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Abstract

Accurate segmentation of zebrafish from bright-field microscope images is crucial to many applications in the life sciences.
Early zebrafish stages are used, and in these stages the zebrafish is partially transparent. This transparency leads to edge
ambiguity as is typically seen in the larval stages. Therefore, segmentation of zebrafish objects from images is a challenging
task in computational bio-imaging. Popular computational methods fail to segment the relevant edges, which subsequently
results in inaccurate measurements and evaluations. Here we present a hybrid method to accomplish accurate and efficient
segmentation of zebrafish specimens from bright-field microscope images. We employ the mean shift algorithm to augment
the colour representation in the images. This improves the discrimination of the specimen to the background and provides a
segmentation candidate retaining the overall shape of the zebrafish. A distance-regularised level set function is initialised from
this segmentation candidate and fed to an improved level set method, such that we can obtain another segmentation candidate
which preserves the explicit contour of the object. The two candidates are fused using heuristics, and the hybrid result is
refined to represent the contour of the zebrafish specimen. We have applied the proposed method on two typical datasets.
From experiments, we conclude that the proposed hybrid method improves both efficiency and accuracy of the segmentation
of the zebrafish specimen. The results are going to be used for high-throughput applications with zebrafish.

Keywords Zebrafish segmentation - Bright-field microscope - Hybrid method - Mean shift algorithm - Level set method -
High-throughput imaging

1 Introduction

High-throughput imaging applications pose a challenge to
the image acquisition in that in some cases the quality of
the imaging is compromised at the cost of the speed of the
imaging. Often, this compromise is well studied and the loss
of quality is relatively mild. We have studied high-throughput
applications for zebrafish; the zebrafish is a popular model
system in biomedical research. At present, high-throughput

This research is partially funded by China Scholarship Council (CSC)
and The Netherlands Organisation for Scientific Research (NWO).

B< Yuanhao Guo
yguo.leidenuniv @gmail.com

Zhan Xiong
z.xiong @liacs.leidenuniv.nl

Fons J. Verbeek
f.j.verbeek @liacs.leidenuniv.nl

Imaging & Biolnformatics, LIACS, Leiden University, Niels
Bohrweg 1, 2333 CA Leiden, The Netherlands

applications for zebrafish can be found, among others, in the
fields of toxicology, cytology and oncology [1,2].

The development of zebrafish high-throughput imaging
[3] has resulted in massive amounts of data, i.e. images,
becoming available. This requires an efficient and robust
analysis for the images, so that phenotype descriptions
of the zebrafish can be generated. Genetically engineered
zebrafish can be labelled with fluorescent markers. Images
from fluorescence present good properties of visibility and
measurability for cancer cells and organs. In order to evaluate
the features which are usually represented as colour intensity
and concentration from the fluorescence, accurate segmenta-
tion of the zebrafish in bright-field images is quite essential to
offer a shape reference for the measurements [4]. So, feature
evaluations from control and experimental groups become
comparable. In Fig. la, an example of this application is
depicted.

Moreover, we can observe more informative features, e.g.
volume, surface area and 3D shape variation, in 3D zebrafish
imaging [5]. To this end, we need accurate 2D zebrafish
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Fig. 1 Typical applications of zebrafish segmentation. a Fluorescence
images visualisation and evaluation. Bright-field zebrafish images offer
reference for the shape of the specimen (column one). Fluorescent
images present informative signals, e.g. the blood vessels in green (col-
umn two). Accurate segmentation of the bright-field image provides
a good shape reference to evaluate the fluorescent signals, for exam-

segmentation to obtain sufficient shape priors for the axial-
view-based 3D zebrafish reconstruction [6]. In Fig. 1b, we
show this application.

In a particular case, according to the observation that the
hemopoietic stem cells in zebrafish predominantly distribute
in the tail, an accurate description of the overall shape of
the zebrafish will ensure the evaluation of particular dis-
eases by detecting and localising the tail region [7,8]. Thus,
an accurate segmentation of zebrafish objects in bright-field
microscopy is very significant for a large range of biomedical
applications.

Computational methods from the field of computer vision
can, in principle, help to accomplish the image segmenta-
tion task in zebrafish imaging. However, when popular image
segmentation methods are applied, for example, the geodesic
active contours (GAC) model [9] and the Chan—Vese (CV)
model [10], the inhomogeneity of the intensity distribution
caused by partial transparency and edge discontinuity of
zebrafish larvae usually results in an inaccurate segmenta-
tion. To illustrate these effects, in Fig. 2a, b, the segmentation
results from, respectively, the GAC model and the CV model
are shown. These segmentations show that the CV model
converges at the most observable region, but fails to retain
the whole shape of the object; the GAC model obtains a poor
shape description for the zebrafish tail. As shown in Fig. 2c,
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ple, the development and concentration of specific cells (column three).
b 3D zebrafish reconstruction from axial views. Axial-view zebrafish
images (column one) are segmented to obtain 2D binary shapes (col-
umn two), from which the axial-view-based 3D reconstruction produces
3D models as well as 3D measurements (column three) (colour figure
online)

d, other improved algorithms, such as the local region-based
level set (IRLS) model [11] and the improved level set (ILS)
method [12], also do not result in an accurate segmentation
of the zebrafish.

In fact, the edge-based methods including the GAC model
and the ILS method are able to accurately discriminate the
visible edges, but suffer from the problem of edge leakage. In
contrast, as depicted in Fig. 2e, unsupervised learning meth-
ods such as the mean shift (MS) algorithm [13] can obtain an
overview shape description for the object, while the explicit
edge will be, to a certain extent, contaminated due to region
fusion effects.

For this particular research project, we aim at an efficient
and robust solution for accurate zebrafish segmentation from
bright-field microscope images. We, therefore, have devel-
oped the hybrid (HY) method to combine the advantages of
various models. The objective of the HY method is to largely
preserve the prominent contour of the object and discrimi-
nate the transparent regions and weak edges. In Fig. 2f, we
show the segmentation result. A schema of the HY method
is depicted in Fig. 3, and below we elaborate the method.

In Fig. 3a, we apply the MS algorithm to the original
image to improve the colour representation from the trans-
parent object with respect to the background and obtain a
segmentation candidate. This initial segmentation retains and
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Fig. 2 Segmentations by different methods for a zebrafish specimen
in lateral position. Blue bounding box indicates the expected segmen-
tations, and red bounding box indicates inaccurate segmentations. a
Segmentation by the geodesic active contours (GAC) model. Due to the
edge sensitivity, the GAC model fails to detect the tail of the specimen.
b Segmentation by Chan—Vese (CV) model. The partial transparency
of the specimen makes it difficult for a region-based method to dis-
criminate the object from the background. ¢ Segmentation by a local

(F)

region-based level set (LRLS) model. Similar problem occurs that the
tail of the specimen is incorrectly segmented. d Segmentation by an
improved level set (ILS) method. e Segmentation by mean shift (MS)
algorithm. Better results are obtained though; edge sensitivity becomes
worse. f Segmentation by the proposed hybrid (HY) method. The accu-
rate segmentation presents a natural and compact shape description for
the zebrafish specimen (colour figure online)

Fig. 3 A pipeline schematic of the hybrid method. a MS algorithm is
applied to improve the visibility of the transparent regions and weak
edges. b An enclosed contour is extracted from the segmentation candi-
datein (a). ¢ A distance-regularised level set function (LSF) is initialised
from the zebrafish contour in (b). d The ILS method is activated and
applied on the original image. e Another segmentation candidate is gen-

erated. f An initial hybrid segmentation of the zebrafish is obtained by
stitching the remarkable segments from the two candidates according
to pre-defined protocols. g A refinement is followed to fine-tune the
segmentation which can accurately represent the shape of the zebrafish
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approximates the overall shape of the zebrafish. In Fig. 3b,
we extract an enclosed contour for the object from the results
obtained in Fig. 3a. In Fig. 3c, a distance-regularised level set
function is initialised from the result obtained in Fig. 3b. In
Fig. 3d, with the initialised level set function, the ILS method
is applied on the original image to obtain another segmenta-
tion candidate. Itis important that this manner of initialisation
significantly accelerates the curve convergence of the level
set method and improves the segmentation accuracy. Because
the initialisation already approaches the edge potentials, local
minimum problem is solved to a certain extent. In Fig. 3f,
according to pre-defined protocols, we heuristically fuse the
two segmentation candidates. In Fig. 3g, a cascaded refine-
ment module aims to fine-tune the segmentation result, which
drives the contour to describe the shape of the zebrafish in a
compact and accurate form.

A similar initialisation idea to step (C) is proposed in
[14]. However, the employment of the MS algorithm in this
work is not only to accelerate and stabilise the curve evo-
lution, but also to obtain an overall view of the shape of
the zebrafish which is beneficial for the following hybrid
result. In other words, compared to the problem presented in
[14], our zebrafish segmentation problem presents a more
challenging task; the segmentation methods with just the
improved initialisation are insufficient to achieve the best
performance.

The remainder of this paper is structured as follows. In
Sect. 2, we review the related work and derive the level
set method. In Sect. 3, we elaborate the HY method. In
Sect. 4, we first present two datasets of zebrafish objects from
bright-field microscope imaging. The experimental set-up is
subsequently depicted, and the experimental results to eval-
uate the performance of the proposed method are presented.
In Sect. 5, we summarise the research and indicate future
developments.

2 Related work and inference of level set
method

In medical imaging, the functional-based segmentation
methods have been successfully developed and shown good
performance. These methods seem to be suitable for bright-
field microscopy imaging where complex scenes and noise
are common. These methods aim at optimising an energy
functional to estimate the optimal enclosed contour attach-
ing the object boundary.

An early version of this technique is proposed as the clas-
sic active contours (snakes) model [15], from which the
more advanced algorithms have been derived. The snakes
model detects the object boundary by parameterising it as
an enclosed curve C(p) € R2, p € [0, 1]. The curve will
topographically evolve to minimise an energy functional
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formulated as E (C) which incorporates an internal force con-
sidering the total length and the smoothness of the curve, and
an external force derived from the image to encourage the
curve to approach the object boundary. However, the snakes
model cannot deal with changes in topology; in other words,
it cannot detect all the boundaries in an image with multiple
objects. Moreover, this method is rather sensitive to blurred
edges.

The level set method is developed to handle the prob-
lems of topological merging and breaking [16]. The idea is
to formulate the object boundary as the zero level set contour
implicitly embedded in a three-dimensional function which
is known as the level set function (LSF) ¢ (x,1) : £2 — R,
where the ¢ is an artificial time variable presenting the time
evolution procedure and the 2 is the image domain. The ¢
is usually assigned with positive and negative values in and
out of the zero level set contour. The energy functional is
transformed to E (¢) from E(C).

Subsequently, a region-based level set (CV) model is pro-
posed [10]. With the introduction of the Heaviside function

1, if x>0
H(x)_{o, if x <0,

the energy functional is defined as
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where uj, and uqy represent the mean intensity of the image
inside and outside of the curve, and © and v are constants
which can be tuned to balance different forces. The CV model
can deal with the edge-blurred images without employing
edge terms. Based on the Euler—Lagrange equation, the gra-
dient descent can solve the curve evolution problem. The
gradient flow is computed as follows:

d¢  IE

5 = 9 3

However, as shown in Fig. 1b, the CV model fails to seg-
ment the zebrafish because of severe intensity inhomogeneity
in the images. A local region-based level set (LRLS) method
is proposed to model the intensity variation as a bias term for
each of the local region generated from intensity clustering
[11].

Differently, the geodesic active contours (GAC) model
[9,17] which originates from the snakes model has its advan-
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tage of edge preserving, of which the energy functional is
proposed as

E(¢) = u/gg(lVIl)IVH(@Idx

Length term

+ u/ g(IVI)H (¢)dx
$ )

Area term

=u/9g<|vz|>8<¢)|w|dx

+ U/gg(IVII)H@)dx,

where the g is known as the edge indicator which is formu-
lated as

g(VI)) = &)

1—c|VI]Z

The values of g are close to zero at the region of object edges
and one at the region of non-edges. This definition encour-
ages the curve to converge at the object boundary when the
energy functional is minimised. To derive the level set-based
GAC model, the gradient flow can be computed according to
Eq. (3) as:

o¢ = ud(¢)di Vi Vo VI|)}s

o = He@div (g<| ')W) + vg(IVIDIS(9)
B (Vo
= 13(9) [g(|w|)dw (—W) + Vg<|w|>|V¢|}

+ vg(IVIDS(9).
(6)

Finally, the curve evolution problem is transformed as a
level set surface evolution problem

Giv1 =¢i + Afa—d), (N
ot
where the step size controller of At is tunable during solution
search. This search is a standard gradient descent approach
which can quickly locate the minimum of the functional.
From the observations of our bright-field images, the con-
tour of the zebrafish is more discriminative than the colour.
So, the edge-based level set method should be suitable for our
problem. However, from Fig. 1a, c, d, the boundary defects
of zebrafish result in the problem of edge leakage for the
aforementioned methods. To solve this problem, the shape
prior-based level set methods are proposed [18-20]. This
type of methods uses pre-defined shape templates to con-
strain the curve evolution. The employment of the shape

constraint enforces the curve to approach the linear trans-
formed template. However, the methods can only deal with
the problems with limited shape deformations. Moreover,
the methods including curvature constraint try to minimise
the total curvature of the curve in order to control curve
smoothness [21,22]. However, these methods are difficult to
implement with numerical solutions.

Besides, the performance of the GAC model also depends
on the initialisation of LSE. A bad initialiser may lead the
curve to converge at a local minimum, for example, the
boundaries of the capillary as present in the images of the
zebrafish. Cohen and Chen [23,24] propose to find the global
minimum of the geodesic energy by solving the eikonal equa-
tion, but those methods require initial and end points from
user input. In zebrafish high-throughput imaging, we prefer
an automated manner.

Unsupervised learning-based methods, e.g. k-means clus-
tering [25,26], superpixels [27,28] and mean shift algorithm
[13,29], represent also a broad category of image segmenta-
tion techniques. Those methods can cope with complicated
images by merging similar local regions and offer reasonable
pre-segmentations.

Supervised learning-based models [30-32] have drawn
a lot of attention. Based on the remarkable development
of deep learning architectures [33], the fully convolutional
neural networks (FCN) [34] have been proposed and they
achieved promising performances in semantic segmenta-
tion. Consequently, more architectures are proposed [35-37].
Those methods can be seen as generic for the objects which
are included in the annotated datasets. Once they are applied
in an unseen scenario, a certain number of manual annota-
tions should be prepared, which is usually laboringly and
financially expensive. We also have to take the computa-
tion complexity into consideration. The FCN usually requires
very expensive computation during training time. At infer-
ence time, it is inefficient in the scenario without GPU
support.

Based on the discussions so far, we may conclude that each
of the image segmentation methods shows good properties
to solve a generic problem, but also has its own limitations.
Therefore, it is reasonable to develop a method to take advan-
tage of the good properties of the methods. Here we aim at an
efficient and robust solution for our zebrafish segmentation
problem from bright-field microscope images. Consider-
ing the intrinsic characteristics of bright-field images of
zebrafish, we propose the HY method. This method applies
an unsupervised learning method, i.e. mean shift algorithm,
to obtain an overview shape description of the object. The
edge-based level set method takes the pre-segmentation as
initialisation and detects the explicit boundary. Finally, the
two segmentation candidates are incorporated to obtain a bet-
ter shape representation of the zebrafish. In fact, our method
can be easily adapted and extended for other similar appli-
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cations in microscope image segmentation, which does not
require many manual interventions.

3 The hybrid method for segmentation of
zebrafish objects from the bright-field
microscope images

In this section we develop the HY method by fusing the
advantages of the MS algorithm and the edge-based level set
methods, i.e. the ILS method, to obtain accurate segmentation
for bright-field microscope imaging of zebrafish. The term
hybrid represents a dual semantics. We first refer to hybrid as
the improved manner of initialisation for the level set method
with the MS algorithm. Compared with the functional-based
models, the MS algorithm shows the advantage of fast con-
vergence and robust discrimination of transparency and weak
edges. In this manner a segmentation candidate representing
an overview of the zebrafish shape can be obtained and used
to initialise the LSF for the ILS method. The ILS method can
obtain another segmentation candidate to retain the explicit
contour of the zebrafish. Then we refer to hybrid as the hybrid
operation of the two segmentation candidates.

3.1 Mean shift algorithm and the segmentation
candidate

We present a short recap of the MS algorithm in the applica-
tion of clustering. In principle, the MS algorithm can cluster
the similar data points through the estimation of the maximal
density distribution of each data point. It is a kernel-based
density estimator which is derived from a method known as
Parzen window. Given n data points x;, i = 1,...,n, the
density distribution of a data point of x can be approximated
by a kernel density estimator as

N 1 & X — X;
f(x)=W§K< - ) (8)

where h is the size of the bandwidth; d is the feature
dimension; and K (-) usually takes the form of multivari-
ate Gaussian kernel which can be written as K(x) =
(27)~/2 exp(—||x||?/2). From the definition of Eq. (8), one
can find that a data point similar to x will contribute to
its density estimation. We take the profile notation k(x) =
exp(—x/2) instead of the kernel representation of K and
yields the profile representation of Eq. (8).

2
) . ©)

X —X;
h

n
2 Chk,d
= —= k
fnx®) =7 2 (
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If a function is defined as g(x) = —k’(x), the negative
gradient of the profile function k, the gradient of (9) can be
computed and transformed into the form as follows:

n 2
P~ 2 |5 ([52])
i=1
Zi:l:n Xi8 (||X72Xi Hz) _
S (115417)

The second term in Eq. (10) inspired us to the definition of
the mean shift

X —X;

h

(10)

i xig ([152117)
my,(x) = ——" X, (11)
Y18 (||xhx' || )

which indicates that the density maximiser of the data point
x directs from the current data point to the kernel-weighted
mean of all the training data within a bandwidth of 4. The
location of the maximal density distribution of data point x
can be approximated by updating Eq. (11) until convergence.

We apply the MS algorithm in image texture augmentation
which we refer to as the image filtering and smoothing. In our
problem of segmentation in images of zebrafish, the texture
augmentation is to improve the discrimination from the trans-
parent object with respect to the background and enhance the
weak boundary. Considering both the colour and spatial fea-
tures in images, two bandwidths should be defined separately
for those two metrics. The kernel of K should combine those
two feature spaces and is represented as follows:

PR

where k keeps the form of profile as previous definition;
(x", x*) denote colour and spatial features, respectively; and
the pair (h,, hy) represents the bandwidth in the two feature
spaces. We use the three-channel RGB image and repre-
sent the spatial feature as two-dimensional coordinates of
the pixel location. According to Eq. (12), the pixels within
a range domain contribute more, i.e. represented as higher
weights, for the density estimation of the centre pixel when
the neighbouring pixels and the centre pixel are similar in
colour and spatial space.

By determining a proper combination of the bandwidths
for (h,, hy) and applying the MS algorithm on the images of
zebrafish, the weak boundary of the specimen can be, to a cer-
tain extent, recovered by the neighbouring pixels. At the same
time, the colour inhomogeneous regions are smoothed. For
our application, only one object is present in the image, so a
segmentation candidate for the zebrafish is directly obtained

XS
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by thresholding the texture augmented images and repre-
sented as Syy.

3.2 The hybrid of the improved level set method and
the accelerated initialisation

In this work, we apply the ILS method for two reasons: (1)
efficient implementation and (2) its tunable properties to a
problem. The ILS method improves the GAC model by the
employment of a “region-based term”. Its energy functional
is defined in Eq. (13).

E(¢) = ./9 (ng(IVIDIVH:(P)| + v(I —m)He(¢)]dx,
(13)
where m is a user-provided value which is used to pre-process

the images. We use a smooth approximation of the Heaviside
function, here defined as

T+ 2+ 1sin(Z2), if |x|<e
He(x) =1 1, if x>e (14)
0, if x < —e,
and its derivative
1 X :
[ [1+cos(E)], if x| <e
de(x) = {0, it |x| > —e. (15

According to Eq. (3), the gradient flow of the ILS method
is derived as:

0% _ A o
Yo 56(¢>){M [g(IVII)dIV (|V¢|> + Vg(VI]) |V¢|]

+U(I—m)}, (16)

where div denotes the divergence operator.

Basically, the ILS method replaces the “area constraint”
in the original GAC model by a region-based term inferred
from the image to make the solution more tunable. For the
sake of fast implementation, the additive operator splitting
(AOS) scheme [17,38] is used.

In general, an LSF should be defined to initialise the level
set methods. Multiple options are available to accomplish
this, e.g. random initialisation. Application of a random ini-
tialisation for segmentation of zebrafish images has the risk of
the enclosed contour of the zero level set converging at a local
minimum which is presented as the noise. The segmentation
candidate from the MS algorithm offers an overall shape rep-
resentation of the zebrafish, which is a reasonable initialiser
and can be fed to the ILS method. The LSF initialised by
the MS algorithm is an approximation of the object, which

imposes the curve evolution of the ILS method to be acti-
vated from a considerably good location. Based on this idea,
we accomplish the first goal of the HY method and specify
the curve evolution of Eq. (7) in two phases:

¢1 =0} +Aan3L, =0,
(17)
1=+ AL, t=1t0Ty 1,

where the notation q’)g” denotes the shape-constrained LSF
by the MS algorithm. Compared to the random initialisation
fashions, the proposed HY method leads the LSF to approach
the global minimum, such that the ILS method is accelerated
and more robust with less iterations. We obtain the second
segmentation candidate of the zebrafish, represented as Sy,
through searching for the non-negative level sets in the con-
verging LSF of ¢.

3.3 The hybrid of the segmentation candidates

In order to accomplish the second task of the HY method,
we define a hybrid operator to obtain the hybrid for the two
segmentation candidates. To that end, we first detect the ori-
entation of the zebrafish. In general, the side close to the
broadest part of a zebrafish is recognised as the head side.
The hybrid operator includes multiple operations of splitting
and fusing and is mathematically defined as

S=a-S.® 8-Sy, (18)

where S, Sp,and Sy represent the segmentations by the
hybrid operation, the ILS method and the MS algorithm,
respectively. We define « € [0, 1] and B € [0, 1] as split-
ting factors which satisfy the criterion @ 4+ 8 > 1. Here, we
use « = B = 0.9. This ensures the zebrafish shape integrity.

We implement the splitting operator as o - S = SZ UST,
where S¥ and ST denote the segments from the head and tail
sides of the zebrafish. In other words, we separately split the
whole zebrafish shape into the head and tail parts according
the factor & (and B).

We have observed that the ILS method offers more com-
pact contour for the segment close to the side of head in
zebrafish, so we could take the intersection of the corre-
sponding segments from the two segmentation candidates.
The MS algorithm offers an approximation for the natural
shape of zebrafish for the segment close to the side of tail,
so we take the union of the corresponding segments. As a
result, we elaborate Eq. 18 as follows to complete the hybrid
operation.

S=a-S.PB-Su
=S, US[ @ (S p) USh ) (19)
=(SH, N S,Z’ﬁ) U(S] U SATM).
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Algorithm 1: The hybrid method for zebrafish segmen-
tation in the bright-field microscope imaging

Input: Bright field microscope zebrafish image I
Setup: u, v, Ay, Aty, Ty, Tr, hy, hy
Begin:
Pre-process the noise of capillary: Iy = detect_capillary(I)
Apply the MS algorithm: Iy = meanshift(1;)
Extract the segmentation candidate: Sy = threshold (1)
Initialise LSF: ¢3’1 = distance_transform(Sy)
for iterator =1 : Ty do
L Compute Eq. (16) to obtain gradient flow %
Compute Eq. (17) to update ¢
Obtain segmentation candidate: Sy, = 1(¢ > 0)
Factorise segmentations according to splitting factors « and g
Apply Eq. (19) to obtain hybrid result S
Initialise LSF: MgIY = distance_transform(S)
for iterator =1 : T do
L Compute Eq. (16) to obtain gradient flow %—’;
Compute Eq. (20) to update u
Obtain the final hybrid segmentation: S = 1(u > 0)
End

From the observation of the initial result of the HY
method, segmentation artefacts at the stitching point might
occur. Therefore, we propose a refinement in the form of the
second-phase curve evolution based on the LSF initialised by
the initial hybrid segmentation result. We specify this idea in
Eq. (20). Hereby we use u to define the LSF to distinguish
from Eq. (7).

uy :ugIY—i-Atza—';, t=0,

(20)
U = U+ A%, t=1t0T—1.

Through the aforementioned manner, we can obtain more
accurate representation of the zebrafish contour which is
embedded as the zero level set in the u. The step size Az, of
the gradient flow is set to be much smaller than the previous
one of Aty, which prevents the occurrence of edge leakage.
In order to clearly illustrate the proposed method, we sum-
marise the whole procedure in Algorithm 1.

4 Experiments

In this section we first present two datasets of bright-
field axial-view images of zebrafish from the vertebrate
automated screening technology (VAST Biolmager) (http://
www.unionbio.com/vast/). We apply our HY method as well
as several popular segmentation methods on the datasets to
compare performances. We evaluate the methods in the form
of accuracy and efficiency. The visualisation of segmenta-
tion results shows the limitations of the reference methods
and the merit of the HY method for segmentation of bright-
field microscope images of zebrafish. At the end, we provide
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an evaluation of the FCN on our datasets and explore the
potentials of our method in supporting the FCN.

4.1 Data collection

The VAST Biolmager is developed for high-throughput
experiments with zebrafish; the device can be mounted on
a microscopes; its main feature is the ability of manipulation
of zebrafish in the field of view by loading them in capil-
lary. The VAST camera detects the orientation and location
of the object. Once the object is present in the field of view
of the imager, a set of stepper motors holding the capillary
rotate the specimen in a full revolution, so that images of the
zebrafish can be acquired in any axial view. In our experi-
ments, 84 axial views (images) are evenly sampled from a
full revolution (around 4.3° per view) for each specimen.
This axial-view imaging protocol presents another challenge
to the generalisation ability of the segmentation methods.

Dataset A—The VAST Biolmager is equipped with a stan-
dard camera, the VAST camera, which is used to detect
the object presence in the field of view. With this camera
axial-view images for the specimen can also be acquired
representing an overview of the object. These images are
1024 x 1024 in size with a pixel size of 5.5 x 5.5 wm. From
Figs. 4, 5 and 6, examples of the images acquired by the VAST
camera are depicted. The partial transparency and weak edge
are clearly visible in most of the images. All images in the
Dataset A are collected with the VAST camera. Dataset A
includes a range of developmental stages of the zebrafish, i.e.
3, 4 and 5days post-fertilisation (dpf). The dataset contains
three groups with 60 examples. With 84 views per sample,
this results in over 5000 images in total (84 x 60).

Dataset B—The images produced by the VAST Biolm-
ager are of relatively low resolution and are insufficient for
detailed observations of the zebrafish. Our set-up consists
of a microscope on which the VAST Biolmager is mounted
to produce high-resolution images. The VAST Biolmager
manipulates the specimen, and the camera mounted on the
microscope acquires the high-resolution images. Therefore,
as an extension to Dataset A a Dataset B is obtained. The
same imaging protocol with respect to Dataset A is used, i.e.
84 evenly sampled axial views are acquired in a full revolu-
tion. The image size of each is 1920 x 2560 with a pixel size
of 3.4 wm x 3.4 um. From Figs. 7, 8 and 9, some examples
of these images are depicted. For better visualisation, both
of the vertical sides of the images are cropped to the centre
of the object and the image size is cropped to 600 x 2560.

Here, we state that the segmentation of zebrafish in bright-
field microscope images is relevant to the visible parts of the
objects. In the zebrafish image examples shown in Figs. 4, 5,
6,7, 8 and 9, we can see that the caudalmost extension of yolk
of the zebrafish positioned at its lateral view is almost entirely
invisible. The caudalmost tip of the tail is also invisible at its
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Fig.4 Segmentation results visualisation of different methods on one
zebrafish example from Dataset A. The object is positioned in ventral.
GAC = geodesic active contours model [9]. LRLS = local region-based
level set model [11]. ILS = improved level set method [12]. MS = mean
shift algorithm [13]. HY = the proposed hybrid method. FCN = fully
convolutional neural networks. GT = groundtruth

lateral view, but is visible at its ventral view. However, we
should realise that all the methods which will be evaluated
cannot recognise those parts without any shape constraints.
Moreover, the visible shape of the zebrafish is already suf-
ficient in our applications mentioned in Sect. 1. So, in this
work, we only include the visible shapes presenting in the
zebrafish images. However, regarding the caudalmost tip of
the tail, we can still apply our previous work [39,40] to handle
it. For example, we first create a 3D model for the zebrafish
using the segmentations obtained in this work and project it
back to the 2D shapes to improve the segmentations. Reader
can refer to our previous work for more details.

GAC

LRLS

ILS

MS

HY

FCN

GT

Fig.5 Segmentation results visualisation of different methods on one
zebrafish example from Dataset A. The object is in titled position

4.2 Evaluation of different methods

In the experiment, the efficiency and performance are evalu-
ated for different segmentation methods. The abbreviations
of CV, GAC, LRLS and ILS consistently represent the
Chan—Vese model, geodesic active contours model, local
region-based level set model [11] and the improved level set
method [12], respectively; MS denotes the mean shift algo-
rithm. The representation of *+MS indicates the * model
with an initialiser from the MS algorithm, and HY is the
proposed HY method.

In order to have a groundtruth set, we manually segmented
336 images of 4 specimens (84 views per specimen) from
Dataset A. In addition, a subset from Dataset B including 33
images selected from 3 objects is also manually segmented
to obtain groundtruth annotations.
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MS

HY

FCN
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Fig. 6 Segmentation results visualisation of different methods on one
zebrafish example from Dataset A. The object is positioned in lateral

We measure the accuracy represented as F-score and the
efficiency as run-time for all the methods on the subsets. The
F-score is defined as F = (2-recall - precision)/(recall +
precision). The closer to one the F-score is, the better the
performance of a method is. The mean and standard deviation
for the two measurements are computed.

In the experiment, we partially used the fast implementa-
tion from [12]. To justify different methods, we give the same
set-ups. For the models initialised by the MS algorithm, we
take the configuration of the kernel bandwidths (h,, h) as
(20, 20). Besides, all the methods are configured with the
same number of iterations.

4.2.1 Performance evaluation on subsets of Dataset A

In Table 1, we show the performance of different methods,
evaluated on the subset of Dataset A with groundtruth. One

@ Springer

GAC —?—'

Fig. 7 Segmentation results visualisation of different methods on one
zebrafish example from Dataset B. The object is positioned in ventral

can see that the CV model obtains the lowest F-score. This
can also be seen in the segmentation result visualisation
depicted in Fig. 1b. Due to intensity inhomogeneity of the
zebrafish in the image, it is difficult for the CV model to esti-
mate the general mean of the texture inside and outside the
object. Consequently, the CV model almost completely fails
to detect the zebrafish.

For the other methods, comparable performances are seen
though; differences are still existing. It is obvious that the MS
algorithm is the most efficient segmentation method. This
provides evidence for the fact that a segmentation method
equipped with an MS initialiser is always more efficient
than the same model with the random initialisation. We may
conclude that the hybrid of the MS initialisation with the
functional-based segmentation model is helpful to improve
the efficiency of zebrafish segmentation. The reason is that
the MS initialiser can produce a good estimation of the over-
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FCN

Fig. 8 Segmentation results visualisation of different methods on one
zebrafish example from Dataset B. The object is in tilted position

all shape of the zebrafish. This shape approaches the global
minimum.

The LRLS model also achieves a good performance. How-
ever, we should make more effort for the configurations and
post-processing to obtain a natural shape for the zebrafish in
the LRLS model. We do not have the fast implementation for
the LRLS model, so that we cannot reasonably give a justi-
fication of its efficiency. Nevertheless, we can appreciate the
hybrid of the MS algorithm and the LRLS model for a fast
curve evolution.

Both the ILS method and the GAC model can obtain better
segmentation results than the aforementioned methods. We
find that the ILS method works faster than the GAC model.
So, we choose to use the ILS method in our HY method. Con-
sidering the accuracy, the proposed HY method has the best
performance. This is reasonable as the HY method combines
the advantages of the MS algorithm and the ILS method. The
segmentation result preserves an overall shape and retains the
original explicit contour of the zebrafish.

GAC ' =

LRLS

HY —
FCN
GT T ———

Fig.9 Segmentation results visualisation of different methods on one
zebrafish example from Dataset B. The object is positioned in lateral

4.2.2 Performance evaluation on Dataset B

In Table 2 we show the performances of the different meth-
ods as evaluated on the subset of Dataset B. We can directly
see that the efficiency of all methods is lower as a result
of the larger image size. In addition, similar to the experi-
ment on Dataset A it can be seen that the methods equipped
with the MS initialiser generally work faster than the meth-
ods with random initialisation. Although the LRLS model
obtains slightly better results than the ILS, the latter usually
works faster. We do not have equivalent implementation of
the LRLS model, so for the run-time, no justification can be
given. Due to the employment of the hybrid operation and
post-processing, the proposed HY method works a little bit
slower than the ILS method with an MS initialiser, but the
segmentation accuracy is clearly improved.
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Table 1 Comparison of different methods on Dataset A

Model Run-time (s) F-score

CV model 1.74 £ 0.31 0.758 +0.123
CV model+MS 1.32+0.16 0.758 +0.123
LRLS 22.83 £3.70 0.956 4+ 0.026
LRLS+MS 19.56 +0.15 0.968 +0.014
GAC model 3.34 £0.38 0.976 4+ 0.006
GAC model+MS 1.72£0.13 0.976 4+ 0.007
ILS 2.65 £ 0.42 0.976 4+ 0.007
ILS+MS 1.26 £0.32 0.978 4+ 0.006
MS 0.63 £ 0.07 0.964 £+ 0.006
HY 1.37 £0.22 0.983 + 0.004

The best performance among different methods is shown in bold

Table 2 Comparison of different methods on Dataset B

Model Run-time (s) F-score

CV model 8.87+1.78 0.838 +0.120
CV model+MS 6.96 £+ 1.63 0.838 +0.120
LRLS 152.27 £ 1.06 0.968 +0.016
LRLS+MS 126.60 + 1.76 0.977 £0.011
GAC model 21.92+0.19 0.918 +0.068
GAC model+MS 8.95+0.40 0.957 +0.034
ILS 14.53 £ 6.39 0.970 £ 0.015
ILS+MS 7.23 £ 1.73 0.973 £0.022
MS 2.32 +£0.31 0.965 +0.023
HY 8.30 £0.98 0.986 + 0.004

The best performance among different methods is shown in bold

4.3 Inspection of results by visualisation

In this experiment, we have visualised some representative
segmentation results of Dataset A and Dataset B in this exper-
iment.

For Dataset A, we randomly selected one zebrafish speci-
men from the annotated subset of Dataset A. We show three
typical axial views (lateral, 45° tilted and ventral) in Figs. 4, 5
and 6. We can observe that for the images with the zebrafish
positioned in the view of ventral (dorsal), all the methods
result in an accurate segmentation; this is due to the fact
that the image portrays an explicit boundary of zebrafish.
In the images with a lateral view of the zebrafish, the GAC
model, LRLS model and ILS method fail to detect the weak
edges. This phenomenon of edge leakage commonly occurs.
Although the MS algorithm can retain a natural shape for
the zebrafish, it loses the edge sensitivity. The proposed
HY method obtains more accurate segmentations. In order
to illustrate the generalisation of method, we select another
three subjects from each developmental group in Dataset A
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and visualise the segmentation results in Fig. 10. (The sub-
jects are shown in lateral view.)

From Figs. 7, 8 and 9, a representative subject from
Dataset B positioned in three typical axial views is depicted.
Compared to Dataset A, these images have a better contrast
and the outline (contour) of the zebrafish specimen is more
explicit. Consequently, the classical edge-based segmenta-
tion methods such as the GAC model have less difficulty
segmenting the zebrafish from these images. The risk of edge
leakage, however, still exists. In Figs. 8 and 9, we can see the
contours resulted from the GAC model, LRLS model and
ILS method converging at the wrong regions. The MS algo-
rithm results in a segmentation retaining the whole boundary
of the object, but the shape as a whole is less compact. From
our experiment, we may conclude that the proposed HY
method is able to deal with the segmentation problem for
zebrafish specimens in bright-field microscopy. It results in
more accurate results and shows a good performance. Due to
the illumination conditions in the microscope, the acquired
images are sometimes less explicit; this is depicted in the
third column of Fig. la. A straightforward pre-processing
solution such as colour equalisation can improve the image
contrast of the object with respect to the background. More
segmentation results in this experiment represented as anima-
tions can be found here: http://bio-imaging.liacs.nl/galleries/
VAST-Hybrid/.

4.4 Exploration on convolutional neural networks

In this experiment, we evaluate the performance of the FCN
on our datasets. (For details of the FCN refer to the origi-
nal work [34].) We should note that this evaluation cannot
directly show the performance comparison with our method,
because the FCN is a supervised learning-based method,
while our method is categorised as an unsupervised learning-
based method.

We design three strategies to enable the experiment. (A)
We use three of the annotated subjects of Dataset A as training
set and the left one for testing. (B) We use the four anno-
tated subjects of Dataset A to train the FCN and then test on
the whole Dataset A (except the four annotated subjects). In
this case, we do not have groundtruth for the performance
evaluation, so we use the segmentation results obtained by
our method as “groundtruth” approximation. The rationale
behind this is the validated performance of our method. (C)
We use the same model trained in (B) to test on Dataset B. We
aim to investigate the generalisation of the FCN. The objects
in Dataset B are not entirely the same as in Dataset A, but they
still share considerable similarity, e.g. shape and textures of
the object, imaging conditions. For the three strategies, we
use the default settings at training time, e.g. iterations, learn-
ing rate, pre-processing. At testing time, we use the CPU
mode as used in our method.
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Table 3 Performance evaluation of the FCN

Strategy Run-time (seconds) F-score

Strategy (A) 16.74+0.3 0.984 £ 0.003
Strategy (B) 162+ 0.4 0.969 £ 0.009
Strategy (C) 71.6 £0.5 0.948 £0.016

Italics represents that we do not have groundtruth to measure the F-
score in strategy B. Instead we use the results from our method as a
reference. So this measurement is not totally objective and precise

3 dpf

5 dpf

Fig. 10 Segmentation results visualisation on Dataset A. We randomly
select one subject from each of the three larval stages and show the
lateral view. In each bounding box, the upper figure shows the result
obtained from the FCN trained from our annotated subset of Dataset A.
And the bottom figure shows the result obtained from our HY method

In Table 3, we report the results from which we may get the
following clues. (1) We can find that our method, as an unsu-
pervised method, can obtain promising segmentation results
as a fully supervised method, e.g. the FCN. We visualise
the result obtained by the FCN in strategy (A) in Figs. 4, 5
and 6. (2) Our method may outperform the FCN which are
provided with a limited amount of training examples on the
whole Dataset A. We select three examples and visualise the
results in Fig. 10. In order to improve the performance of
the FCN on the whole Dataset A, we design another strat-

egy. This strategy uses the segmentation results obtained by
our method as groundtruth approximation and selects 50%
of the subjects to augment the training and the left half for
testing. We can obtain the F1-score of 0.986 +0.003. (3) For
an unseen scenario which still retains a large quantity of sim-
ilarities of the training examples, the FCN can, to a limited
extent, recognise the object. From Figs. 7, 8 and 9, we can
see the segmentation results with lots of noise. (4) Regard-
ing the efficiency evaluated with CPU mode, our method is
more than 10 times faster than the FCN for inference. We
admit that the FCN can obtain much faster performance with
GPU support, but in this work, we do not have an equivalent
evaluation of our method. (5) Therefore, we may draw an
important conclusion that our method can be used to obtain
groundtruth approximation for training the FCN.

5 Conclusions and future work

We have presented a hybrid method to accomplish the task
of efficient and accurate segmentation of zebrafish from the
bright-field microscope images. We propose to employ the
mean shift algorithm to augment the colour representation for
the partial transparent regions and transform the ambiguous
edges more separable, such that we can obtain a segmenta-
tion candidate which preserves an overview of the zebrafish
shape. A distance-regularised level set function is initialised
from this segmentation candidate and fed to an improved
level set method in order to obtain a more compact shape
representation preserving the explicit object contours. This
hybrid operation accelerates the curve convergence at the
regions of interest. We intuitively fuse those two segmenta-
tion candidates and employ a refinement in order to obtain the
accurate hybrid segmentation. The results of our segmenta-
tion method facilitate the visualisation and evaluation of gene
expressions in zebrafish in both 2D and 3D. This is directly
relevant to the success of experiments in which imaging is
crucial. Such experiments are typical for applications in life
sciences, e.g. cancer and pharmacokinetics. Furthermore, the
proposed method is very suitable for high-throughput appli-
cations with zebrafish.

The proposed method can be generalised by taking images
into consideration that contain multiple objects positioned in
various orientations. For orientation detection and initiali-
sation over multiple instances modules need be developed
that constitute the generalisation. For the work presented
in this paper, the single instance is the approach for high-
throughput applications. Moreover, bright-field microscopy
is a standard component for this type of applications. Nev-
ertheless, the proposed HY method can be evaluated for
other imaging modalities, with other lenses and illumina-
tion architectures. In this manner the HY method is probed
and challenged for other and different image qualities. As an
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example, we consider optical projection tomography (OPT)
imaging [41]; bright-field images are included in this imaging
technique and the processing of these images might benefit
from the application of the proposed HY method. We find
that our method can be used to produce the segmentations
as groundtruth shape approximation. In biomedical image
processing, this will lead to less manual dedications in anno-
tation. The results can be used for training deep convolutional
neural networks. This will be further verified on an extension
of our Dataset B.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
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