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Abstract 

Purpose:  Ilofotase alfa is a human recombinant alkaline phosphatase with reno-protective effects that showed 
improved survival and reduced Major Adverse Kidney Events by 90 days (MAKE90) in sepsis-associated acute kidney 
injury (SA-AKI) patients. REVIVAL, was a phase-3 trial conducted to confirm its efficacy and safety.

Methods:  In this international double-blinded randomized-controlled trial, SA-AKI patients were enrolled < 72 h on 
vasopressor and < 24 h of AKI. The primary endpoint was 28-day all-cause mortality. The main secondary endpoint 
was MAKE90, other secondary endpoints were (i) days alive and free of organ support through day 28, (ii) days alive 
and out of the intensive care unit (ICU) through day 28, and (iii) time to death through day 90. Prior to unblinding, the 
statistical analysis plan was amended, including an updated MAKE90 definition.

Results:  Six hundred fifty patients were treated and analyzed for safety; and 649 for efficacy data (ilofotase alfa n = 330; 
placebo n = 319). The observed mortality rates in the ilofotase alfa and placebo groups were 27.9% and 27.9% at 28 days, 
and 33.9% and 34.8% at 90 days. The trial was stopped for futility on the primary endpoint. The observed proportion of 
patients with MAKE90A and MAKE90B were 56.7% and 37.4% in the ilofotase alfa group vs. 64.6% and 42.8% in the placebo 
group. Median [interquartile range (IQR)] days alive and free of organ support were 17 [0–24] and 14 [0–24], number of days 
alive and discharged from the ICU through day 28 were 15 [0–22] and 10 [0–22] in the ilofotase alfa and placebo groups, 
respectively. Adverse events were reported in 67.9% and 75% patients in the ilofotase and placebo group.

Conclusion:  Among critically ill patients with SA-AKI, ilofotase alfa did not improve day 28 survival. There may, how-
ever, be reduced MAKE90 events. No safety concerns were identified.
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Introduction
Sepsis is the leading cause of acute kidney injury (AKI) 
in critically ill patients as a consequence of inflamma-
tory, direct nephrotoxic, and ischemic processes [2–5]. 
Development of AKI during sepsis (SA-AKI) is indepen-
dently associated with increased morbidity and mortal-
ity [6, 7]. Patients with SA‐AKI are at risk of developing 
chronic kidney disease (CKD) resulting in a consider-
able burden for patients and society [8]. Conversely, 
underlying CKD markedly increases the risk of AKI and 
the risk increases proportionally with severity of CKD 
[9]. Pre-existent CKD complicated by AKI is common 
in critically ill patients and associated with delayed kid-
ney function recovery and increased risk of rehospitali-
zation and development of end-stage renal disease [10].

There are no pharmacological therapies approved 
for the treatment of SA-AKI. Management consists of 
only secondary prevention and supportive care strat-
egies, such as fluids and renal replacement therapy 
(RRT) [6, 11]. Alkaline phosphatase (ALP) is an endog-
enous detoxifying enzyme that plays a significant role 
in host defense and innate immunity, particularly act-
ing as an endogenous anti-inflammatory protein [12, 
13]. For example, removal of one of two phosphate 
groups abolishes the biological activity of endotoxin; 
the dephosphorylated endotoxin acts as a toll-like 
receptor 4 (TLR4) antagonist [14]. Furthermore, ALP 
dephosphorylates extracellular adenosine triphosphate 
(ATP), that is pro-inflammatory, resulting in generation 
of adenosine, which has anti-inflammatory and tissue-
protective effects. In particular, the kidney is negatively 
affected by increased levels of ATP, while adenosine has 
reno-protective effects [15]. Hence, dephosphorylation 
attenuates the inflammatory response and exerts tissue-
protective properties [16]. In animal models of sepsis, 
ALP administration dampens inflammation and reduces 
mortality [13, 17], but also protects against ischemia–
reperfusion injury [18–20].

To augment therapeutic efficacy, human recombinant 
ALP, named ilofotase alfa, was developed, consisting of 
an intestinal ALP sequence (highest biological activity) 
and a crown domain corresponding with placental ALP 
sequence (to enhance stability) [21]. Dephosphorylation 
properties of ilofotase alfa were confirmed [21] and con-
sidered to reduce systemic and local inflammation and 
attenuate organ damage [15]. Two small phase-2 studies 
with bovine ALP [16, 22] demonstrated reduced urinary 
detection of tubular injury markers and more pro-
nounced improvement of endogenous creatinine clear-
ance. In addition to renal protective effects, a survival 
benefit was observed as a secondary endpoint in a large 
phase-2 trial [23]. The REVIVAL study aimed to confirm 

the effect of ilofotase alfa on 28-day all-cause mortal-
ity in critically ill patients with SA-AKI; Major Adverse 
Kidney Events by 90 days (MAKE90) were the main sec-
ondary endpoint.

Methods
Ethics and dissemination
This trial was conducted in accordance with the proto-
col and consensus ethical principles of international 
guidelines including the Declaration of Helsinki, Coun-
cil for International Organizations of Medical Sciences 
(CIOMS) International Ethical Guidelines, and Interna-
tional Conference on Harmonization (ICH) Good Clini-
cal Practice (GCP) Guidelines. The protocol, the single 
substantial protocol amendment, and other relevant doc-
uments were reviewed and approved by the Institutional 
Research Board (IRB)/Institutional Ethics Committee 
(IEC) in the relevant centers prior to being used in the 
trial. Informed consent was obtained from all patients or 
the patient’s legal representative.

Trial design
This was a phase-3, multi-center, randomized, double-
blind, placebo-controlled, two-arm parallel-group-
sequential design trial in which patients with SA-AKI 
were randomly assigned in a 1:1 ratio to ilofotase alfa 
or matching placebo in Europe, North America, Aus-
tralia, New Zealand, and Japan. The maximum sample 
size of 1400 patients in the main trial population pro-
vided ~ 85% power assuming a 35% mortality rate in the 
placebo group and an 8% absolute treatment effect. A 
one-sided p value < 0.025 for superiority was considered 
to indicate statistical significance. For the first interim 
analysis (N = 400 patients), a < 15% estimated power to 
demonstrate a significant effect at full enrollment (1400 
patients), was defined as non-binding threshold to stop 
early for futility.

Patients, randomization, and study medication
The population studied were adult patients with sepsis 
and recent onset AKI requiring vasopressor support. The 

Take‑home message 

Sepsis-associated acute kidney injury in patients admitted to an 
intensive care unit is associated with significant morbidity and mor-
tality. There is currently no pharmaceutical treatment. Although 
we found no evidence that ilofotase alfa improved survival, it may 
reduce major adverse kidney events (mortality, new onset, renal 
replacement therapy >25% reduction in estimated glomerular filtra-
tion rate, or rehospitalization) up to 90 days.



complete inclusion and exclusion criteria are described 
in supplemental Table  1. Full details on population and 
study design (including the protocol amendment) and con-
duct were previously published [1]. Briefly, three patient 
cohorts were defined: (i) patients with SA-AKI with a 
pre-AKI reference estimated glomerular filtration rate 
(eGFR) ≥ 45 mL/min/1.73 m2 and no proven or suspected 
coronavirus disease 2019 (COVID-19) at time of randomi-
zation (‘main trial population’); (ii) patients with a pre-AKI 
reference eGFR ≥ 25 and < 45 mL/min/1.73 m2 (‘moderate-
to-severe CKD population or mCKD’) with sepsis and AKI 
and no proven or suspected COVID-19 at time of randomi-
zation; (iii) patients with COVID-19-induced sepsis and 
AKI at time of randomization (‘COVID-19 population’). 
The ‘all combined population’ includes all three cohorts. 
The randomization schedule was stratified by site and 
modified Sequential Organ Failure Assessment (mSOFA) 
(≤ 9, > 9), excluding the neurological component of SOFA. 
An independent statistician generated a permuted block 
randomization schedule (block size of 4) for an interactive 
voice/web response system, which linked sequential patient 
randomization numbers to treatment codes.

Study medication was administered, within 24 h if sep-
sis was present prior to AKI or within 48  h if AKI was 
present when sepsis was diagnosed, at 1.6  mg (1000 U) 
per kg of patient body weight up to 120 kg, with a fixed 
dose of 192 mg in patients > 120 kg [1]. Patients received 
study medication as a 1-h infusion once daily for 3 con-
secutive days. All personnel involved in this study were 
blinded to treatment assignment and clinicians were 
not allowed to measure serum ALP concentrations until 
day 14 [24]. The trial drug was provided in addition to 
usual care as outlined in the Surviving Sepsis Campaign 
guidelines [25] and Kidney Disease Improving Global 
Outcomes (KDIGO) guidelines [6]. Initiation and ter-
mination of RRT were based on conventional criteria 
[26–28]. A Data Management Committee (DMC) was 
installed and provided with stopping rules based on pre-
defined threshold for futility or early success.

Primary endpoint
The primary efficacy endpoint was 28-day all-cause 
mortality.

Secondary endpoints
Renal endpoints
The main secondary endpoint was MAKE90. Two defi-
nitions of MAKE90 were stipulated in the amended 
Statistical Analysis Plan (SAP) [1]. MAKE90A included 
mortality through day 90, or an eGFR drop of > 25% at 
day 90 compared to pre-AKI value, or any RRT events 
through day 28 or RRT status at day 90 or rehospitaliza-
tion. Rehospitalization was added to bridge to the results 

of the phase-2 STOP-AKI study and defined as any over-
night stay in a hospital after initial discharge from the 
hospital. MAKE90B, based on mortality through day 90 
or an eGFR drop of > 25% at day 28 and day 90, or need 
for RRT at day 90. Furthermore, as post hoc analysis, 
the impact of prior renal function (pre-AKI eGFR) on 
MAKE90 was examined.

Other secondary endpoints
Additional secondary endpoints were days alive and free 
of organ support; days alive and discharged from inten-
sive care unit (ICU) through day 28; and time to death 
through day 90.

Safety endpoints
Safety endpoints and adverse events (AEs) were moni-
tored until study day 28 (inclusive). All deaths were 
recorded up to study day 180.

Data analyses and statistics
Analysis of the primary efficacy endpoint was conducted 
according to protocol and SAP based on the modi-
fied intention to treat (mITT) population, defined as all 
patients in whom drug administration was started and 
analyzed according to treatment allocation. The original 
SAP was amended prior to unblinding and any analysis 
of the secondary endpoints to prioritize analysis of the all 
combined population [1] for hypothesis generation. The 
combined population consisted of all patients allocated 
to treatment group according to received treatments 
including patients allocated to main/moderate CKD sub-
population according to the reported pre-AKI-reference 
eGFR value (see Fig. 1). Safety analyses were conducted 
in the safety population.

For categorical and binary demographic and baseline 
characteristics, absolute and relative frequencies are 
presented; and for continuous variables, the median and 
interquartile ranges (IQR) are presented.

For the endpoints 28-day all-cause mortality, 90-day 
all-cause mortality, MAKE90A and MAKE90B, 
observed proportions are presented along with the 
difference in proportions (i.e., ilofotase alfa minus 
placebo), the 95% confidence interval (CI) for the differ-
ence in proportions and the one-sided nominal p value 
based on a z test. Logistic regression was used as a sen-
sitivity analysis to take account of the separate cohorts 
in the population, for 28-day mortality, MAKE90A and 
MAKE90B endpoints. For days alive and free of organ 
support and days alive and out of ICU (both until day 
28), descriptive measures as well as one-sided nominal 
p values are reported. In addition, in a post hoc analysis 
for each treatment group, the effect of pre-AKI eGFR 



on the predicted probability of a MAKE90A outcome 
was investigated using a logistic regression model 
which included treatment group, pre-AKI eGFR, and 
an interaction term for treatment group by pre-AKI 
eGFR.

Safety analyses were conducted in the safety population 
involving all patients enrolled in the study randomized 
to a treatment arm. For patients with AEs, relative and 
absolute frequencies are presented, and the distribution 

Fig. 1  Flowchart of the patients participating in the REVIVAL trial



of the number of patients with (serious) AEs has been 
compared using the chi-squared test.

SAS (SAS software version 9.4; SAS Institute Inc., Cary, 
NC, USA) was used for all statistical analyses. A one-
sided p value < 0.025 for superiority was considered to 
indicate statistical significance. In case the primary was 
not met, further statistical testing was considered explor-
atory and no correction for multiple testing was applied.

Results
Patient recruitment and demographic characteristics
From November 2020 to July 2022, 649 patients (main 
[n = 567] CKD [n = 49] and COVID-19 [n = 33] cohorts) 
were enrolled and treated in 107 sites in North America, 
Europe, Japan, and Oceania (Fig. 1) and included in the 
analyses. Demographic characteristics are presented 
in Table  1 (demographics per cohort in supplementary 
Table 2). Within all three cohorts, patient demographics 
were comparable between the ilofotase alfa and placebo 
group.

Interim analysis
At the time of the first interim analysis on 1st July 2022 
(based on 411 patients in the main trial mITT popula-
tion), all-cause 28-day mortality was 61/208 (29.3%) and 
52/203 (25.7%) for the ilofotase alfa and placebo groups, 
resulting in a predictive probability of success of 1.2%. 
The non-binding recommendation from the DMC was to 
stop the REVIVAL trial early based on futility according 
to the pre-defined threshold of < 15% predictive probabil-
ity of success. There were no safety concerns.

Mortality
For the combined population (including main, CKD, 
COVID-19 cohorts), there was no difference in mortal-
ity between the ilofotase alfa (92 of 330 patients) and the 
placebo (89 of 319 patients) groups at day 28 (27.9% vs 
27.9%, respectively). The difference in proportions was 
− 0.02% with a 95% CI of [− 6.9%; 6.9%] and a nomi-
nal one-sided p value of 0.50. Day 90 mortality was 112 
of 330 patients (33.9%) vs 111 of 319 patients (34.8%). 
Mortality data per cohort are presented in supplemen-
tary Table 3. The treatment difference taking account of 
the three cohorts, estimated based on logistic regression, 
gave an odds ratio of 0.99 (95% CI (0.70–1.40), nominal 
one-sided p = 0.47).

Renal endpoints
The difference in observed proportions of patients with 
a MAKE90A event between ilofotase alfa (56.7%, 187 of 
330) and the placebo group (64.6%, 206 of 319) groups 
was 7.9%, 95% CI [− 15.4%, − 0.4%] with a nominal 

one-sided p value of 0.02. This effect was predominately 
driven by the difference in receipt of RRT through day 
90 between the ilofotase alfa and placebo groups (28.2% 
vs 36.4%) (Table 2).

There was no difference in observed proportions of 
patients with a MAKE90B event between ilofotase alfa 
(36.4%, 120 of 330) and the placebo (40.1%, 128 of 319) 
groups (difference − 3.8% 95% CI [− 11.2%, 3.7%] with 
a nominal one-sided p value of 0.16). Estimated propor-
tions of patients with a MAKE90A or MAKE90B event 
are provided in supplementary Table  4. The treatment 
difference taking account of the three cohorts, esti-
mated based on logistic regression, resulted in an odds 
ratio of 0.72 (95% CI (0.52–0.99), nominal one-sided 
p = 0.022) for MAKE90A and an odds ratio of 0.84 
(95% CI (0.61–1.16), nominal one-sided p = 0.15) for 
MAKE90B.

In a post hoc analysis, there was evidence of an 
interaction between renal function prior to the SA-
AKI episode (pre-AKI eGFR) and the incidence of the 
MAKE90A event, suggesting that the therapeutic effi-
cacy of ilofotase alfa was more pronounced in patients 
with a lower pre-AKI eGFR, i.e., more severe pre-exist-
ent CKD (p = 0.024, Fig. 2). Ilofotase alfa showed a ben-
efit over placebo in the probability of an MAKE90A 
event for patients with pre-AKI eGFR below approxi-
mately 90  mL/min/1.73 m2. At the lower quartile of 
59.8 mL/min/1.73 m2 for pre-AKI eGFR, the probabil-
ity of an MAKE90A event was predicted to be 71% for a 
placebo patient versus 57% for an ilofotase alfa patient. 
At the upper quartile of 89 mL/min/1.73m2, this differ-
ence had virtually disappeared and the respective prob-
abilities were 58% and 56%.

Other secondary endpoints
There were no significant differences in the use of organ 
support, as median [IQR] days alive and free of organ 
support were 17 [0–24] and 14 [0–24] days for ilofotase 
alfa and placebo groups (nominal p value 0.22). Num-
ber of days alive and discharged from the ICU through 
day 28 tended to be higher in the ilofotase alfa group 
15 [0–22] days compared to 10 [0–22] days in the pla-
cebo group, but this difference did not reach statisti-
cal significance (nominal p value 0.09) (Table 2). Other 
secondary endpoints per patient cohort are depicted in 
supplementary Table 5.

Safety parameters
Reported AEs are summarized by occurrence, percent-
age of occurrence, severity, seriousness, outcome, and 
relation to treatment in the safety population (Table  3). 
A lower number of patients experienced any AEs in 



Table 1  Demographic and baseline characteristics

Continuous variable: Median (IQR)

Patients have been analyzed according to treatment received

AKI acute kidney injury, CNS central nervous system, CRP C-reactive protein, eGFR estimated glomerular filtration rate, FiO2 fraction of inspired oxygen, mSOFA 
modified Sequential Organ Failure Assessment, PaO2 partial pressure of Oxygen
1  AKI diagnosis value

Combined patient population

Ilofotase alfa (N = 330) Placebo (N = 319)

Sex, n (%)

 Female 124 (37.6) 113 (35.4)

 Male 206 (62.4) 206 (64.6)

Age, in years 70 (62, 76) 70 (61, 76)

Weight in kg 84 (72, 100) 82 (70, 100)

Height in cm 172 (164, 178) 170 (165, 178)

Body Mass Index in kg/m2 28.9 (25, 33.2) 27.6 (24.6, 34)

Mechanical ventilation status, n (%)

 Off 84 (25.5%) 74 (23.2)

 On 246 (74.5%) 245 (76.8)

AKI stage at randomization, n (%)

 1 144 (43.6%) 129 (40.4)

 2 93 (28.2%) 105 (32.9)

 3 93 (28.2%) 84 (26.3)

 Missing 0 1 (0.3)

Baseline eGFR1 31.2 (21.2, 43.3) 30.6 (20.4, 42)

Pre-AKI eGFR 74 (60.1, 88.3) 73.9 (59.8, 89)

mSOFA 9 (7, 10) 9 (8, 11)

CRP 260.5 (141.2, 341.2) 235 (155.7, 321.3)

Lactate 2.2 (1.5, 3.6) 2.4 (1.5, 3.7)

PaO2/FiO2 ratio 225.8 (146.3, 304.2) 191.7 (134, 292.5)

Infection status

 Proven 156 (47.3) 160 (50.2)

 Suspected 174 (52.7) 159 (49.8)

Infection site

 Abdominal 120 (36.4) 115 (36.1)

 CNS 7 (2.1) 3 (0.9)

 Other 32 (9.7) 34 (10.7)

 Pulmonary 97 (29.4) 95 (29.8)

 Skin or soft tissue 24 (7.3) 30 (9.4)

 Unknown 15 (4.5) 18 (5.6)

 Urinary tract 35 (10.6) 24 (7.5)

Pathogen proven/suspected

 Proven 132 (40) 126 (39.5)

 Suspected 192 (58.2) 190 (59.6)

 Missing 6 (1.8) 3 (0.9)

Type of pathogen

 Viral 28 (8.5) 18 (5.6)

 Bacterial 251 (76.1) 239 (74.9)

 Gram Positive 77 (23.3) 67 (21)

 Gram Negative 92 (27.9) 82 (25.7)

 Mixed 49 (14.8) 53 (16.6)

 Missing 33 (10) 37 (11.6)

 Missing 51 (15.5) 62 (19.4)



the ilofotase alfa group compared to the placebo group 
[224/330 (67.9%) in the ilofotase alfa group and 240/320 
(75%) in the placebo group with a nominal two-sided p 
value based on the chi-squared test of 0.045]. Overall, 
the incidence of serious AEs was similar between the 
two treatment groups. There were no relevant differences 
observed on SOC (System Organ Class Level) (supple-
mentary Table 6).

Discussion
Given the observation that AKI complicates sepsis and 
patients with AKI have far worse short- and long-term 

outcomes, there is high interest in strategies that reduce 
the incidence or ameliorate the course of AKI, with the 
goal of reducing the overall burden on patients. In this 
phase-3 multi-center, international double-blind rand-
omized controlled trial ilofotase alfa did not decrease 
28-day all-cause mortality. However, there was evidence 
to suggest ilofotase alfa reduced MAKE90 events, mainly 
driven by lowering the incidence of RRT through day 90 
in these patients. Ilofotase alfa was well tolerated, and no 
safety issues emerged.

In the previous 300-patient phase-2 trial, day-28 mor-
tality was 14% in the treatment group compared to 27% 

Table 2  Secondary endpoints

AKI acute kidney injury, eGFR estimated glomerular filtration rate, ICU intensive care unit, RRT​ renal replacement therapy, MAKE Major Adverse Kidney Event, SD 
standard deviation, IQ interquartile
1  Difference in proportions (ilofotase alfa—placebo)
2  95% confidence interval
3  Nominal one-sided p value (z score (observed))
4  One-sided p value from re-randomization test comparing the treatment median values
5  Patients who died prior to day 28 are counted 0 days

Combined population (N = 649) observed

Ilofotase alfa (N = 330) Placebo (N = 319)

MAKE90A % (n/N) 56.7% (187/330) 64.6% (206/319)

 Difference1 − 7.91%

 Confidence interval2 (− 15.4%, − 0.42%)

 p value3 0.019

MAKE90B % (n/N) 36.4% (120/330) 40.1% (128/319)

 Difference1 − 3.76%

 Confidence interval2 (− 11.24%, 3.71%)

 p value3 0.162

MAKE90A components: % (n/N)

 Death up to and including day 90 33.9% (112/330) 34.8% (111/319)

 > 25% drop in eGFR at day 90 compared with pre-AKI reference eGFR 5.8% (19/330) 8.8% (28/319)

 On RRT at day 90 OR on RRT through day 28 28.2% (93/330) 36.4% (116/319)

Rehospitalisation 8.5% (28/330) 9.4% (30/319)

MAKE90B components: % (n/N)

 Death up to and including day 90 33.9% (112/330) 34.8% (111/319)

 > 25% drop in eGFR at day 28 and day 90 compared with pre-AKI reference 
eGFR

2.4% (8/330) 5% (16/319)

 On RRT at day 90 0 0(2/319)

Days alive and free of organ support up to day 28

 Mean (SD) 13 (11.31) 12.4 (11.3)

 Median 17 14

 IQ range 0, 24 0, 24

 p value4 0.217

Days alive and discharged from ICU up to day 285

 Mean (SD) 11.5 (10.41) 10.7 (10.47)

 Median 15 10

 IQ range 0, 22 0, 22

 p value4 0.093



in the placebo group [23]. This observed survival ben-
efit of ilofotase alfa [23] was not confirmed in the cur-
rent trial and several reasons for this discrepancy with 
the previous trial in the observed effect of ilofotase alfa 
on survival can be put forward. First, the drug might not 
improve survival and the effect observed in the previous 
phase-2 STOP-AKI trial was a false-positive type 1 error. 
Second, slight changes in eligibility criteria between both 
trials could be responsible. For example, in the REVIVAL 
trial, patients who already had AKI when they presented 

with sepsis were eligible, in contrast to the STOP-AKI 
trial. It is plausible that the duration of AKI was longer in 
these patients, possibly limiting the therapeutic efficacy 
of ilofotase alfa. It is also plausible that other differences 
in phenotype between the STOP-AKI and REVIVAL 
patients existed that may have been of relevance, e.g., 
due to an overall change in the ICU population, because 
of the COVID-19 pandemic and general heterogeneity 
in the sepsis population. Indeed, we found the evidence 
of heterogeneity of treatment effect with a more marked 
reduction in MAKE90 events in patients with pre-exist-
ent impaired renal function. Third, REVIVAL was con-
ducted in 107 sites worldwide vs 55 sites in STOP-AKI, 
which increases generalizability but may have also nega-
tively influenced therapeutic efficacy.

Although the trial was stopped early because of the 
lack of an apparent survival benefit, ilofotase alfa did 
reduce MAKE90 events, which is consistent with pre-
vious trial results. Earlier clinical data showed that 
bovine ALP attenuated urinary detection of tubular 
injury marker Glutathione S-transferase A1 (GSTA1-1), 
improved creatinine clearance and reduced the need for 
RRT [16]. Subsequently, a human recombinant Alkaline 
Phosphatase (ilofotase alfa) was developed and tested in 
a phase-2 trial in 301 patients with SA-AKI. Although 
the primary endpoint in this trial, improvement of 
endogenous creatinine clearance (ECC) in 7  days, was 
not met, longer term ECC over the 28 day study period 
was significantly better, and in addition to the described 
survival benefit, a reduction in MAKE90 events was 
observed with ilofotase alfa (26%) compared to placebo 
(40%) [23]. In REVIVAL, MAKE90A was also mark-
edly reduced in the ilofotase alfa treatment arm (57% 

Fig. 2  Predicted probability of an MAKE90A event with 95% con-
fidence limits. Predicted probabilities are taken from the results of 
the logistic regression model which included “MAKE through day 90” 
as the outcome of interest, and treatment, pre-AKI reference eGFR, 
and pre-AKI reference eGFR by treatment interaction (p for interac-
tion = 0.0235). Patients who did not meet the criteria for having a 
confirmed “MAKE through day 90” event are assumed to not have a 
“MAKE through day 90” event in the logistic regression model

Table 3  Overall summary of number of patients with adverse events in the combined patient population

Patients have been analyzed according to treatment received

*Nominal p value based on Chi-square test

**The AEs are differentiated from Mild to Severe

Treatment group

Ilofotase alfa (N = 330)
n (%)

Placebo (N = 320)
n (%)

p value*

Adverse events 224 (67.9%) 240 (75%) 0.0446

Serious adverse events 143 (43.3%) 141 (44.1%) 0.8514

Fatal adverse events 99 (30%) 98 (30.6%)

Serious non-fatal adverse events 64 (19.4%) 62 (19.4%)

Drug-related adverse events 30 (9.1%) 32 (10%)

Serious drug-related adverse events 16 (4.8%) 16 (5%)

Adverse events leading to withdrawal of trial drug 9 (2.7%) 6 (1.9%)

Serious adverse events leading to withdrawal of trial drug 8 (2.4%) 5 (1.6%)

Adverse events by severity**

 Mild 29 (8.8%) 31 (9.7%)



versus 65% in the placebo arm), mainly driven by lower 
incidence of RRT through day 90. Need for RRT is an 
important component of this composite endpoint espe-
cially due to the strong association with poor outcomes 
in patients with sepsis [29–32]. Furthermore, it is recog-
nized that patients with pre-existent CKD are more likely 
to suffer from AKI when they develop sepsis and have a 
higher risk of not recovering renal function [9, 33]. It is, 
therefore, not surprising that patients with a pre-existent 
lower eGFR, i.e., reduced or no renal reserve, are more 
likely to meet a MAKE90 criterion following sepsis and 
that the reno-protective effect observed with ilofotase 
alfa in REVIVAL was more pronounced in these patients. 
Increased efficacy in patients with pre-existent CKD has 
been observed with other interventions as well [9, 27]. As 
pre-existent renal function was not collected in the previ-
ous (recombinant) alkaline phosphatase trials, the inter-
play between pre-existent renal function and therapeutic 
efficacy of ilofotase alfa is a novel finding that emerged 
from post hoc analysis, and should be interpreted as a 
hypothesis generating finding that needs to be confirmed.

Strengths of this study include its generalizability, as it 
was conducted in multiple countries worldwide. Second, 
the group sequential trial design allowed for the results to 
be reported in case the trial was terminated prematurely 
for futility. The latter also relates to two limitations. First, 
in case the primary endpoint was not met, further statis-
tical testing was considered explorative and, therefore, no 
correction for multiple testing was performed; and second, 
analyses of combined cohorts were reported to explore 
trends based on all enrolled patients. The number of 
patients enrolled in the COVID-19 and CKD cohorts were 
small, and depicted in supplemental files for transparency. 
Further randomized-controlled trials would be necessary 
to assess the reno-protective effects of ilofotase alfa.

Conclusions
The REVIVAL trial was stopped for futility due to lack of 
evidence of reduced 28-day mortality with ilofotase alfa 
treatment in critically ill patients with SA-AKI. Despite 
this, our findings were consistent with preclinical stud-
ies and phase-2 trials suggesting potential benefit of ilo-
fotase alfa in lowering MAKE90 events, mainly driven 
by an attenuated incidence of RRT through day 90. The 
reduction in MAKE90 with ilofotase alfa appeared most 
pronounced in patients with a lower eGFR prior to the 
SA-AKI episode. A prospective randomized-controlled 
trial is warranted to confirm the beneficial renal effects 
of ilofotase alfa in patients with SA-AKI and pre-existing 
CKD.
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