
Introduction

Since its description by Ashbaugh and Petty in 1967, the
acute respiratory distress syndrome (ARDS) has been a
major research focus in pulmonary and critical care
medicine. However, despite rigorous investigation, it re-
mains a common and vexing problem with a high (albeit
possibly decreasing) mortality and no specific therapy.
The cornerstone of managing patients with ARDS con-
tinues to be meticulous supportive care. Severe hypox-
emia is a defining characteristic and is usually treated
by high fractional inspired oxygen concentrations and
the application of positive end expiratory pressure
(PEEP). Recently, in response to a better understanding
of the mechanisms of hypoxemia, the regional distribu-
tion of pulmonary blood flow and ventilation, several
additional approaches to improving gas exchange in
ARDS have been described. Although studies have not
yet been reported to allow comment on whether these
new approaches alter measures of clinical outcome,
they have the potential to markedly improve our ability
to manage these patients.

In this review, the regional ventilation-perfusion (V̇A/
Q̇) relationships seen in ARDS are described as well as
a number of new interventions designed to alter these
in a favorable fashion.

Ventilation-perfusion relationships in ARDS: mechanisms
of hypoxemia

ARDS results from a variety of predisposing factors
which lead to injury of the pulmonary endothelium and
alveolar epithelial membrane [1, 2]. This is manifest
clinically in diffuse pulmonary infiltrates and marked
hypoxemia with increased venous admixture as calculat-
ed from arterial blood gases [1, 3]. The hypoxemia is
usually relatively refractory to increasing FIO2 but fre-
quently responds in part, to the application of PEEP [4,
5].

Early investigators [3], using the multiple inert gas
elimination technique, found that hypoxemia in ARDS
is due primarily to intrapulmonary shunt, with an addi-
tional contribution from regions of very low V̇A/Q̇ in
some patients. These findings are consistent with those
seen in experimental models of ARDS [6–8]. A subse-
quent study [9] confirmed these findings and demon-
strated that the application of PEEP reduced shunt and
redistributed blood flow to regions of low or normal
V̇A/Q̇.

Pulmonary hypertension is described in patients with
ARDS and in animal models of the syndrome. The
duration in pulmonary arterial pressure is usually mod-
est but is associated with an increased mortality [10,
11]. In animal models the degree of pulmonary hyper-
tension is considerably greater [12] and in the early stag-
es of injury has been attributed to neurohormonal medi-
ators constricting the pulmonary circulation [13]. In hu-
mans, it has been difficult to separate vasoconstriction
from the effects of PEEP although both seemingly con-
tribute as the degree of pulmonary hypertension chan-
ges with titration of PEEP, and intravenous vasodilators
reduce pulmonary vascular pressures and improve car-
diac output [14, 15, 27, 28]. Unfortunately, this benefi-
cial hemodynamic effect is associated with worsening
axygen delivery and increasing shunt (14–16) attributa-
ble to attenuation of hypoxic vasoconstriction. Howev-
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er, inhaled agents can circumvent this problem to some
extent (see below).

The presence of a variety of vasoactive mediators in
ARDS has, both clinically and experimentally, been
linked with both vasoconstriction (to explain the pulmo-
nary hypertension) and vasodilation (to explain reduc-
tions in hypoxic vasoconstriction). Excess production
of vasoactive substances including leukotrienes [17],
platelet activating factor [18], prostacyclin [19], and ni-
tric oxide [20] has been identified.

Poorly ventilated, or non-ventilated lung segments
in patients with ARDS have generally been attributed
to alveolar filling with the cells and proteinrich edema
identified on histopathological examination. The ex-

tent to which alveolar filling correlates with the paren-
chymal consolidation seen on chest roentgenograms or
CT scans is poor, however. It has been suggested [21]
that ARDS is an inhomogeneous condition, based on
the fact that regional lung densities seen on chest CT
occur predominantly in the dorsal lung. CT scans per-
formed in both the prone and supine positions, have
indicated that increased dorsal lung density results
from atelectasis rather than focal injury [22]. This
idea is supported by the observation made by a num-
ber of investigators that prone positioning can in-
crease arterial oxygen tension (PaO2) and decrease
shunt in patients with ARDS. Additional confounding
observations are that hypoxemia can occur prior to
roentgenographic evidence of disease; and it’s severity
does not correlate with extravascular water content
[23, 24].

In summary, the hypoxemia that characterizes
ARDS is due primarily to shunt, with a smaller contri-
bution coming from perfusion of low V̇A/Q̇ regions.
These findings, together with recent advances in the un-
derstanding of the factors governing the regional distri-
butions of both ventilation and perfusion have been
used to develop newer strategies to improve gas ex-
change in patients with ARDS.

Altering regional perfusion distribution

Vasodilators

The rationale for administering vasodilators to patients
with ARDS is based on the assumption that decreased
cardiac output resulting from excess right ventricular af-
terload leads to reduced systemic oxygen delivery and
potentially exacerbates organ dysfunction. There are
numerous potential problems associated with this ratio-
nale. Thus, in ARDS pulmonary hypertension is rarely
sufficiently seven to decrease right ventricular function
to any clinically meaningful extent. In any event, this
could be countered by increasing right ventricular fill-
ing. Secondly, much of the increase in pulmonary arteri-
al pressures is likely attributable to PEEP rather than
active vasoconstriction. Thirdly, vasodilation may coun-
ter any potential beneficial effects of hypoxic vasocon-
striction on regional lung injury and repair; and, finally,
O2 delivery is generally increased rather than decreased
in patients with ARDS.

Not surprisingly, several older clinical trials designed
to evaluate the effects of intravenous vasodilators [e. g.,
nitroglycerin [17], nitroprusside [15], diltiazem [16]]
found that pulmonary arterial pressure and pulmonary
vascular resistance fall and PaO2 and systemic O2 deliv-
ery decreased as a result of increased shunt and V̇A/Q̇
heterogeneity. These deleterious effects were presumed
to occur secondary to the inhibition of hypoxic vasocon-
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Fig. 1 Effect of body position on regional distribution of perfusion
after oleic acid-induced acute lung injury. Note that reversing the
gravitational gradient by turning prone has little effect on regional
perfusion distribution [60]

Fig. 2A, B Relationship of relative flow per 1.9 cm3 piece of lung
measured in the supine and prone positions. A Experimental ob-
servations demonstrating a strong positive correlation. B Theoret-
ical relationship if gravity were the principal determinant of perfu-
sion distribution [61]



striction by these agents. Examples of vasodilators that
have investigated clinically and are worthy of include:

Prostaglandin E1. Prostaglandin E1 was thought to be a
more promising vasodilator as it did not appear to alter
hypoxic vasoconstriction in patients with chronic ob-
structive pulmonary disease [25]. Furthermore, an early
study [26] reported that PGE1 administration was asso-
ciated with a significant survival advantage in a sub-
group of patients with ARDS but no secondary organ
dysfunction. However, subsequent studies [27, 28] found
that PGE1 worsened shunt and had no effect on surviv-
al. Accordingly, there seems to be little support for in-
travenous vasodilator therapy for patients with acute
lung injury.

Almitrine. Almitrine bismesylate, a piperazine deriva-
tive, has been shown to improve PaO2 in patients with
COPD [29, 30]. Animal data initially attributed this to

an increase in minute ventilation (VE) caused by the ef-
fect of the medication on peripheral chemoreceptors
[31]. Subsequent measurements of V̇A/Q̇ relationships
in patients with COPD indicated that almitrine im-
proved V̇A/Q̇ matching without changing VE [32–34].
In addition, studies done in isolated rat lungs demon-
strated that almitrine enhanced hypoxic vasoconstric-
tion [35].

Almitrine administered to 9 patients with ARDS in-
duced a significant improvement in PaO2 (78 ± 15 to
140 ± 49 mmHg) and reduction in shunt fraction
(29 ± 11 to 17 ± 11%) without altering cardiac output
[36]. The effect of almitrine on venous admixture has
been found to be similar to that resulting from 10 cm
H2O PEEP [37]. An additive effect on improvements
in gas exchange has been seen when almitrine is admin-
istered concomitantly with nitric oxide (NO) in patients
with ARDS who respond to NO by increasing their
PaO2/FIO2 > 10 mm Hg or more [38]. These encouraging
improvements in gas exchange have not yet been stud-
ied with regard to their ability to alter survival.

Nitric oxide. Nitric oxide (NO) is an endogenous vasodi-
lator and vascular smooth muscle relaxant synthesized
in a variety of tissues, including the vascular endotheli-
um, from L-arginine utilizing NO-synthase, and is com-
petitively inhibited by L-arginine analogs [39, 40]. NO-
synthase inhibitors enhance hypoxic vasoconstriction in
isolated lung preparations [41] and in animal models of
acute lung injury [42], suggesting that NO contributes
to the attenuated hypoxic vasoconstriction associated
with the shunt and low V̇A/Q̇ of ARDS. Inhaled NO
has been shown to reverse hypoxemic vasoconstriction
in sheep [43] and to redistribute perfusion from poorly
ventilated to ventilated lung segments in patients with
ARDS [44]. Its effects are limited to the pulmonary (as
opposed to the systemic) circulation due to its rapid in-
activation by high affinity binding to hemoglobin [45].

An L-arginine analog has been shown to induce pul-
monary vasoconstriction in a canine oleic acid model of
acute lung injury [46], although V̇A/Q̇ relationships
were unchanged and the effects were reversed with in-
haled NO at 40 PPM without effecting systemic vascular
resistance (SVR). Gas exchange improved via a redistri-
bution of blood flow away from poorly ventilated lung
units. These beneficial effects were augmented by the
application of continuous positive airway pressure
(CPAP), presumably due to the recruitment of atelec-
tatic gas exchange units [47]. A subsequent study dem-
onstrated that NO-induced increases in PaO2 were pro-
portional to the baseline pulmonary vascular resistance
index in patients with acute, hypoxemic respiratory fail-
ure in whom the application of 10 cm H2O PEEP result-
ed in alveolar recruitment [48].

Prostacyclin (PGI2) has also been administered via
the inhaled route with similar results [49, 50]. Inhaled
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Fig. 3 Frequency distribution of relative regional ventilation-per-
fusion ratios in a normal dog lung, supine and prone, as determined
by SPECT scan. The y-axis represents the number of voxels with a
given ventilation-perfusion ratio (x-axis) [78]

Fig. 4 Frequency distribution of relative regional ventilation-per-
fusion ratios in a dog lung following oleic acid-induced acute lung
injury, supine and prone, as determined by SPECT scan. The y-
axis represents the number of voxels with a given ventilation-per-
fusion ratio (x-axis) [78]



prostaglandin E1 has been found to be ineffective [26–
28].

Although these results are encouraging, it remains to
be seen whether inhaled interventions will translate to
improved outcome in patients with ARDS, who rarely
die of hypoxemia. Accordingly, therapeutic interven-
tions aimed solely at improving oxygenation are unlike-
ly to alter mortality. On the other hand, if improvements
in oxygenation allow reductions in FIO2, PEEP, the ne-
cessity for mechanical ventilatory support and/or the
need for invasive monitoring, improvements in mortali-
ty resulting from ventilator-induced lung injury or the
sepsis syndrome might be observed.

Altering regional ventilation distribution

Prone position

Numerous investigators have reported that PaO2 im-
proves in patients with ARDS when they are turned
from the supine to prone position (mean increases of
28 to 69 mm Hg) [51–55]. Although only 50–75 % of pa-
tients respond, the degree of improvement can be
marked (up to 140 mm Hg increase in PaO2 on the
same PEEP and FIO2) allowing major reductions in
PEEP and FIO2 (e. g., as much as 17.5 cm H2O and 0.5,
respectively). Improvements can be sustained for up to
seven days [51].

Initially, investigators observing the prone position-
induced improvements in gas exchange hypothesized
that they might result from the redirection of perfusion
(Q) from dorsal to ventral lung regions on turning prone
[52]. This would, of necessity, require that regional lung
injury also be preferentially localized to the dorsal lung
regions. Subsequent studies have questioned both as-
sumptions.

Pulmonary blood flow (Q) distribution has been de-
scribed by the zonal model [56] for over 40 years. In
this model, Q increases from non-dependent to depen-
dent regions (to approximately three-fourths of the
way down the lung, after which it decreases) [57, 58].
Factors thought to account for these differences include
the relationship between intravascular hydrostatic pres-
sures and alveolar pressure at a given gravitational level
(Zones 1 and 2), the distensibility of the pulmonary vas-
culature (Zone 3) and the potential effects of regional
differences in interstitial edema and/or lung weight on
alveolar volume in the most dependent regions
(Zone 4).

A gravitational Q gradient has been described in the
upright, head down, supine and lateral decubitus posi-
tions [59, 60]. Although a gravitational gradient has
also been observed in the prone position of humans
and several animal species, the gradient has always
been found to be markedly reduced (i. e., a more uni-

form Q distribution compared to that seen in the other
positions) [60].

A strong gravitational Q gradient was indeed identi-
fied in supine dogs with oleic acid-induced acute lung in-
jury, but Q distribution changed very little when the an-
imals were turned prone (Figure 1), suggesting the role
played by gravity in determining this gradient is small
[61]. Subsequent studies using microsphere technology,
examined Q on a much smaller scale than was previous-
ly possible and found that flow distribution in supine an-
imals was strongly correlated (R2 = 0.725) to that found
in the prone position; exactly the opposite to that pre-
dicted by the gravitational model [62].

A number of investigators have now found that Q is
preferentially distributed to the dorsal lung regions re-
gardless of body position and have suggested that the
large majority of Q heterogeneity ( > 90%) can be ac-
counted for by a fractal model of dichotomous vascular
branching in which the distribution of flow between
daughter branches is constant at each branch point [63–
65].

Additionally, oleic acid-induced lung injury (as mani-
fested by regional wet/dry ratios) was shown to be uni-
formly distributed in the dog lung [61]. Accordingly,
there is no support for the idea that turning from the su-
pine to prone position improves oxygenation by redi-
recting Q to ventral regions and other explanations
were needed.

Since the distribution of Q does not change to any
meaningful extent, yet shunt improves, attention was
turned to potential explanations by which the prone po-
sition could improve regional alveolar ventilation.

There is a gravitational gradient of regional lung vol-
ume resulting in greater expansion of non-dependent
versus dependent lung regions at functional residual ca-
pacity (FRC) and all volumes above FRC until total
lung capacity (TLC) is reached [66]. This relationship
has been observed in normal lungs in the supine, up-
right, and both lateral decubitus positions [66–71], and
results in preferential distribution of alveolar ventila-
tion to more dependent lung regions [72–77]. Differenc-
es in regional pleural pressure (Ppl) account for this phe-
nomenon.

Recently, several studies have shown that the relative-
ly steep Ppl gradient seen in the supine position (i. e.,
more negative in non-dependent areas) becomes much
more uniform when prone. This observation can explain
older findings that alveolar ventilation is more uniform,
and the slope of phase III on a single breath oxygen test
is flatter [78] in the prone versus supine position.

The more uniform Ppl gradient in the prone position
is attributed to the fact that, while gravity still has an ef-
fect on Ppl and alveolar volumen when prone, it is offset
by positional differences in the forces generated within
the thoracic cavity [72] in part a result of the weight of
the heart and in differences in the shape and attachment
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of the diaphragm to the dorsal compared with the ven-
tral chest wall [79].

Lamm and colleges [79] measured positional varia-
tions in regional ventilation/perfusion ratios with single
photon emission computed tomography (SPECT scan-
ning) in dogs before and after oleic acid-induced acute
lung injury. Prior to injury regional VE/Q increased
from dorsal to ventral regions (slope = 0.12, p < .001 ver-
sus slope of zero) when the animals were supine. Turn-
ing them prone eliminated the gravitational VE/Q gradi-
ent (slope = 0.00, p < 0.05 versus supine slope), in-
creased the median VE/Q ratio of from 0.8 to 0.94
(p < 0.05) and generated a more Gaussian VE/Q distri-
bution (Figure 2).

After acute lung injury, supine animals exhibited a
lower median VE/Q ratio (0.77), an increased gravita-
tional gradient (slope = 0.22) and a large fraction of
shunt that were located almost exclusively in the dorsal
(i. e., dependent) lung regions (Figure 3). When turned
prone, the median VE/Q ratio increased to 0.94, the
gravitational gradient disappeared (slope = − 0.02,
p < 0.05 versus supine slope) and regions of shunt de-
creased (Figure 4). Interestingly, small areas of shunt
only rarely developed in the ventral (i. e., dependent)
regions on turning prone, supporting the fact that the
Ppl gradient did not simply reverse. Accordingly, the
generally fixed preferential distribution of Q to dorsal
regions, together with markedly improved dorsal lung
ventilation that occurs in the prone position produces a
more homogeneous VE/Q relationship accounting for
the improvement in gas exchange. As with the vasodila-
tor studies cited above, the effect of the prone position
on morbidity or mortality has not yet been studied.

Exogenous surfactant

Dysfunction of the surfactant system is well document-
ed both in patients with ARDS (1,80) and those at risk
of developing the syndrome (80). The loss of its surface
tension lowering properties may enhance the develop-
ment of atelectasis in concert with the mechanisms de-
scribed above and may contribute to the gas exchange
derangements observed. The rationale for exogenous
surfactant therapy has been supported by observed im-
provements in both gas exchange and survival in several
animal models of ARDS (81), and in neonates with a
primary surfactant deficiency, i. e., the respiratory dis-
tress syndrome [82, 83].

Initial studies administering mammalian surfactant
extracts to animals and patients with ARDS were asso-
ciated with encouraging improvements in ventilatory re-
quirements and gas exchange [84–86]. Unfortunately,
the first multicenter, randomized, controlled trial of sur-
factant therapy in patients with ARDS found no statisti-
cally significant differences in physiologic function, or

clinical outcome, defined by length of mechanical venti-
lation, days in intensive care or 30 day mortality [87].
Explanations for this lack of benefit may relate to the
fact that only patients with sepsis-associated ARDS
were studied, the synthetic surfactant used contained
no surfactant-associated proteins (these may have con-
siderable therapeutic importance) and/or administering
surfactant via aerosol might have been inefficient such
that lung phospholipid pools might not have been ade-
quately replaced.

A subsequent multicenter trial enrolled 59 patients
with ARDS and a variety of risk factors for the syn-
drome and instilled a bovine surfactant extract which
contains surfactant-associated proteins B and C directly
into the airways [88]. Significant reductions in FIO2 at
120 hours and a trend toward improved survival
(18.8 % versus 43.8%, p = 0.075) were observed in those
treated with 4 doses of 100 mg phospholipid/kg. While
these results suggest a possible role for surfactant re-
placement in the treatment of ARDS, further studies
are needed to address issues such as optimal dosage,
route of delivery and the preparation’s precise composi-
tion.

Partial liquid ventilation

The ability of mammals to sustain gas exchange while
breathing liquid perfluorocarbons was first described in
1966 [89]. The technique of partial liquid ventilation
(PLV); instilling perfluorocarbon liquid into the lungs
with subsequent tidal breaths of gas delivered by stan-
dard positive pressure ventilation, has recently been
proposed for use in treating infants and adults with
acute lung injury.

Perfluorocarbons are biologically inert, high density,
low surface tension compounds capable of dissolving
large amounts of O2 and CO2 at atmospheric pressure
[89]. The rationale suggesting that they might be useful
in treating acute lung injury stems from their potential
ability to re-expand areas of atelectatic lung due to its
density and low surface tension (i. e., “liquid PEEP”),
and/or as a result of their high density, by redirecting
perfusion to more non-dependent lung retions [99].

Recruitment of previously non-ventilated alveoli and
improved surface tension should increase lung compli-
ance and FRC and may improve V̇A/Q̇ matching [90].
As predicted, there is a marked increase in end-expira-
tory lung volume with liquid versus gas re-expansion in
normal animal lungs and in those in which surfactant
has been altered or depleted [91]. Furthermore, some
investigators have suggested that endogenous surfactant
production may increase during liquid ventilation [92,
93] and at least one of the perflurocarbons (Perflubron
Liquivent , Alliance Pharmaceutical Corp., San Diego)
may possess anti-inflammatory properties [94, 95].
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Although encouraging improvements in oxygenation
and lung mechanics have been seen in animal models of
acute lung injury and animals and humans with the re-
spiratory distress syndrome, there is minimal experience
in humans with acute lung injury. A recent uncontrolled
trial enrolled 13 premature infants with severe respira-
tory distress syndrome (RDS) unresponsive to exoge-
nous surfactant replacement to be treated with PLV.
Significant improvements were noted in both dynamic
compliance (61% increase) and PaO2 (138 % increase);
and 8 of 10 patients who completed the study survived
to 36 weeks corrected gestational age [96]. Similar re-
sults have been observed in pediatric patients with acute
respiratory failure [97, 98].

The results of a phase II randomized, controlled trial
comparing PLV with conventional gas ventilation in 90
adult patients with acute, hypoxemic respiratory failure
were recently reported [100]. No significant differences
in physiologic variables or indices of clinical outcome
were observed by a trend toward reduced mortality
and fewer ventilator days was seen in patients under
55 years of age treated with PLV. PLV was also associat-
ed with more frequent transient hypoxia and bradycar-
dia. Plugging of the endotracheal tube with secretions
and a rather frequent incidence of pneumothorax has
also been described [96]. A phase III trial is currently
planned.

Conclusion

ARDS is a common clinical problem with an associated
mortality of 36 to 50%. Management remains primarily
supportive. Recent insights into the physiologic expla-
nation for the observed gas exchange abnormalities sug-
gest that shunt is primarily the result of Q being directed
primarily to the dorsal lung regions where atelectasis
develops when the patients are supine. Ventilation, and
the relationship between VE and Q become more homo-
geneous when patients are turned prone due to the ef-
fect of forces generated within the thorax manifest as a
change in the Ppl gradient.

Several promising interventions designed to alter the
distribution of pulmonary blood flow (e. g., inhaled NO
and intravenous almitrine) and/or ventilation (exoge-
nous surfactant, PLV, prone position) are emerging
which may be added to the available management arma-
mentarium pending an evaluation of their effect on mor-
bidity and mortality.

Of the interventions discussed, prone positioning is
the most intriguing as it improves V̇A/Q̇ without the add-
ed expense and potential complications associated with
pharmacological interventions and can be easily and
safely accomplished in virtually any critical care setting.
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