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Within the last few decades, it has become evident from
laboratory and clinical research that in patients with
acute lung injury (ALI), mechanical ventilation (MV)
contributes to the progression of the disease. To de-
scribe the nonspecific radiographic, physiologic, and
pathologic manifestations of ALI and its complications,
the term ªrespirator lungº was used for some years dur-
ing the 1970 s and 1980s until Nash et al. drew their his-
torical conclusion that ªrespirator lungº was a misno-
mer [1]. They attributed the observed lung lesions main-
ly to oxygen toxicity rather than to MV. Recent studies,
however, confirmed that MV with too low or too high
positive end-expiratory pressure (PEEP) levels, high
airway pressures, and large tidal volumes (Vt) can fur-
ther damage the injured lung. In the aftermath of these
insights, a new term was made out of the old: ªventila-
tor-induced lung injuryº (VILI) [2]. VILI ± for years
used synonymously with barotrauma of the lung ± is cur-
rently viewed as a systemic disease which closely resem-
bles the symptoms and the macro- and microscopical
features of experimental ALI and is not markedly dif-
ferent from the diffuse alveolar damage present in hu-
man acute respiratory distress syndrome (ARDS). It
may be associated with pulmonary and systemic infec-
tions, multisystem organ dysfunction, volutrauma,
barotrauma, and increased mortality. High shear forces
taking effect on healthy or diseased lungs ventilated

with inappropriate respirator settings can increase capil-
lary permeability, promote gas leaks and edema, and
initiate inflammation [3, 4]. The latest reports suggest
that MV can induce activation and influx of neutrophil
granulocytes and liberation of cytokines leading to local
and systemic inflammatory reactions [5]. These findings
were paralleled by implementation of the ªprotective-
ventilation strategyº into the critical care of patients
with severe acute respiratory failure [6]. This therapeu-
tic concept intends to shield the diseased, ventilated
lung by applying only small Vt.

The present state of knowledge on lung protective
MV has been reached due to numerous experimental
and clinical studies which paved the way for the subse-
quent randomized controlled trials (RCTs) described
here. First, Macklin and Macklin should be recognized
for their fundamental experimental studies on the de-
velopment of tension pneumothorax [7], and then
Webb and Tierney [4] are to be honored for their out-
standing study in animals which clearly showed that
MV can generate/produce pulmonary edema. Dreyfuss
and Saumon, in 1992, published an editorial in this jour-
nal, the important message of which was that mainly a
large Vt and not a high airway pressure is responsible
for ventilator-induced lung injury. They suggested a
change in terminology: volutrauma should be used in-
stead of barotrauma [8]. The fruitful cooperation be-
tween T. Kolobow and L. Gattinoni led to the develop-
ment of the ªbaby lung modelº [9] and the strategy of
resting the injured lung by means of low-frequency MV
and extracorporeal CO2 removal. The impressively
high survival rate of 49 % in their ARDS patients re-
ported in 1986 [10] was later corroborated by others
[11, 12]. Hickling and coworkers introduced accepting
elevated arterial carbon dioxide tension (PaCO2)-levels
into intensive care practice for ARDS patients to ac-
complish lung-protective MV [13, 14], and last, but not
least, Amato and colleagues, for the first time, showed
that a lung protective approach with moderate to high
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PEEP levels can indeed reduce mortality in ARDS [6].
The reader will excuse the incompleteness of this list.
There were many more researchers who contributed to
the knowledge that MV with a large Vt and high posi-
tive inspiratory pessure (PIP) worsens ALI and that a
lung-protective strategy may minimize the risk of fur-
ther lung damage.

The impact on mortality rates has been tested, first in
uncontrolled clinical studies [11, 13, 14], later on in
small [6] or large scale RCT [15±19]. In two uncon-
trolled, non-randomized, single-center studies, Hickling
and coworkers noticed a significant reduction in
APACHE II-predicted hospital mortality rates from
39.6 to 16% in their retrospective analysis [13] and
from 53.3 to 26.4 % in their prospective trial [14]. They
deliberately restricted peak airway pressures (PIP) to
30±40 cmH2O, which resulted in mean maximum
PaCO2-levels of 62 mmHg and Vt of approximately
7 ml/kg body weight (BW). Lewandowski et al. applied
an algorithm controlled, lung protective treatment con-
cept to 122 ARDS patients. Therapeutic measures in-
corporated in the algorithm were pressure controlled
mechanical ventilation with PEEP and permissive hy-
percapnia, positional maneuvers, differential lung venti-
lation, dehydration for reduction of pulmonary edema,
inhalation of nitric oxide and extracorporeal membrane
oxygenation. The mean PIP limit was set to 35 cmH2O
which resulted in mean Vt of 10 ml/kg BW. The 75% in-
tensive care unit (ICU)-survival rate markedly exceed-
ed those from historical controls [11]. Favorable results
from a lung protective approach were also reported by
Amato et al. in a two-center RCT, testing Vt of 6 versus
12 ml/kg BW in 53 ARDS patients applying PIP
of < 40 cmH2O, which resulted in PaCO2-levels of
50±55 mmHg in the protective-ventilation group [6].
28-day mortality rate in the latter group was 38 %, while
it was 71% in the conventional-ventilation group
(p < 0.001). The difference in mortality at hospital dis-
charge, however, was not significant. Two large scale
RCT did not find significant differences regarding mor-
tality rates when Vt of 7.2 versus 10.8 [15] and 7.1 versus
10.3 ml/kg BW [17] were evaluated: The hospital mor-
tality rates were 50 versus 47% (p = 0.72) in Stewart's
et al. study [15], and the 60-day mortality rates in the
Brochard et al. study [17] were 46.6 versus 37.9 %
(p = 0.38). Analyzing 725 patients with sepsis-induced
ARDS, Weg and colleagues could not detect significant
differences in 30-day mortality rates among patients
with no air leaks, those with any air leak, and those
with specifically pneumothorax, Vt were 11.4, 11.7, and
11.7 ml/kg BW in the respective groups [16]. Finally,
very recently, the National Heart, Blood and Lung Insti-
tute of the USA stopped the ªThe ARDS Network
Study of Ventilator Management in ARDSº on recom-
mendation of the study's Data Safety and Monitoring
Board because an interim analysis on data on the first

847 patients had shown approximately 25 percent fewer
deaths among patients receiving Vt of 6, rather than
12 ml/kg BW [18, 19].

How shall the humble intensivist handle these seem-
ingly contradictory data? Is it a ªgood moveº to limit
Vt in diseased lungs and if so, to what extent, or does
the almost regularly accompanying hypercapnia harm
the patient. A closer look at some of the above men-
tioned studies may help to unveil the right answer.

The studies under discussion have been criticized for
their retrospective or uncontrolled nature, for the heter-
ogeneous definitions used, for their lack of exactly re-
porting various pressures, volumes or PaCO2-levels at
different time points, or for their varying outcome end
points (28-day-, 30-day-, 60-day-, hospital mortality).
Furthermore, different modes of MV and titration of
PEEP levels were used. Obviously, comparisons be-
tween studies are hampered by these differences. One
could also argue that the adverse effects of elevated
PaCO2-levels resulting from Vt reduction antagonize
the benefits from avoiding alveolar overstretching.
However, in Hickling's et al. retrospective and prospec-
tive studies [13, 14], there was no significant difference
between survivors and nonsurvivors regarding their
PaCO2-levels. In all other studies the resulting mean
PaCO2-levels were in the moderate range of
50±60 mmHg. It is of far more importance to notice
that in those studies where the difference between the
tested Vt was rather small, i. e., ªreasonableº volumes
were applied in the protective ventilation as well as in
the control group, no significant differences in mortality
rates became apparent [15±17]. Interestingly, in the lim-
ited ventilation and control groups of both, Stewart's
et al. study [15] and Brochard's et al. study [17], peak in-
spiratory and plateau pressures were below 35 cmH2O.
Most likely, the transpulmonary pressure limit of
35 cmH2O, viewed as safe on the basis of animal studies
and recommended by the ªConsensus Conference on
Mechanical ventilationº [20], had not been violated in
both these studies. On the contrary, studies investigating
largely different Vt documented significantly reduced
mortality rates [6, 13, 14, 18, 19]. To put it in a nutshell,
a given study will likely detect significant differences in
mortality rates if the Vt used in the control group is of
sufficient magnitude to induce damage to the ventilated
lungs. In the cited studies, the Vt was related to ªkg ac-
tual body weightº [6, 11, 13, 14, 16], ªkg actual body
weight minus the estimated weight gain due to water
and salt retentionº [17], or ªkg ideal body weightº [15,
19]. Unfortunately, Brochard et al. [17] and Stewart
et al. [15] have not yet reported their exact formulas
for calculation of body weight and therefore comparison
between studies is hampered. This problem raises the is-
sue of what is the appropriate body weight, -mass, or
volume to relate the Vt to, or whether it should be relat-
ed to measures of body mass at all. The Vt of a sponta-
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neously breathing adult at rest is approximately 500 ml
[21]. Assuming a weight of 70 kg, the Vt would be 7 ml/
kg BW. As suggested by work from comparative mam-
mal physiology, body volume instead of body weight
may be a more appropriate parameter for estimation of
the ªrealº lung volume [22]. This information, however,
is useless when it comes to ventilating injured lungs. In
injured lungs, the amount of aerated lung volume is of
concern for selection of safe Vt. In 1972, Falke et al.
[23] performed first measurements of functional residu-
al capacity (FRC) in ARDS patients. Mean FRC, a
marker for aerated lung volume, was as low as 1.48 L.
This is in line with Gattinoni's et al. baby lung concept
which postulates that the acute respiratory failure
(ARF)- or ARDS lung is rather small than stiff [9]. To
get an impression of how small the lung volume is which
is available for gas exchange, gas dilution, plethysmo-
graphic and radiographic techniques are at our hand.
Unfortunately, most of them are technically demanding
and impractical to perform at the bedside. A more feasi-
ble approach to search for the optimal Vt is the record-
ing of pressure volume curves (P-V curve) which has be-
come current practice in specialized centers [6, 11, 23,
24]. Analysis of the P-V curve reveals the lower and up-
per inflection point indicating alveolar collapse and
overdistension of lung units. A PEEP level above the
lower inflection point, and a Vt between the lower and
upper inflection point is viewed as safe for patients
with lung injury. Minute ventilation can then be manipu-
lated by altering the size of the Vt within the safety lim-
its of the lower and upper inflection point, by in- or de-
creasing the respiratory rate and the inspiratory time,
and by varying the flow characteristics. With this ap-
proach the physician does not need to know the pa-
tient's actual weight, the height, or the lean body mass
to set the respirator in a lung-protective fashion. Just
setting pressures or Vt according to experts' advice or
to fixed formulas may result in overdistension of the
lung in as much as 80% of ARDS patients [24]. It

should, however, be mentioned that setting the respira-
tor according to P-V curves is currently a matter of con-
troversy [25]. Only one of the discussed studies set Vt
and PIP according to analysis of individual P-V curves
[11]. We do therefore have no information on presence
or absence of lung overdistension either in the limited
ventilation or control groups. As has been shown in our
study [11], analysis of P-V curves in ARDS patients re-
vealed ªsafeº mean Vt of 10 ml/kg BW. Currently, the
differences in survival rates in the studies discussed can-
not be fully explained by the reduction of Vt, however, a
certain impact can be assumed.

Lung protective MValone, however, is and never will
be a panacea that guarantees improved survival rates in
acute respiratory failure. As has repeatedly been shown,
survival from acute respiratory failure depends on nu-
merous factors the most important of which probably
are multiple organ dysfunction, HIV infection, active
malignancy, organ transplantation, age, and presence of
a septic state [26, 27]. There exist patient populations
such as those with acute myelogenous leukemia and re-
spiratory failure in whom survival virtually is zero [28].
These patients are very unlikely to benefit much from
lung protective MV in terms of survival. Their survival
rate much more depends on the clinicians' ability to im-
pact on the underlying disease process. Modern medi-
cine demands that the benefit of a therapeutic option is
reflected in decreased mortality rates. ICU patient pop-
ulations with life-threatening organ failures, e. g. those
with ARDS, however, largely benefit from improve-
ment of important physiological parameters (e. g. indi-
ces of oxygenation) and avoidance of additional iatro-
genic damage. Not all of the discussed studies have re-
vealed significantly higher survival rates when a lung
protective strategy was applied, but some documented
significant improvements of several important physio-
logical or clinical parameters. For my part, I put a stick-
er on my favorite respirator: Small tidal volumes ± large
benefit!
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