing various epochs and batch sizes. A cross-validation (CV)
method is applied to deal with the problem of overfitting
of the trained model at each stage. The trained classifica-
tion model is used in CDMS to diagnose Parkinson’s disease
patients. To achieve the best model with higher validation
accuracy, a tenfold cross-validation method is applied to the
training. In this way, accuracy and loss values are used as
performance metrics.

3.1 Grid search optimization stage 1:Optimizing
the deep learningmodel topology

The proposed approach includes the conventional multilayer
perception (MLP) of an underlying deep learning model
architecture, which usually comprises one input layer, and
two or more processing layers and one output layer. The
input layers’ neurons are of equal size to the input features;
neurons in processing layers usually can be any number and
neurons of the output layer similar to those of the output
layer. The goal is to develop the topology of the deep learn-
ing model by optimizing the number of layers, neurons per
layer, and the type of activation function per layer by loading
with the training voice samples. An important part to effi-
ciently enhance the classification accuracy is the number of
hidden layers and the number of neurons in each layer.

To sharpen the number of neurons in shrouded layers, it
is considered that the number of neurons in the top layers
should be more than a number of neurons in lower layers
[30]. Furthermore, such requirements are known to speed up
the grid search process as well as to ensure the stability of the
network. For example, if layer 2 has 30 neurons, there should
be less than 30 neurons in layer 3. This dramatically reduces
the number of operations (*O(n2)). Besides, there were 1872
qualified criteria using the batch of 50 to 200 iterations for the
configured model, which took 97 s. However, provided that
the metric of accuracy and loss is required in this problem
and the corresponding values are normalized to have values
between 0 and 1, in the final layer, a neuron with Sigmoid
always was called the activation feature. The similar values
between 1 and 40 can be used in steps of 5 as several neu-
rons. The resulting arbitrary values from 1 to 40 here mean 5,
10, 15, 20, 25, 30, 35, and 40. Thus, despite the suggestions
from different studies, there is no exact parameter to figure
out these values. To order to do so, there must be a minimal
and precise number of measures rather than a large number,
which can prove overwhelming. Nevertheless, the collection
starts with the trial and error approach not beyond a specific
class, and therefore there’s no optimal value for this purpose.

Table 2 Values of various parameters used at grid search stage I

Hyperparameter values

Layers (Number) 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13

Neuron in different layer
(Number)

1, 2, 4, 5, 10, 12, 15, 20, 25, 30,
35, 40

Epochs 100

Batch sizes 10

Activation function Softmax, Softplus, Relu, Tanh,
Sigmoid, linear

Optimizers SGD

Learning rates 0.001

Performance matrices Classification accuracy, loss
function

Cross-validation Tenfold

To evaluate the results comparing different activation func-
tions ReLU, Sigmoid, Tanh, and Softplus, the varying hidden
layered deep learning model with differing neurons are used
for testing, keeping the rest of the hyperparameters are fixed.

In Algorithm 2, grid search stage-1 is explained. On the
Python GridSearch CV repository, after the creation of the
deep learning model, hyperparameter optimization of the
grid search stage-1 is performed. The input parameters for
the grid search stage1 algorithm are the speech samples PD
patients and healthy individuals, the different neuronal val-
ues, and the hidden layers of various functions of activation.
The optimized hyperparameters h1 is the resulting output of
the proposed approach.

Algorithm 2. Grid Search Stage-1 

1. Input: - Voice samples of PD patients and healthy 
individuals, values of neurons, hidden layers, 
different activation function.

2. Output:-Hyper-parameter h1
3. create_model ()   

//initialization of Deep learning model with 
basic parameters

4. ml.add (layers, neurons, activation function)
//define grid search parameters

5.gd=GdSearchCV(par_gd=par_gd,est=ml) 
6. gd_res=gd.fit(voice samples of healthy and PD 

patients) 
7. print(“best hidden layers, number of 

neurons,activation function %(gd_res.score,    
gd_res.best_par)) 

Table 2 shows the various hyperparameter details set for
the advancement of the topology in the GSO stage-1.

Figure 2 demonstrates the optimized configuration of the
deep learningmodel after the grid search stage-1. Themethod
suggested thus utilizes 22 neurons in the input layer as the
speech samples of PD patients and healthy individuals have
22 features. After grid search stage-1, the optimized deep
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Input layer

Hidden
layers

Output layer

ℎ4,12ℎ4,1 ℎ4,2

ℎ5,4ℎ5,1

O

ℎ3,2 ℎ3,3 ℎ3,20
ℎ3,1

ℎ1,34 ℎ1,35

ℎ2,2ℎ2,1 ℎ2,30ℎ2,29

Voice sample of PD pa�ents and 
healthy individuals

1 2 22

ℎ1,1 ℎ1,2

\\

ℎ1,3

Fig. 2 Optimized deep learning model after grid search optimization
stage-1

learning model consists of seven layers of 22, 35, 30, 20, 12,
4, and 1 neuron, respectively.

3.2 Grid search optimization stage 2: Optimizing
the learning rates of optimization algorithms

The hyperparameter of the optimization algorithm, such as
the learning rate, is tuned after designing the topology of
the deep learning model. The calculated number of layers
and neurons used in constructing the deep model architec-
ture were used to optimize the learning rate for each of the
optimization algorithms.

As can be seen, the grid search for the learning rate and
optimization algorithms are carried out at this point. The
importance of the learning rate (µ) in the deep learningmodel
is a significant consideration.When there is too little learning
pace, algorithmconversion is very slow, and the network does
not converge [31] on the other hand, when the value is too
big, the deep learning model fails to converge.

Table 3 Values of various parameters used at grid search stage III

Hyperparameter Values

Layers (number) neuron in a
different layer

7, 22, 35, 30, 20, 12, 4, 1

Epochs 100

Batch sizes 10

Activation Function ReLU, Sigmoid,

Optimizers SGD, RMSprop, Adagrad,
Adam, Nadam

Learning rates 1.0, 0.1, 0.01, 0.001, 0.0001,
1e−05

Losses Classification accuracy

Cross-validation Tenfolds

In algorithm 3, grid search optimization stage-2 is
explained. Once grid search stage-1 has been applied to the
deep learning model, hyperparameter optimization of the
grid search stage-2 is performed. The GSO stage-2 algorithm
input parameters are the optimized hyperparameter values of
the stage-1; different values of learning rates, and optimiza-
tion algorithms. The optimized hyperparameters h2 is the
corresponding output of the grid search stage-2 algorithm.

Algorithm 3. Grid Search Optimization Stage-2 

1. Input: -Optimized hyper-parameter values obtained 
at stage-1 h1, different values of learning rates and 
optimization algorithm.
2. Output:-Hyper-parameter h2 
3. create_model ()

//initialization of deep learning model with 
optimized hyper-parameter obtained at stage1 h1  

4. ml.add( values of learning rates, optimization 
algorithm) 

//define grid search parameters5.gd=GdSearchCV(par_gd=par_gd,est=ml) 
6.gd_res=gd.fit(voice samples of healthy and PD

patients) 
7. Print (“best learning rate, optimization   params))

Table 3 represents the hyperparameter details set for the
optimization of the learning rates and optimization algorithm
in the grid search stage-2.

The framework of the tuned deep learning model after the
GSO second stage contains 0.01 learning rate and Adam as
an optimizer.

3.3 Grid search optimization stage 3: Optimizing
the performance using different epochs
and batch size

The GSO stage-3 with tenfold cross-validation for four dis-
tinctive group sizes is used to monitor the attainment of the
optimized deep learning model with tuned hyperparameters
for optimizing algorithms. The stage-3 optimization of grid
search is described in Algorithm 4. The GSO-3 algorithm’s
input parameters are the optimized hyperparameter values
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Table 4 Values of various parameters used at grid search stage III

Hyperparameter Values

Layers (number) number of
neuron in a different layer

7, 22, 35, 30, 20, 12, 4, 1

Number of epochs 25, 50, 75, 100, 150, 175, 200

Batch sizes 20, 50, 100, 150, 200

Activation function ReLU, Sigmoid

Optimizers SGD, RMSprop, Adagrad,
Adam, Nadam Adam

Learning rates 0.1

Losses MSE, MAE

Cross-validation Tenfold

of stages 1 and 2, the different values of batch sizes, and
the epochs. The corresponding performance of the proposed
approach is the optimized hyperparameter h3.

Algorithm 4.Grid Search Optimization Stage-3 
1. Input: -Optimized hyper-parameter values obtained 
at stage-1 and 2, different value of Batch sizes and 
number of epochs.
2. Output:-Hyper-parameter h3
3. create_model ()

//initialization of deep learning model with 
optimized hyper-parameter obtained at 
stage1 and 2 i.e. h1 and h2

4. ml.add( values of batch sizes , number of epochs)
//define Grid search parameters

5.gd=GdSearchCV(par_gd=par_gd,est=ml) 
6.gd_res=gd.fit(voice samples of healthy and PD
patients) 
7. print(“best value of Batch size and Epochs” 

%(%(gd_res.score,    gd_res.best_par))) 

Table 4 represents the hyperparameter details set for the
different batch size and epochs in the grid search stage 3.

4 Results and discussion

Two significant aspects of the experimental method were
observed. To investigate their impact on the performance
of feed-forward deep learning models, arbitrary yet real-
istic configurations of selected hyperparameters had been
explored. A contrast of optimized deep learning model out-
put with the state of artwork was explored in the second part
of the study. In this article, all the experiments are carried out
using the 2.7.12 edition of Python. Using Theano at the back-
end, the Keras library is used to construct the deep-learning
model. The experiments are performed by using 196 speech
recordings of 31 individuals, 23 ofwhich are impaired by PD.
Voice samples are obtained from an Irvin (UCI) University of
California machine learning repository. Every section in the
informational collection is the voice representation of peo-
ple and each line of 196 voices from those people. The sole

motive behind this research is to discriminate PD patients
and healthy individuals since 0 reflect healthy individuals,
and 1 reflects the PD patient [15, 20], according to the stan-
dard size scale. Validation is done using three different types
of datasets–telemonitoring data set from Parkinson, Breast
cancer diagnosis of Wisconsin dataset, and Pima Diabetes
dataset.

The findings of the method outlined in Sect. 4 are dis-
cussed in this section. The first analysis will be carried out
using the grid search optimization to different values, which
further suggests the parameters which will possibly produce
the best results. The hyperparameters used for analysis are (i)
the number of hidden layers (ii) by layer neurons (iii) activa-
tion functions (iv) learning rate, (v) method of optimization,
(vi) batch size and (vii) the number of periods. The configu-
ration of the deep learning model is used for testing, which is
trained at a constant learning rate for 200 epochs without pre-
vious stops. K-fold cross-validation was used to reduce the
effects of chosen preparing information and test information
on the model assessment. This involves the division of train-
ing data into unrepeated subsets. In training, k − 1 subsets
are used, and the majority of the subsets are used for testing.
In this document, a tenfold cross-validation approach is used
to select training and testing subsets. The total informational
collection is separated into ten different subgroups with ten
times Cross-validation, of which nine subsets are used for
training, while one subset tests the trained deep learning
model. The entire process is repeated ten times, with vari-
ous training and test subsets. About 174 samples are used as
experiments in tenfold cross-validation, while other exam-
ples are used for testing from 196. During the training, the
validation loss is observed. When there comes stability in
validation loss, the training stops to prevent over-fitting. At
the top level, the objective function reduces the average loss
over the k validation folds.

At the lower level, for each training data k, we are max-
imizing the accuracy. The Validation accuracy is measured
using an average of 10 folds in the optimized deep learning
model. The number of training epochs of the deep learning
model impacts performance and loss eventually. The early
stoppage is a technique to determine an arbitrary number
of training epochs and avoid training once the output of
the model stops improving with a validation dataset. Stop
the algorithm, for example, when the accuracy approaches
a predetermined level or if the loss value hits a minimum,
or the maximum number of iterations is reached. We used
the second stop test to equate our approach. As the num-
ber of iterations rises, accuracy and loss are stable when the
network reaches the convergence level.
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Fig. 3 a The loss value b Accuracy with varying layers on voice samples of PD patients and healthy individuals across different epochs

Fig. 4 Loss values on voice samples of PD patients and healthy individuals on deep learning model with a number of layers b activation function

4.1 Comparing activation function, number
of hidden layers and neurons per layers

Figures 3a, b and 4a, b show the results of numerous hidden
layers, multiple neurons, and various activation functions.
For measuring the performance over the grid search stage 1,
we use the loss of tenfold CV with constant values for batch
size, epochs, learning rate, and then optimization algorithm.
Figure 3a and b shows the results of numerous hidden lay-
ers on voice samples of healthy and PD patients as a new
addition to the deep learning model layers. The accuracy of
the deep learning model on voice samples of PD patients
and healthy individuals rises gradually and loss decline, as
shown in Fig. 3a, b. The deep learning model tends to over-
fit the training voice samples more readily. Here the plot
shows a little over-fitting on training voice samples due to
the large capacity of the network, i.e., due to a large num-
ber of layers and the number of nodes per layer. The model
shows better performance on test samples of healthy and PD
patients with five hidden layers. Therefore five hidden lay-
ers are selected as a balance between allowing for sufficient

complexity and avoiding over-fitting. Figure 4a indicates a
line diagram reflecting a loss over training voice samples for
both healthy and PD patients with a single model structure
(one to 40 nodes per hidden layer). It implies that five hidden
layers are used as a bridge between having adequate flexi-
bility and minimizing overfitting. The chart above indicates
that the loss declines as the number of nodes grow, which
helps to understand the results. Through achieving a balance
between complexity and overlap, a right, first hidden layer
size of 35 neurons is obtained when the size of subsequent
layers decreases. The layer activation of the hidden layers of
the deep learning model is shown in Fig. 4b.

For various hidden layers and the number of neurons, the
deep learning model is trained using the different activa-
tion functions such as logical sigmoid, tangent, soft plus,
and linear rectifier modules, across 100 iterations with
cross-validation (CV) by ten times. The above analysis
demonstrates the log loss when comparing different activa-
tion functions over voice samples of healthy and Parkinson’s
disease patients. The chart shows ReLU’s highest perfor-
mance over various activation functions. The deep learning
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model is a stable model on PD patients and healthy individu-
als ‘ voice samples that can be seen from the layer activation
graph stability. This indicates that the layer’s weights are cor-
rectly configured. In combination with ReLU activation, the
deep learning model performs better by obtaining a higher
degree of accuracy than Sigm or Tanh. The neurons with the
ReLU activation function are more natural to optimize, faster
to converge, better in generalization, and give quick com-
putation. From these outcomes, it tends to be seen that the
increase in neurons and hidden layers, when combined with
activation function, substantially affects the performance of
the deep learning model.

4.2 Different learning rates and optimization
algorithm

The effect of optimization algorithms and learning rates is
shown in Fig. 5a–c at various epochs with the remaining
parameters fixed. The deep learning model performance is
measured according to classification accuracy and loss value
in the context of visually averaged evaluation metrics. Dif-
ferent learning rates are implemented to maintain stability in
the deep learning model, as shown in Fig. 5a.

Figure 5b demonstrates train and test accuracy with vary-
ing rates of learning on speech samples of PD patients and
healthy individuals across 200 epochs with optimized hyper-
parameters obtained in stage-1. The six-line plots display
six separate measured levels of learning. The plot illustrates
behavioral variations with elevated learning rates, i.e., 1.0
and the model’s incapacity to know anything with a min-
imal learning rate, i.e., 1E−05. It might be seen that the
deep learningmodel could learn the voice samples of healthy
and Parkinson’s disease patients adequately with the learn-
ing rates of 0.1, 0.01, and 0.001. With the assistance of the
adopted deep learning model configuration obtained in GSO
stage 1, the results propose a balanced learning rate of 0.1,
thus resulting in better performance of the model. The above
figure shows that the selected learning rate of 0.1 worked
well for convergence, which proves that 0.1 is well-suited
LR.

Figure 5c demonstrates the comparisons among various
gradient descent optimization algorithms on voice samples
of PD patients and healthy individuals in combination with
the ReLU activation function for 200 epochs with tenfold
cross-validation. The above figure proves as an example for
ranking the performance of the optimization algorithms on
voice samples of PD patients and healthy individuals. There-
fore, a variant of the Adam algorithm outperformed the other
algorithms. The SGD algorithm gave the worst performance,
and it also requires around all the 200 epochs, which results
in volatile accuracy on the train and test voice samples.
This could be a direct result of the truancy of bias adjust-
ment,which decreases SGDperformance in termsof sparsing

gradients to the end of the optimization. While the model
converged in 200 iterations, the efficiency of the model has
to be checked for several epochs to display the stability of
the deep learning model. There is a similarity in the per-
formance of both RMS-prop and Adam having effectively
learned the problem within the 50 training epochs, thereby
making minute weight updates without converging. Another
approach to tackle this issue is by hyperparameterizing the
number of training and multiplying the training models with
different values and then selecting how many epochs better
fit on the train or a holdout test dataset. In the voice samples
of PD patients and healthy individuals, two-loss measures,
MAE, and MSE are used to measure the performance of dif-
ferent batch sizes using various optimization algorithms. An
evaluation of the concert with batch size ranging from 20
to 200 is used to study the impacts of the batch size on the
presentation of the fine-tuned deep learning model.

To study the impact of the batch size on the efficiency
of the deep learning model, an output evaluation with a
batch size range of 20–200 is carried out. It can be observed
here that convergence of the algorithms takes place with an
increase in Batch size. To demonstrate the strength of the
deep learning model, the exhibition of the model for an enor-
mous number of Batch sizes is necessary. As observed in
Fig. 6a and b, as we expanded the batch sizes, the losses
increased expectedly. Figure 6a, b is an ideal example of how
optimization algorithms work in different batch sizes. Other
algorithms have surpassed the varieties of Adam’s calcula-
tion, eminentlyNadam. For theAdagrad algorithm, theworst
result is reported. The Nadam algorithm, which has shown
better performance among the optimizations algorithms on
voice samples of PD patients and healthy individuals, also
gives the closest explained variance to 1.0.

The explained variance represents the gap between the
actual data and the model. The more the level of discrep-
ancy among them represents the stronger bond, which shows
good predictions. To the results, there is an improvement in
the overall accuracy of the deep learning model from 86.06
to 91.69% when there is an increase in the batch size from
20 to 50. The deep learning model is trained to forecast the
early onset of the condition of Parkinson on the proposed
hyperparameters. The classification accuracy, sensitivity, and
specificity are common standards, with the assistance of var-
ious parameters such as FP, FN, TP, and TN, to evaluate the
functioning of the optimized deep learning model. Where
“TP” refers to the true positive, few instances that fall into the
grouping of Parkinson’s disease display the people affected
with PD in this manner. “TN” is true negatives, which indi-
cates that fewoccurrences in the lively class group are healthy
persons. “FP” is false positive, showing that the condition
sufferers of Parkinson experience a few events that fell into
the categories of whole classes. In the end, “FN” often talks
of a false negative, which means that few cases occurring in
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Fig. 5 a Loss value with different learning rates. b Accuracy with varying proportions of learning. c Accuracy with optimization algorithms

Fig. 6 aMSE bMAEvalues for various batch sizes utilizing diverse optimization algorithms on voice samples of PD patients and healthy individuals

the disease class of Parkinson represent stable individuals.
The basic equations are described as follows:-

Accuracy: The accuracy is characterized as the capacity
to recognize PD patients and healthy individuals accurately.

Accuracy � TP + TN

TP + FP + TN + FN
× 100 (1)

Mean Square Error: Mean square error is used to measure
the nearness of the proposed strategy during the preparation
stage to accomplish the lowest error.

M.S.E � 1

n

1∑

n

(
X̂i − Xi

)2
(2)

The trained deep learning system is evaluated on the pro-
posed parameters with the difference in characterization of
the performance of the model, accuracy, and loss charac-
terization. Figure 7a, b indicates the loss function value
and accuracy of trained deep learning model on varying
iterations. The deep learning model expands to maximum
efficiency on the test set just 89.23%, and at last, the loss

function reaches up to zero values, as shown in Fig. 7b, after
a training accuracy of 91.69%. The deep learning model also
culminated in 89.23% test accuracy in the study range of 19
tests.

4.3 Dataset description

Thefindings from the experiment are explained in this section
after using publicly available data on the proposed frame-
work. The tests are performed with four different datasets
acquired from UCI machine learning repository [15]. The
first is Parkinson’s voice dataset; the second is the Pima Dia-
betes dataset, and the third is

Parkinson’s telemonitoring Dataset and the last one is the
Wisconsin Breast Cancer dataset. The description details of
the employed data sets are given below.

4.3.1 Parkinson’s voice dataset

The Parkinson’s voice dataset is accessed from the Univer-
sity of California, Irvine Machine Learning storehouse. This
dataset is possessed of the scope of biomedical voice estima-
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Fig. 7 a Accuracy and b Loss value of the training and test voice samples during the training process

Table 5 Description of
Parkinson’s voice dataset Sr. No. Attribute name Description

1 Fo (Hz): MDVP Average fundamental vocal frequency

2 Fhi (Hz): MDVP Highest fundamental vocal frequency

3 Flo (Hz): MDVP Lowest fundamental vocal frequency

4 jitter (Abs): MDVP

5 jitter (%):MDVP Variation in fundamental frequency

6 PPQ: MDVP Fundamental frequency variation

7 RAP: MDVP Fundamental frequency variation

8 DDP: Jitter Fundamental frequency variation

9 Shimmer (dB):MDVP:) Amplitude variation measures

10 DDA: Shimmer Amplitude variation Measures

11 NHR Noise-tonal components

12 HNR Noise-tonal components ratio

13 Status 1-PD patients and, 0-Healthy individuals

14 D2 Complex dynamic measurement

15 Spread1 Frequency nonlinear measures

16 Spread2 Frequency nonlinear measures

17 PPE Frequency nonlinear measures

18 DFA Scaling fractal signal exponent

19 RPDE Complex dynamic measures

20 APQ: MDVP Amplitude variation measures

21 Shimmer: APQ3 Amplitude variation measures

22 Shimmer: APQ5 Amplitude variation measures

23 Shimmer: MDVP Amplitude variation measures

tions from 31 individuals, 23 with Parkinson’s disease (PD).
Every section in the table is a specific voice measure, and
each line corresponding to one of 196 voice recordings from
these people. The principle point of the information is to seg-
regate healthy individuals from those with PD, as indicated
by the “status” section, which is set to 0 for healthy individ-

uals and 1 for PD patients. The detailed description of The
Parkinson’s voice dataset is given in Table 5.

4.3.2 PIMA diabetes dataset

The PIMA Diabetes dataset is acquired from UCI machine
learning repositories. This dataset contains a clinical descrip-
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Table 6 Description of PIMA Diabetes dataset

Sr. No. Attributes Description

1 preg Number of times pregnant

2 pres Diastolic blood pressure (mm Hg)

3 plas Plasma glucose (2-h)

4 BMI body mass index (mass in kg/(height in m)2)

5 age Age (years)

6 Pedi Pedigree Diabetes function

7 insu Serum insulin 2 hours (µ U/ml)

tion of 768 female patients. This dataset likewise includes
numeric eight features values where an evaluation of label
‘0’ corresponds to healthy individuals, and another label ‘1’
corresponds to diabetes patients. The PIMADiabetes dataset
description details are given in Table 6.

4.3.3 Parkinson’s telemonitoring dataset

The Parkinson’s telemonitoring Dataset is acquired from
UCI machine learning repositories. The experiments are
performed with the vocal chronicle samples of Parkinson’s
disease patients and healthy individuals. The last form of
the dataset contains 756 cases with 26 characteristics. The
dataset includes 188 patient records with 107 men and 81
female members. The age gathering of the individuals in the
dataset is extending from 33 to 87. The detailed description
of the dataset is given in Table 7.

4.3.4 Wisconsin breast cancer dataset

Wisconsin Breast Cancer data set is taken from UCI ML
Repository. The samples in the database occasionally col-
lected by Dr. Walberg from Wisconsin Hospitals, Madison.
This dataset contains an aggregate of 699 instances, with
241 fatal and 458 benign cases. Each instance has ten fea-
tures with relegated integer values running from 1 to 10, and
one class attribute with a twofold estimation of either 2 or 4,
corresponds to malignant or benign breast cancer diagnoses,
separately. Each feature value lies in the range 1–10, where
1 means the normal state and ten speaks to the most abnor-
mal state. The detailed description of the Wisconsin Breast
Cancer Dataset is given in Table 8.

All data set characteristics are pre-processed and scaled
up to [− 1, 1]. The labels in class have been marked as y to
{− 1, 1}. To ensure that each fold has the same Distribution,
we have generated ten folds using a stratified sample for ten-
fold cross-validation. The Validation accuracy is prediction
accuracy over validity folds using tenfold cross-validation.
Running time is the average CPU time spent on training the
deep learning model (Intel Core i5-7700HQ). The results
shown in Table 9 are obtained through each of the 200 iter-
ations. It reveals that the Optimized DNN approach has

Table 7 Description of Parkinson’s telemonitoring dataset

Sr. No. Attributes Description

1 Jitter (local) Frequency parameters

2 Jitter (local, absolute)

3 Jitter (rap)

4 Jitter (ppq5)

5 Jitter (DDP)

6 Autocorrelation Harmonicity parameters

7 Harmonic-to-noise

8 Noise-to-harmonic

9 Number of pulses Pulse parameters

10 Mean period

11 The standard deviation of
the period

12 Number of periods

13 Shimmer (local) Amplitude parameters

14 Shimmer (dda)

15 Shimmer (local, dB)

16 Shimmer (apq11)

17 Shimmer (apq5)

18 Shimmer (apq3)

19 Median pitch Pitch parameters

20 Mean pitch

21 Minimum pitch

22 Maximum pitch

23 Standard deviation

24 The fraction of locally
unvoiced frames

Voicing parameters

25 Degree of voice breaks

26 Number of voice breaks

Table 8 Data set description of Wisconsin breast cancer

Sr. No. Features Description

1 Clump thickness 1–10 value

2 Uniformity in cell size 1–10 value

3 Uniformity in cell shape 1–10 value

4 Cell size single epithelial 1–10 value

5 Nuclei bare 1–10 value

6 Marginal adhesion 1–10 value

7 Nucleoli normal 1–10 value

8 Mitoses 1–10 value

9 Bland chromatin 1–10 value

10 Class 2-benign, 4-malignant

enhanced the validation accuracies on all data sets. The
accuracy results are almost the same in Parkinson’s telemon-
itoring dataset, cancer Wisconsin dataset, and Pima Diabetes
data sets. The accuracies of the Optimized DNN approach
are 5% greater than that of the traditional DNN technique
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Table 9 Numerical results of
optimized DNN and
conventional DNN during the
validation process

Dataset Optimized DNN Conventional DNN

Accuracy (%) Running time (sec.) Accuracy (%) Running time (sec.)

Pima diabetes dataset 86.50 0.64 83.50 0.97

Parkinson’s
telemonitoring
Dataset

86.56 0.49 82.72 0.67

Wisconsin breast
cancer dataset

85.23 0.33 75.23 0.78

Fig. 8 Validation set accuracy a Pima: Diabetes dataset b Parkinson’s telemonitoring dataset c Wisconsin breast cancer dataset

Fig. 9 Loss value a Pima: Diabetes dataset b Parkinson’s telemonitoring dataset c Wisconsin breast cancer dataset

in all other datasets. The optimized deep learning model is
relatively quick for the high-dimensional datasets. We com-
puted the accuracy and loss value on the three datasets as
appeared inFigs. 8a–c and9a–c to further contrast the conver-
gence effects. We can see that the Optimized DNNmethod is
much faster than the conventional DNN method and has less
degradation in the validation fold. Although the Optimized
DNNconverges very rapidly to an optimal solution, it ismore
costly computationally than the conventional DNN.We con-
sider that the proposed model is stable, with our streamlined
hyperparameter optimization process. Results show that our
approach converges rapidly and achieves energetic gener-
alization efficiency on several validation data sets. We have

compared our approach to another state of the art approaches,
using the same dataset, to test the efficacy of our proposed
method, and the findings are given in Table 1. The previous
prediction approaches have produced excellent results, with
accuracy varying from 78 to 85%. As can be seen, our sys-
tem has achieved maximum efficiency. With 89.23% overall
accuracy on voice samples of PD patients and healthy indi-
viduals, our proposed approach produced better prediction
performance in comparison to previous studies.

It is observed that the optimized deep learning model
accomplishes the best classification precision of 89.23%
by means of tenfold cross-validation analysis. The auspi-
cious achievement acquired on voice samples of PD patients,
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and healthy individuals have demonstrated that the method
proposed can appropriately differentiate PD patients from
healthy individuals. In light of the experimental investigation,
it tends to be securely surmised that the advanced diagnosis
method can help the doctors in making a correct demonstra-
tive decision.

In this work, multiple implementations of the architec-
ture have been carried out in order to select the appropriate
values of parameters concerning the deep neural Network.
Therefore it carries a higher cost of computation for train-
ing the system in comparison with other approaches. The
trained classificationmodel is competent enough to diagnose
the patients of PD due to which its practicability is recom-
mended and applied. The model can be well implemented in
the clinical process of diagnosis by the clinicians. In future
studies, an emphasis will be made on the applicability of
the proposed method on diagnosing the other medical prob-
lems.

5 Conclusions and future work

Parkinson’s disease is the second prevalent neurological
disease after Alzheimer’s disease. It affects different parts
of the human body, the speech being the most suscepti-
ble. The speech study was therefore used as the foundation
for diagnosing Parkinson’s disease utilizing various meth-
ods for optimum numbers of trials. Right now, we have
executed the idea of optimized deep learning to identify pre-
cisely PD patients to enable medical staff to make better
and faster decisions. To increase the network training pace,
the hyperparameter tuning of the deep learning model has
been done, which has improved the precision to 91.69%
with the learning rate 0.1, the ReLU activation function,
ADAM as an optimizer, and seven layers. To develop predic-
tion models with an accuracy of a high level in a relatively
short period, the proposed method can analyze Parkinson’s
disease results automatically. It is concluded that when
the deep learning model is utilized with the grid search
hyperparameter tuning, the overall and mean classification
precision is improved to 89.23% and 91.69%, respectively.
Our experimental results show that we boost our system
considerably in comparison with a state of the art auto-
mated selection method, including search performance and
search results. The approach proposed here is meant to
detect the early onset of Parkinson’s disease. For future stud-
ies, our intention is to enhance the deep learning model
to multiple levels of achieving a much better diagnosis of
Parkinson’s disease. In the future, a corresponding variant
of grid search optimization on GPU’s is under considera-
tion.
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