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Abstract 

Purpose: Venoarterial extracorporeal membrane oxygenation (VA-ECMO) is a complex and high-risk life support 
modality used in severe cardiorespiratory failure. ECMO survival scores are used clinically for patient prognostication 
and outcomes risk adjustment. This study aims to create the first artificial intelligence (AI)-driven ECMO survival score 
to predict in-hospital mortality based on a large international patient cohort.

Methods: A deep neural network, ECMO Predictive Algorithm (ECMO PAL) was trained on a retrospective cohort 
of 18,167 patients from the international Extracorporeal Life Support Organisation (ELSO) registry (2017–2020), and 
performance was measured using fivefold cross-validation. External validation was performed on all adult registry 
patients from 2021 (N = 5015) and compared against existing prognostication scores: SAVE, Modified SAVE, and ECMO 
ACCEPTS for predicting in-hospital mortality.

Results: Mean age was 56.8 ± 15.1 years, with 66.7% of patients being male and 50.2% having a pre-ECMO cardiac 
arrest. Cross-validation demonstrated an inhospital mortality sensitivity and precision of 82.1 ± 0.2% and 77.6 ± 0.2%, 
respectively. Validation accuracy was only 2.8% lower than training accuracy, reducing from 75.5% to 72.7% [99% 
confidence interval (CI) 71.1–74.3%]. ECMO PAL accuracy outperformed the ECMO ACCEPTS (54.7%), SAVE (61.1%), 
and Modified SAVE (62%) scores.

Conclusions: ECMO PAL is the first AI-powered ECMO survival score trained and validated on large international 
patient cohorts. ECMO PAL demonstrated high generalisability across ECMO regions and outperformed existing, 
widely used scores. Beyond ECMO, this study highlights how large international registry data can be leveraged for AI 
prognostication for complex critical care therapies.

Keywords: Artificial intelligence, Machine learning, Prognostication, Big data, Risk adjustment, Modelling, Survival 
score, ECMO

Introduction

Venoarterial extracorporeal membrane oxygenation 
(VA-ECMO) is an artificial heart–lung device used to 
support critically ill patients with cardiac and respira-
tory failure. Globally, VA-ECMO is increasingly used 
to support a wide variety of patients with numerous 

*Correspondence:  research.andrew.stephens@gmail.com 
9 Lab 2, Level 2, Victorian Heart Hospital, 631 Blackburn Road, 
Melbourne 3800, Australia
Full author information is available at the end of the article
Andrew F. Stephens and Michael Šeman shared joint first authorship. 
Shaun D. Gregory and Carol Hodgson shared joint last authorship.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00134-023-07157-x&domain=pdf
http://orcid.org/0000-0002-2271-750X


1091

disease aetiologies [1]. VA-ECMO is among the most 
complex and expensive intensive care unit (ICU) thera-
pies, costing from USD 42,000 to over USD 535,000 per 
run, requiring significant and often prolonged intensive 
care resources to maintain [2]. Due to the complexity of 
patients receiving VA-ECMO, the associated costs, and 
the high incidence of serious ECMO-related complica-
tions, appropriate patient selection and prognostication 
is crucial [3].

VA-ECMO outcome scores have been previously devel-
oped and used extensively for risk adjustment, patient 
prognostication, and quality control across time and cen-
tres [4–12]. Previously published scores have typically 
focused on ECMO outcomes for specific patient cohorts, 
such as cardiac arrest [6], cardiogenic shock [7–10], myo-
cardial infarct [11], and post-coronary artery bypass graft 
[12]. The majority of these scores have been derived from 
patient data from a single centre or region, and thus their 
global generalisability may be limited. Furthermore, these 
scores have been derived using traditional statistical 
methods, typically univariate and multivariate analysis, 
with limited data-fitting capacity for complex questions, 
such as ECMO outcomes.

Artificial intelligence (AI) and machine learning (ML) 
offer an advanced alternative to traditional statistical 
methods and can be applied to large data cohorts with 
expansive variable sets, exposing complex interactions 
and patterns otherwise overlooked by traditional statisti-
cal approaches [13, 14].

This study aimed to leverage a large international 
patient cohort to develop and validate an AI-driven tool 
for predicting in-hospital mortality of VA-ECMO. The 
tool was derived entirely on pre-ECMO variables, allow-
ing for mortality prediction immediately after ECMO ini-
tiation. AI-powered prognostication tools could improve 
ECMO centre quality control and benchmarking and 
with sufficient accuracy and demonstrated benefit, facili-
tate data-driven decisions about patient management.

Methods
These methods outline the full study protocol and adhere 
to the Transparent Reporting of a Multivariable Predic-
tion Model for Individual Prognosis or Diagnosis (TRI-
POD), Standard for Reporting of Diagnostic Accuracy 
Studies (STARD), and Minimum Information for Medi-
cal AI Reporting (MINIMAR) guidelines [15–17]. This 
research was approved by the Monash University Human 
Research Ethics Committee (#24863).

Data and inclusion
Data were obtained retrospectively from patients 
enrolled in the Extracorporeal Life Support Organisa-
tion (ELSO) registry [18]. The ELSO Registry collects 

data on the admission, initiation, maintenance, com-
plications, and outcomes of ECMO patients world-
wide. ELSO data are collected from 543 ECMO centres 
globally, primarily in the intensive care setting and 
other settings, such as the operating theatre or emer-
gency department. The patient cohort comprised all 
adult patients (≥ 18  years) who received venoarterial 
ECMO between the 15th of January, 2017, and the 31st 
of December, 2020. This epoch was chosen to coin-
cide with the latest major update to the ELSO registry 
reporting variables (January, 2017). The resulting cohort 
was a continuous set of 22,945 patients from 474 par-
ticipating ECMO centres.

In the case of patients with multiple entries or a pre-
vious history of ECMO, only the first ECMO run was 
included. Three exclusion criteria were defined in consul-
tation with senior ECMO intensivists; (1) patients indi-
cated as still on ECMO whose outcome was unknown 
at the time of reporting (predominantly transferred to 
a non-ELSO participating centre and lost to follow-up), 
(2) presence of a durable ventricular assist device or total 
artificial heart, and (3) patient transported to reporting 
hospital on ECMO. Following exclusion, 18,167 patients 
remained for analysis (Fig. 1).

Data pre‑processing
All pre-ECMO registry variables were considered for 
analysis. Pre-ECMO variables were defined as the closest 
reading before ECMO initiation and collected no more 
than 6  h before ECMO initiation [18]. Data pre-pro-
cessing consisted of deterministic manual data cleaning, 
data clustering, imputation, and feature scaling. Manual 
cleaning involved grouping ICD-10 diagnosis codes 
[19] into the following indications for VA-ECMO: acute 
myocardial infarction, arrhythmia, cardiomyopathy, 
myocarditis, post or perioperative support, pulmonary 
embolism, refractory cardiac arrest, sepsis, poisoning or 
toxins, any respiratory indication, and other cardiac or 
circulatory compromise (Supplementary Materials 1). 
These categories were chosen based on VA-ECMO indi-
cations found in the literature and other survival scores 
[20–22], with clustering performed independently by 
two clinicians and finalised through negotiation (MS and 
AD, > 99.99% independent agreement). In cases where 

Take‑home message 

Extracorporeal membrane oxygenation predictive algorithm 
(ECMO PAL) is the first artificial intelligence (AI)-powered ECMO 
survival score trained and validated on a large international patient 
cohort. This work highlights how large international registry data 
can be leveraged for AI prognostication for complex critical care 
therapies.
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the hospital admission diagnosis was given instead of the 
VA-ECMO indication, a deterministic method was used 
to derive VA-ECMO indication, combining additional 
patient data, such as surgical procedures and pre-ECMO 
support (Data Repository 1).

Data clustering was performed independently and 
negotiated by two of three clinicians (MS, AD, DP) and 
included the grouping of ICD-10 codes into comorbidi-
ties as identified in the Charlson Comorbidity Index [23] 
and Multipurpose Australian Comorbidity Scoring Sys-
tem (MACCS) [24]. Furthermore, clustering of Current 
Procedural Terminology (CPT [25]) codes was under-
taken to identify pre-ECMO cardiothoracic surgery 
and other major pre-ECMO surgeries (Supplementary 
Materials 2). Pre-ECMO support was also considered, 
categorising drugs broadly by pharmacological group 
(for instance, inotropes or vasopressors) and noting 
pre-ECMO temporary mechanical support. Pre-ECMO 
infectious organisms were grouped into bacterial, fungal 
and viral. A combined 105 continuous, categorical, ordi-
nal, and binary variables were included in the analysis 
(Supplementary Materials 2—eTable1).

Continuous data were checked for outliers and prob-
able erroneous entries by hard data limits as agreed by 
clinical consensus (MS, AD—Supplementary Materials 
2—eTable  2). Data outside these limits were truncated 
or removed for later imputation. Missingness of data 

varied widely across all variables, which is typical for 
large clinical cohorts [26, 27] (Supplementary Materials 
2—eTable 1). Variables with more than 50% missingness 
were removed entirely based on preliminary experiments 
exploring feature importance against model performance 
[28]. Missingness was attributed to missing at random or 
not at random; for example, patients with extracorpor-
eal cardiopulmonary resuscitation (ECPR) were more 
likely to have missingness on pre-ECMO biochemistry 
values. All data were min–max scaled, and missing data 
were imputed using a Gaussian Copula method, chosen 
due to its proficiency at handling highly mixed variables 
(including categorical, ordinal, and continuous variables) 
and non-normally distributed data [29, 30]. Outcomes 
data were only modestly unbalanced, with 41.3% survival 
to hospital discharge, in keeping with global adult VA-
ECMO survival rates [31]; as such, resampling was not 
performed.

Machine learning methods
Data were applied to seven AI and ML methods: Deci-
sion Tree, Logistic Regression, Random Forest Ensemble, 
AdaBoost Ensemble, Extreme Gradient Boosted Ensem-
ble, Support Vector Machine, and Neural Network to 
find the best classifier for predicting in-hospital mortal-
ity (primary endpoint). After extensive hyperparameter 
tuning and feature selection, a Deep Neural Network 
(DNN) was found to best predict in-hospital mortality 
(additional details in Supplementary Materials 1). Briefly, 
a DNN mimics the behaviour of human learning, recog-
nising patterns to identify and solve problems. It does so 
using input features (patient variables) which are passed 
to neurons; if the feature is prominent enough, the neu-
ron is “activated”, and the output is passed to the next 
layer, where the feature is again analysed in combination 
with the other features passed forward. Once all layers 
have been activated, the DNN decides the outcome, in 
this case, survival or in-hospital mortality [32]. The DNN 
then reinforces neurons that make correct predictions, 
strengthening the behaviour. Neural Networks are con-
sidered “deep” if there is more than one activation layer 
[33].

Input features that were predictive for the DNN, 
named ECMO Predictive Algorithm (ECMO PAL), were 
selected through permutation feature importance from 
the six remaining models, keeping variables with a pre-
dictive power > 0.001, and comparing Pearson correla-
tion coefficients to determine co-linearity between those 
features. Feature selection was done using the other ML 
models due to the long (hours) training time required for 
feature selection using the DNN directly. Hyperparame-
ter optimisation revealed that a four-layer DNN with 20% 

Fig. 1 Exclusion criteria for training data were: patients still listed as 
receiving extracorporeal membrane oxygenation (ECMO), patients 
who had previously had ECMO, patients with a durable ventricular 
assist device (VAD) or total artificial heart (TAH), and patients trans-
ported to the reporting hospital on ECMO
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dropout (which randomly censors 20% of the data dur-
ing training) provided the best outcomes across fivefold 
cross-validation. The trained DNN was evaluated inter-
nally and externally and compared against other pub-
lished VA-ECMO outcomes scores.

Model evaluation
Shapley Additive Explanations (SHAP) were used to 
understand feature importance and illustrate each fea-
ture’s effect on model predictions [34], while partial 
dependence plots were used to explore variable interac-
tions in more detail [35–37].

Internal model validation was achieved using fivefold 
cross-validation. In-hospital mortality cutoff was defined 
as a survival prediction of less than 50%. The key values 
of interest were sensitivity (ratio of correct mortality pre-
dictions to observed mortality: true positives/true posi-
tives + false negatives) and precision (positive predictive 
value − ratio of correct mortality predictions to total 
mortality predictions: true positives/true positives + false 
positives) to in-hospital mortality and overall model 
accuracy (ratio of correct predictions to incorrect pre-
dictions) and area under the receiver operating charac-
teristic (AUROC) to allow direct comparison with other 
published models.

External validation was performed on a new epoch 
of data from the ELSO database (all adult VA-ECMO 
patients in 2021). This epoch incorporated all pertinent 
regions and quantified model drift with time. The exter-
nal validation data initially consisted of 6210 patients. 
The training data exclusion criteria were applied to 
the validation data resulting in 5015 patients from 387 
centres for analysis. The validation data were cleaned, 
imputed, and scaled in the same manner as the training 
data and predictions were made by ECMO PAL, assess-
ing the same metrics as with training. Finally, ECMO 
PAL predictions were compared against previously pub-
lished VA-ECMO survival scores: SAVE Score [20], Mod-
ified SAVE Score [9], and ECMO-ACCEPTS [7] chosen 
based on available variables within the ELSO registry. 
The comparator scores made predictions on the external 
validation data based on the scope of the score (cardio-
genic shock patients for SAVE and Modified SAVE; all 
patients for ECMO-ACCEPTS). The AUROCs and over-
all accuracy of each score were then directly compared. 
Where appropriate, data are presented as mean ± stand-
ard deviation.

Results
Training patient demographics and clinical data
Following exclusion, 18,167 patients were included 
for model training (Fig.  1). The patient mean age was 
56.8 ± 15.1  years, with 66.7% male and 33.3% female 

(Table  1). Patient races were recorded as Asian (14.7%), 
Black (10%), Hispanic (5%), Multiple (6.2%), White 
(55.5%), Other (3.8%), and Unknown (4.8%). Patients 
came from 467 ECMO centres across the established 
ELSO regions of Asia–Pacific, Europe, Latin America, 
North America, and South and West Asia and Africa. No 
socioeconomic data were available. In addition, 50.2% of 
patients had a cardiac arrest within 24  h before ECMO 
initiation, while 26% had ECPR as their primary ECMO 
mode. The distribution of comorbidities is listed in 
detail in the online materials (Supplementary Materials 
2—eTable 1).

Feature importance and explainers
Permutation feature importance and Pearson correlation 
were used to identify and reduce the model input vari-
ables. Systolic and diastolic blood pressure were highly 
correlated, as were partial pressure of arterial oxygen 
 (PaO2) and arterial oxygen saturation  (SaO2), pH and 
lactate. No loss in accuracy occurred when excluding 
diastolic blood pressure and  SaO2, which were removed. 
However, removing pH or lactate resulted in losses, and 
as such, both were retained in the model. Through this 
process, 105 features were reduced to 23 features with 
predictive power and the DNN feature importance was 
defined post-hoc using SHAP explainers (Fig. 2).

The most predictive variables were lactate, age, serum 
bicarbonate  (HCO3), respiratory rate, and pre-ECMO 
endotracheal intubation time. Many variables had a clear 
monotonic relationship to the outcome. For example, 
higher age, lactate, and time intubated before ECMO 
were all monotonically associated with lower survival. 
Conversely, higher  PaO2 and administration of pre-
ECMO bicarbonate and inotropic infusions were all 
monotonically associated with higher survival. This can 
be seen by the gradual change from pink to blue of such 
variables in Fig. 2. Several variables had non-monotonic 
effects on patient outcomes, for example,  HCO3, pH, and 
systolic blood pressure, reflecting an ideal range for those 
variables, as demonstrated by the pink and blue dots 
scattered across the x-axis in Fig. 2. A lower respiratory 
rate was found to be more predictive of patient mortal-
ity, and patients with a respiratory rate of less than five 
breaths/second had the lowest mortality, likely represent-
ing un-intubated patients in cardiac arrest at ECMO ini-
tiation. Conversely, higher respiratory rates had reduced 
mortality, possibly representing patients with lower 
sedation and spontaneously breathing. Dichotomous 
variables such as heart failure and cardiac arrest both 
increased and decreased mortality predictions depend-
ing on the patient, indicating a complex interaction with 
other patient variables and highlighting possible patient 
selection biases inherent with eligibility decisions around 
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ECMO (Fig. 2). Interactions between variables were fur-
ther investigated using partial dependence plots; for 
example, a complex interaction was found between car-
diac arrest status and lactate (Fig. 3). Additional informa-
tion about the variable impact on model predictions can 
be found in Supplementary Materials 1.

Internal and external validation
Fivefold internal validation of the model was conducted, 
demonstrating strong sensitivity and precision to in-
hospital mortality, 82.1 ± 0.2% and 77.6 ± 0.2%, respec-
tively (Table 2). Overall model accuracy was 75.5 ± 0.1%. 
External validation was conducted on 5015 patients, with 
in-hospital mortality sensitivity and precision marginally 

Table 1 Baseline characteristics of  extracorporeal membrane oxygenation (ECMO) patients included in  the training 
and validation data prior to imputation

Pre-ECMO status includes statuses only within the 24 h prior to ECMO initiation

ECPR extracorporeal membrane oxygenation cardiopulmonary resuscitation
a Includes circulatory compromise not elsewhere classified, and patients with congenital heart and major vessel malformations
b Includes Intra-aortic balloon pumps and temporary percutaneous ventricular assist devices

Patient data Training median [IQR] Validation median [IQR]

Age (years) 58.3 [46.5–67] 59 [47.4–67.3]

Body mass index (kg/m2) 27.7 [24.1–32.4] 27.7 [24.2–32.6]

Lactate (mmol/L) 7.2 [3.5–12] 6.4 [3–11.3]

PaO2 (mmHg) 99.8 [66–204] 117 [73–237]

PaCO2 (mmHg) 42 [34.5–53.2] 41 [34–50.9]

HCO3 (mmol/L) 19.3 [15–23] 20 [16–23.4]

Systolic blood pressure (mmHg) 82 [59–102] 86 [65–106]

Sex (male) 66.7% 67.5%

ECMO indication Proportion of N = 18,167 Proportion of N = 5015

Acute myocardial infarction 2333 (12.8%) 593 (11.8%)

Arrhythmias 1221 (6.7%) 164 (3.3%)

Cardiomyopathy 2225 (12.2%) 646 (12.9%)

Myocarditis 397 (2.2%) 65 (1.3%)

Post or perioperative support 3266 (18%) 439 (8.8%)

Pulmonary embolism 932 (5.1%) 206 (4.1%)

Refractory cardiac arrest 2126 (11.7%) 681 (13.6%)

Sepsis 336 (1.8%) 77 (1.5%)

Toxins 129 (0.7%) 26 (0.5%)

Other cardiac or circulatory  compromisea 4326 (23.8%) 1858 (37%)

Any respiratory indication 876 (4.8%) 260 (5.2%)

Pre‑ECMO status Proportion of N = 18,167 Proportion of N = 5015

Cardiac arrest 8829 (50.2%) 2252 (44.9%)

ECPR 4721 (26%) 1120 (23.3%)

Acute kidney injury 2040 (11.3%) 700 (14%)

Renal replacement therapy 1345 (7.4%) 386 (7.7%)

Cardiothoracic surgery 3118 (17.2%) 759 (15.1%)

Chronic liver disease 357 (2%) 129 (2.6%)

Chronic kidney disease 1210 (6.6%) 362 (7.2%)

Chronic heart failure 4853 (26.7%) 1491 (29.7%)

Pre-ECMO lung transplant 941 (5.2%) 139 (2.6%)

Temporary mechanical circulatory  supportb 4315 (23.8%) 1342 (26.8%)

Outcomes Mean [IQR] and n (%) Mean [IQR] and n (%)

ECMO support duration (hours) 89 [37–163] 94 [41–169]

Survival to hospital discharge 7500 (41.3%) 2385 (45.6%)
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dropping by 4.4% and 4.2%, respectively, to 77.7% and 
73.4% (Table 2). Overall accuracy reduced to 72.7% [99% 
CI 71.1–74.3], exhibiting only a 2.8% drop in accuracy 
between internal and external validation. The model 
demonstrated consistent performance regardless of VA-
ECMO indication (accuracy within 3%), with the highest 
sensitivity to in-hospital mortality for an indication of 
toxins (85.7%) and the lowest sensitivity for patients with 
myocarditis (73.2%, Table  3). Ground truth in-hospital 
mortality was 58.7% in the training cohort and 54.4% 
in the validation cohort. The model calibration curve 
yielded a Brier Score of 0.22 (Supplementary Materials 1).

The SAVE score, Modified SAVE score, and ECMO 
ACCEPTS scores were compared against ECMO PAL. 
Predictions were made for all 5,015 validation patients 
for ECMO ACCEPTS, and 4476 patients with cardio-
genic shock for SAVE and modified SAVE (cardiogenic 
shock derived scores). ECMO ACCEPTS demonstrated 

the lowest performance on the validation data (Accuracy: 
54.7%, AUROC: 0.61), followed by the SAVE score (Accu-
racy: 61.1%, AUROC: 0.61), modified SAVE SCORE 
(Accuracy: 62%, AUROC: 0.67), and ECMO PAL (Accu-
racy: 72.7%, AUROC: 0.80) (Supplementary Fig.  1). For 
direct reference, ECMO PAL also made predictions on 
the 4476 cardiogenic shock patients only, and the accu-
racy and AUROC were within the stated confidence 
intervals (Table 2) (Supplementary Material 2—eTable 3).

Discussion
This study investigated a novel AI-driven tool for predict-
ing in-hospital mortality of patients receiving VA-ECMO. 
Leveraging big data from the international ELSO registry, 
ECMO PAL was derived on 18,167 patients (2017–2020) 
and validated on 5015 additional patients (2021). ECMO 
PAL outperformed existing scores in both accuracy and 
AUROC when predicting outcomes of a large interna-
tional cohort. ECMO PAL was most sensitive and precise 
at predicting in-hospital mortality.

ECMO PAL was compared with established ECMO 
outcomes scores and found to have superior accuracy 
and AUROC. Only one other AI-powered ECMO model 
has been published in the past. Ayers et al. trained a DNN 
to predict survival outcomes, reporting an accuracy of 
82% and an AUROC of 0.9 [5]. That study did not include 
patients who survived for less than 48 h. That model was 
also trained on 197 patients and evaluated on 50 patients 
from a single centre, likely resulting in low generalisabil-
ity. Direct comparison of outcomes scores must be inter-
preted cautiously as many scores are derived for specific 
regions, a specific disease aetiology, or specific ECMO 

Fig. 2 Shapley Additive Explainer (SHAP) values show the influence 
of each variable on the model output. The colour of each dot repre-
sents the value of an individual patient data point, with pink being 
the maximum variable value and blue being the minimum variable 
value. The dot’s position on the x-axis represents that data point’s 
contribution to a patient-specific outcome in combination with all 
other variables for that patient. The width of the violin shows the 
distribution. Variables are ranked in descending order of predictive 
importance

Fig. 3 Partial dependence plot showing patient cardiac arrest status 
and interaction with lactate. Yellow contour regions have the highest 
survival, while dark purple regions have the lowest survival rates. 
Large black ticks at the bottom represent the deciles of the data. 
Contour labels represent the effect on survival. ECPR extracorporeal 
membrane oxygenation cardiopulmonary resuscitation
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indication. Those specific models will perform better in 
their researched context but may not be generalisable 
to other health regions or patient cohorts. In contrast, 
ECMO PAL is highly generalisable, having been trained 
on patients from 467 ECMO centres across Europe, 
Asia–Pacific, North America, Latin America, and South-
west Asia and Africa. This high generalisability highlights 
the model’s potential for risk adjustment, quality control, 
and embedding into national and international registries.

As clinical practice and patient populations evolve, the 
performance of clinical prediction models may deterio-
rate over time, and a 2.8% drop in performance was seen 
in ECMO PAL between 2017–2020 and 2021. In the case 
of ECMO PAL, an infrastructure has been established 
to retrain and update the model with new data and pre-
dictive variables as they become available, with major 
updates planned for every 2–3 years. Meanwhile, track-
ing the year within the model allows for annual calibra-
tion adjustment reflecting trends in reduced mortality 
outcome (0.2–0.5% each year) between major model 

updates. In this regard, ECMO PAL is an evolving algo-
rithm that can continue to learn, allowing for ongoing 
optimisation of its prediction performance and clinical 
utility.

SHAP explainers were used to understand the effects of 
different variables on the predicted outcome. Many vari-
ables were found to be monotonically influential on the 
predicted outcome and have been reported in previous 
models, such as age, lactate, and pre-ECMO intubation 
time [9, 12, 20]. The effect of some variables is clinically 
intuitive, with older age and longer intubation times 
associated with worse outcomes. However, this model 
also highlighted complex interactions with other vari-
ables which were not monotonically associated with out-
come and are less straightforward to interpret clinically. 
For instance, pre-ECMO cardiac arrest and ECPR con-
tributed to both survival and non-survival predictions in 
different individual patients. Further investigation using 
partial dependence plots revealed that those with low 
pre-ECMO lactate had the highest survival regardless of 

Table 2 ECMO PAL metrics from  internal fivefold cross‑validation (18,167 patients) and  external validation (5015 
patients)

AUROC area under the receiver operating characteristic curve. Mean ± standard deviation

Metric Internal evaluation External validation 99% 
confidence 
Interval

Hospital mortality sensitivity (%) 82.1 ± 0.2 77.7 [76.2–79.2]

Hospital mortality precision (%) 77.6 ± 0.2 73.4 [71.8–75]

Survival sensitivity (%) 66.2 ± 0.3 66.7 [65–68.4]

Survival precision (%) 72.3 ± 0.2 71.6 [70–73.2]

Overall accuracy (%) 75.5 ± 0.1 72.7 [71.1–74.3]

AUROC 0.83 ± 0.0 0.8 [0.78–0.81]

Survival predictions [# Correct] 6023 [4470] 2138 [1531] –

Hospital mortality predictions [# Correct] 12,144 [9114] 2867 [2122] –

Table 3 ECMO PAL performance on validation data by indication for extracorporeal membrane oxygenation support

Primary indication N Observed  
mortality (N)

Predicted  
mortality (N)

Sensitivity (%) Accuracy (%)

Acute myocardial infarction 593 347 343 76.7 73.4

Arrhythmia 164 87 100 77 67.7

cardiomyopathy 646 363 388 79.9 73.5

Myocarditis 65 41 39 73.2 69.2

Post/peri operative support 439 240 253 79.6 74.7

Pulmonary embolism 111 206 119 79.3 73.8

Refractory cardiac Arrest 678 351 256 72.9 70.4

Sepsis 47 77 43 74.5 74

Toxins 14 26 15 85.7 80.8

Other cardiac or Circulatory 1814 974 767 78.7 72.6

Respiratory indication 125 260 135 78.4 75.4
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arrest status (Fig. 3), likely representing a set of patients 
who were initiated on ECMO very quickly after cardiac 
arrest. Meanwhile, patients with cardiac arrest or ECPR 
who had elevated lactates (8–30  mmol/L) performed 
poorly. Interestingly, no patients with extremely high 
lactates (35–40 mmol/L) were recorded as having a car-
diac arrest, potentially indicating some other underly-
ing pathology, data entry error, or patient selection bias. 
Although included in the initial analysis, features such 
as gender, VA-ECMO indication, and comorbidities 
were not considered highly predictive of outcome. Low 
model importance does not mean these features are not 
clinically meaningful or have no bearing on the outcome; 
rather, it illustrates that these features are likely already 
encapsulated by the predictive demographic, clinical, and 
biochemistry data.

Specific indications for ECMO initiation were included 
in the analysis but were found to have a limited impact 
on model prediction. Except for pulmonary embolism, 
including ECMO indication did not improve model per-
formance. Instead, it is likely that the model has already 
captured the determinants associated with disease/indi-
cation-specific outcomes. In this regard, the benefit of 
AI-powered tools is highlighted, in which there is capac-
ity to look beyond human-defined classifications and into 
the complex interplay of variables found in the numeri-
cal data (clinical, biochemistry, haemodynamic). Of note, 
while not reported in detail here, an ensemble modelling 
method was investigated during this research, whereby 
training individual models for each identified ECMO 
indication was performed. These disease-specific mod-
els had lower individual accuracies than the generalised 
model, likely due to the lower number of patients avail-
able for training each model.

A limitation of this model was the selection bias inher-
ent in the training and validation data. The ELSO reg-
istry records only patients supported with ECMO and 
does not include critically ill patients for whom clinicians 
elected not to initiate ECMO. Thus, limiting the utility 
of ECMO PAL for decision-making related to ECMO 
initiation. Nevertheless, globally, different hospitals will 
likely have different thresholds for commencing ECMO. 
Thus, this variation in the threshold may be reflected in 
the model using a large international cohort. Although 
ECMO-PAL may not yet be mature enough to make 
individual-level predictions for resource allocation, the 
model could be used for cohort predictions in risk adjust-
ment and quality control.

A further limitation of the model is the varying qual-
ity of available data, with different centres having a higher 
and lower propensity to enter erroneous or irrelevant 
data. For instance, some centres assigned over 90 comor-
bidities for a single patient as contributing to their reason 

for being on ECMO, adding additional noise to the data 
set. Conversely, only 40% of the cohort had one or more 
secondary diagnoses or comorbidities recorded. There 
were also modest (up to 44%) levels of missing data for 
some key variables, such as respiratory rate and blood gas 
parameters, including lactate. These data were deemed 
missing not at random due to certain disease aetiologies, 
where these data would not be routinely recorded (ECPR, 
for example). Robust imputation methods were used to 
fill the data; however, imputation is imperfect, and this 
may affect model real-world model performance. More, 
higher quality data will remove the need for imputation 
in future model updates.

In addition, assumptions were made during data clean-
ing. For example, data from International Classification 
of Diseases tenth revision (ICD-10) codes, procedure 
codes, and pre-ECMO support were operationalised into 
categorical and binary variables for supervised learning. 
The process of operationalising this data was done manu-
ally and was based on the experience of multiple clini-
cians, with room for interpretation. A common narrative 
is that the black-box nature of neural networks will limit 
their clinical acceptability [38]. This limitation may be 
overstated [39], as although the interdependence of the 
model variables and their effect on outcomes is some-
what opaque to the user, explainers such as SHAP and 
partial dependence plots can help understand the model 
outputs at both a general and patient-specific level.

Clinical outcome data post-discharge was unavailable 
via the ELSO registry, and as a result, this study did not 
investigate predictors of longer term patient outcomes.

ECMO PAL is the first step in a suite of evolving AI-
powered tools for prediction in ECMO. ECMO PAL will 
be implemented as a free online web app (ecmo- pal. icu). 
Notably, the web app uses individual patient explainers to 
understand the prediction made for the inputted patient 
(Supplementary Fig.  2), allowing a deeper understand-
ing of each outcome prediction. More broadly, this work 
demonstrates the potential of AI for ICU outcomes pre-
diction. The accuracy of AI-powered tools for ECMO can 
be further improved by modifying registry data collec-
tion processes to optimise its use in big data analysis. A 
key example would be transitioning from ICD-10 codes 
for patient diagnoses and creating a list of acceptable pri-
mary diagnoses and common comorbidities instead.

Conclusion
This study aimed to create a novel AI-driven tool for 
predicting in-hospital mortality in patients receiving 
venoarterial ECMO. The developed model demon-
strated high generalisability across regions and made 
accurate predictions across a heterogeneous patient 

https://www.monash.edu/medicine/sphpm/excel/ecmo-pal


1098

cohort. This study is the first to investigate AI-driven 
tools for ECMO using global big data. This research 
forms the starting point for ECMO PAL, specifically 
designed to be updated and evolve as ECMO therapy 
matures. As medicine advances through the digital age, 
AI-powered clinical prediction tools such as ECMO 
PAL present a platform to enhance patient prognosti-
cation, improve resource allocation, and identify solu-
tions for optimising patient care.
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