Skip to main content
Log in

Video-based discomfort detection for infants

  • Special Issue Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Infants are particularly vulnerable to the effects of pain and discomfort, which can lead to abnormal brain development, yielding long-term adverse neurodevelopmental outcomes. In this study, we propose a video-based method for automated detection of their discomfort. The infant face is first detected and normalized. A two-phase classification workflow is then employed, where Phase 1 is subject-independent, and Phase 2 is subject-dependent. Phase 1 derives geometric and appearance features, while Phase 2 incorporates facial landmark-based template matching. An SVM classifier is finally applied to video frames to recognize facial expressions of comfort or discomfort. The method is evaluated using videos from 22 infants. Experimental results show an AUC of 0.87 for the subject-independent phase and 0.97 for the subject-dependent phase, which is promising for clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Acharya, R., Kumar, A., Bhat, P., Lim, C., Kannathal, N., Krishnan, S., et al.: Classification of cardiac abnormalities using heart rate signals. Med. Biol. Eng. Comput. 42(3), 288–293 (2004)

    Article  Google Scholar 

  2. Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 2037–2041 (2006)

    Article  MATH  Google Scholar 

  3. Ambuel, B., Hamlett, K.W., Marx, C.M., Blumer, J.L.: Assessing distress in pediatric intensive care environments: the comfort scale. J. Pediatr. Psychol. 17(1), 95–109 (1992)

    Article  Google Scholar 

  4. American Academy of Pediatrics, and Fetus and Newborn Committee: Prevention and management of pain in the neonate: an update. Pediatrics 118(5), 2231–2241 (2006)

  5. Ashraf, A.B., Lucey, S., Cohn, J.F., Chen, T., Ambadar, Z., Prkachin, K.M., Solomon, P.E.: The painful face-pain expression recognition using active appearance models. Image Vis. Comput. 27(12), 1788–1796 (2009)

    Article  Google Scholar 

  6. Behrman, R., Butler, A.S.: Institute of Medicine Committee on Understanding Premature Birth and Assuring Healthy Outcomes Board on Health Sciences Outcomes: Preterm Birth: Causes, Consequences, and Prevention. Preterm Birth: Causes, Consequences, and Prevention. National Academies Press, Washington (2007)

    Google Scholar 

  7. Blum, A.L., Langley, P.: Selection of relevant features and examples in machine learning. Artif. Intell. 97(1–2), 245–271 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brahnam, S., Chuang, C.F., Shih, F.Y., Slack, M.R.: Machine recognition and representation of neonatal facial displays of acute pain. Artif. Intell. Med. 36(3), 211–222 (2006)

    Article  Google Scholar 

  9. Brown, S., Timmins, F.: An exploration of nurses’ knowledge of, and attitudes towards, pain recognition and management in neonates. J. Neonatal Nurs. 11(2), 65–71 (2005)

    Article  Google Scholar 

  10. Chang, F.J., Tran, A.T., Hassner, T., Masi, I., Nevatia, R., Medioni, G.: Expnet: landmark-free, deep, 3D facial expressions. arXiv preprint arXiv:1802.00542 (2018)

  11. Déniz, O., Bueno, G., Salido, J., De la Torre, F.: Face recognition using histograms of oriented gradients. Pattern Recogn. Lett. 32(12), 1598–1603 (2011)

    Article  Google Scholar 

  12. Fitzgerald, M.: The development of nociceptive circuits. Nat. Rev. Neurosci. 6(7), 507–520 (2005)

    Article  Google Scholar 

  13. Fitzgerald, M., Millard, C., McIntosh, N.: Cutaneous hypersensitivity following peripheral tissue damage in newborn infants and its reversal with topical anaesthesia. Pain 39(1), 31–36 (1989)

    Article  Google Scholar 

  14. Fotiadou, E., Zinger, S., Tjon A Ten, W., Bambang Oetomo, S., et al.: Video-based facial discomfort analysis for infants. In: IS&T/SPIE Electronic Imaging, pp. 90290F–90290F. International Society for Optics and Photonics (2014)

  15. Gholami, B., Haddad, W.M., Tannenbaum, A.R.: Relevance vector machine learning for neonate pain intensity assessment using digital imaging. IEEE Trans. Biomed. Eng. 57(6), 1457–1466 (2010)

    Article  Google Scholar 

  16. Grunau, R., Craig, K.: Pain expression in neonates: facial action and cry. Pain 28(3), 395–410 (1987)

    Article  Google Scholar 

  17. Grunau, R.E., Whitfield, M.F., Petrie-Thomas, J., Synnes, A.R., Cepeda, I.L., Keidar, A., Rogers, M., MacKay, M., Hubber-Richard, P., Johannesen, D.: Neonatal pain, parenting stress and interaction, in relation to cognitive and motor development at 8 and 18 months in preterm infants. Pain 143(1), 138–146 (2009)

    Article  Google Scholar 

  18. Hammal, Z., Cohn, J.F.: Towards multimodal pain assessment for research and clinical use. In: Workshop on Roadmapping the Future of Multimodal Interaction Research Including Business Opportunities and Challenges (2014)

  19. Hsieh, R., Mochizuki, Y., Asano, T., Higashida, M., Shirai, A.: Real baby-real family: Vr entertainment baby interaction system. In: ACM SIGGRAPH 2017 Emerging Technologies, p. 20. ACM (2017)

  20. Johnston, C.C., Stevens, B.J., Yang, F., Horton, L.: Differential response to pain by very premature neonates. Pain 61(3), 471–479 (1995)

    Article  Google Scholar 

  21. Kazemi, V., Josephine, S.: One millisecond face alignment with an ensemble of regression trees. In: 27th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014, Columbus, United States, 23 June 2014 through 28 June 2014, pp. 1867–1874. IEEE Computer Society (2014)

  22. Kharghanian, R., Peiravi, A., Moradi, F.: Pain detection from facial images using unsupervised feature learning approach. In: 2016 IEEE 38th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), pp. 419–422. IEEE (2016)

  23. King, D.E.: Dlib-ml: a machine learning toolkit. J. Mach. Learn. Res. 10((Jul)), 1755–1758 (2009)

    Google Scholar 

  24. Kotsia, I., Pitas, I.: Facial expression recognition in image sequences using geometric deformation features and support vector machines. IEEE Trans. Image Process. 16(1), 172–187 (2007)

    Article  MathSciNet  Google Scholar 

  25. Lindh, V., Wiklund, U., Håkansson, S.: Heel lancing in term new-born infants: an evaluation of pain by frequency domain analysis of heart rate variability. Pain 80(1–2), 143–148 (1999)

    Article  Google Scholar 

  26. Littlewort, G.C., Bartlett, M.S., Lee, K.: Automatic coding of facial expressions displayed during posed and genuine pain. Image Vis. Comput. 27(12), 1797–1803 (2009)

    Article  Google Scholar 

  27. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  28. Lucey, P., Cohn, J.F., Matthews, I., Lucey, S., Sridharan, S., Howlett, J., Prkachin, K.M.: Automatically detecting pain in video through facial action units. IEEE Trans. Syst. Man Cybern. Part B Cybern. 41(3), 664–674 (2011)

    Article  Google Scholar 

  29. Mima, Y., Arakawa, K.: Cause estimation of younger babies’ cries from the frequency analyses of the voice-classification of hunger, sleepiness, and discomfort. In: International Symposium on Intelligent Signal Processing and Communications, 2006. ISPACS’06, pp. 29–32. IEEE (2006)

  30. Norden, J., Hannallah, R., Getson, P., O’Donnell, R., Kelliher, G., Walker, N.: Reliability of an objective pain scale in children. J. Pain Symptom Manag. 6(3), 196 (1991)

    Article  Google Scholar 

  31. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  MATH  Google Scholar 

  32. Petrini, J.R., Dias, T., McCormick, M.C., Massolo, M.L., Green, N.S., Escobar, G.J.: Increased risk of adverse neurological development for late preterm infants. J. Pediatr. 154(2), 169–176 (2009)

    Article  Google Scholar 

  33. Raju, T.N., Higgins, R.D., Stark, A.R., Leveno, K.J.: Optimizing care and outcome for late-preterm (near-term) infants: a summary of the workshop sponsored by the national institute of child health and human development. Pediatrics 118(3), 1207–1214 (2006)

    Article  Google Scholar 

  34. Riddell, R.P., Racine, N.: Assessing pain in infancy: the caregiver context. Pain Res. Manag. 14(1), 27–32 (2009)

    Article  Google Scholar 

  35. Schiavenato, M., Byers, J.F., Scovanner, P., McMahon, J.M., Xia, Y., Lu, N., He, H.: Neonatal pain facial expression: evaluating the primal face of pain. Pain 138(2), 460–471 (2008)

    Article  Google Scholar 

  36. Shan, C., Gong, S., McOwan, P.W.: Robust facial expression recognition using local binary patterns. In: 2005 IEEE International Conference on Image Processing, ICIP 2005, vol. 2, pp. II–370. IEEE (2005)

  37. Shan, C., Gong, S., McOwan, P.W.: Facial expression recognition based on local binary patterns: a comprehensive study. Image Vis. Comput. 27(6), 803–816 (2009)

    Article  Google Scholar 

  38. Sikka, K., Ahmed, A.A., Diaz, D., Goodwin, M.S., Craig, K.D., Bartlett, M.S., Huang, J.S.: Automated assessment of children’s postoperative pain using computer vision. Pediatrics 136(1), 124–131 (2015)

    Article  Google Scholar 

  39. Stevens, B., Johnston, C., Petryshen, P., Taddio, A.: Premature infant pain profile: development and initial validation. Clin. J. Pain 12(1), 13–22 (1996)

    Article  Google Scholar 

  40. US Department of Health and Human Services: Acute Pain Management in Infants, Children, and Adolescents: Operative and Medical Procedures. Agency for Health Care Policy and Research, Rockville (1992)

  41. Vu, N.S., Caplier, A.: Face recognition with patterns of oriented edge magnitudes. In: European conference on computer vision, pp. 313–326. Springer, Berlin (2010)

  42. Whit Hall, R., Anand, K.: Short-and long-term impact of neonatal pain and stress. NeoReviews 6, 69–75 (2005)

    Article  Google Scholar 

  43. Zamzmi, G., Pai, C.Y., Goldgof, D., Kasturi, R., Ashmeade, T., Sun, Y.: An approach for automated multimodal analysis of infants’ pain. In: 23rd International Conference on Pattern Recognition (ICPR 2016)

  44. Zamzmi, G., Pai, C.Y., Goldgof, D., Kasturi, R., Sun, Y., Ashmeade, T.: Automated pain assessment in neonates. In: 20th Scandinavian Conference on Image Analysis (SCIA 2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caifeng Shan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Shan, C., Tan, T. et al. Video-based discomfort detection for infants. Machine Vision and Applications 30, 933–944 (2019). https://doi.org/10.1007/s00138-018-0968-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-018-0968-1

Keywords

Navigation