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Positive end-expiratory pressure (PEEP) has been inter-
woven with acute respiratory distress syndrome (ARDS) 
since its first description by Ashbaugh et  al. [1]. There-
after, the potentially competing effects of PEEP on lung 
volume, gas-exchange, and hemodynamics were quickly 
recognized, prompting the first proposals for methods to 
optimize PEEP in the clinical setting. Eight years after the 
term ARDS was minted, a seminal study by Suter et al. [2] 
defined “optimal PEEP” as the value associated with best 
respiratory compliance. That level was associated with 
the best oxygen delivery and dead space reduction, even 
though  PaO2 continued to increase at PEEP levels higher 
than the compliance-defined optimum. This thoughtful 
approach was based not only on arterial “oxygenation”, 
but also on hemodynamics and respiratory mechanics. 
Subsequent research regarding “best PEEP” has resem-
bled the search for the “Holy Grail”, and has developed 
sequentially along three main lines: oxygenation, lung 
mechanics, and clinical trials (Fig. 1).

Oxygenation
In the early ‘pre-ventilator-induced lung injury’ era, PEEP 
was introduced primarily to correct hypoxemia. Unfortu-
nately, the oxygenation target proved difficult to numeri-
cally define. The first attempt to set a “best” oxygenation 
goal was provided by Tenaillon et al. [3], who proposed 
that best PEEP should reduce the venous admixture 
to ≤ 15%. This approach encouraged very high PEEP lev-
els (≥ 20  cmH2O); any resulting hemodynamic impair-
ment was often offset by copious fluid infusion. Perhaps, 
the strongest rationale for considering hemodynamics in 

PEEP adjustment was later provided by Dantzker et  al. 
[4], who attributed the beneficial effects of PEEP on 
oxygenation to the associated decrease of blood flow-
ing through abnormal lung units. Indeed, a strong asso-
ciation was noted between PEEP’s reduction of cardiac 
output and  PaO2 improvement. This phenomenon, pre-
viously observed by Lemaire et  al. [5], remains seldom 
considered at the bedside. Imprecise arterial oxygenation 
targets continue to be the most widely used indicator of 
PEEP response in routine practice. Conversely, despite 
their questionable rationale and safety, convenient and 
quite specific PEEP tables are extensively used [6].

Lung mechanics
A widely recognized guide for evaluating lung mechan-
ics, the inspiratory limb of the volume–pressure relation-
ship, was implemented by investigators who proposed 
setting PEEP 2 cm of water higher than its lower inflec-
tion point [7]. This method tacitly assumes that recruit-
ment of viable units is nil at still higher pressures and 
volumes, and that limited over-distention occurs during 
tidal ventilation. This misconception motivated research 
to define and measure recruitment. Unfortunately, the 
term “recruitment” itself is ambiguous. We and others 
quantify recruitment through quantitative lung imaging, 
defining it as the total of gasless tissue regaining aeration. 
Others assess recruitment as the improved aeration of a 
predefined lung region [8]. In clinical settings, recruit-
ment has been assumed when tidal compliance increases 
in response to a PEEP increment [9]. Recruitment esti-
mates measured by improved respiratory mechanics and 
those quantified by imaging, however, are quite distinct. 
In fact, better respiratory mechanics result not only 
from more numerous aerated units, but also from higher 
compliance of units already open [10]. Other mechan-
ics-based attempts to identify “best PEEP”, an expira-
tory intervention, have concentrated on the deflation 
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Fig. 1 The first proposal to identify best PEEP [2] included the simultaneous assessment of oxygenation, respiratory mechanics, and hemodynam-
ics. Afterward, indicators of oxygenation [3], sometimes coupled to hemodynamics [4], were proposed as the key target. The volume–pressure 
curve was subsequently investigated extensively [7]. In the era of lung protective strategies belong the PEEP table [6] and the stress index. Several 
present-day proposals include setting PEEP that limits driving and plateau pressures, utilizing dual ‘before and after PEEP increment’ volume–pres-
sure curves [18], and assessing response to a PEEP change with a variety of tools: the ratio of estimated recruited volume to the total volume incre-
ment [19], CT scan, bedside lung ultrasound (LUS) or electrical impedance tomography (EIT)
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limb of the volume–pressure relationship [11]. Accord-
ingly, airway pressures were reduced stepwise from end-
inspiration, with ‘best PEEP’ defined as the pressure just 
above that at which  PaO2 or tidal compliance decreased 
[12]. This method attributes such changes in respiratory 
system properties to “de-recruitment” within the lung, 
ignoring its chest wall enclosure. A sharply different 
approach, one also based on expiratory mechanics (but of 
the lung itself ), was proposed by Talmor et al. [13]. These 
authors equated esophageal pressure to pleural pressure 
and based the elusive “best PEEP” on the level at which 
the difference between the end-expiratory airway and 
esophageal pressures turns positive. Apparently, however, 
doing so offers no clear outcome advantage [14].

Clinical trials
“Best PEEP” has been sought through multiple clinical 
trials that contrasted outcomes for population cohorts 
treated with higher vs. lower PEEP or specific approaches 
to setting it [6]. No single prospective trial, however, has 
succeeded convincingly, even though impressive meta-
analyses favor higher PEEP for specific subgroups [15]. 
Notably, higher PEEP linked with recruitment maneuvers 
has been associated with significantly increased mortality 
[16].

Ideally, a “best PEEP” simultaneously: (1) provides 
appropriate gas-exchange; (2) keeps the lungs open (pre-
vents phasic airway collapse); (3) avoids alveolar over-
distension; and (4) does not compromise hemodynamics. 
This PEEP ‘grail’ simply does not exist. Any PEEP selected 
is always a compromise among these objectives—a bal-
ance which over time tilts increasingly toward its com-
plications. With only isolated exceptions, the quest for an 
‘optimal PEEP’ approach has focused on passive airway 
pressure and has largely ignored the potentially impor-
tant influences of disease stage, chest wall stiffness, mas-
sive obesity, baby lung capacity, vertical torso angulation, 
supine/prone body positioning, regional compliance, 
and need for frequent PEEP reassessment as disease pro-
gresses or resolves.

Optimal gas-exchange: PEEP certainly does not 
require venous admixture to be held < 15%, but it should 
provide viable gas-exchange  (PaO2 60/80  mmHg and 
 PaCO2 < 50/55 mmHg) without excessive dead space gen-
eration or potentially toxic levels of  FiO2.

Keeps the lungs open: To maintain all unstable alveoli 
recruited requires PEEP ≥ 20  cmH2O. Hence, it may be 
safer to accept that a fraction of potentially ‘recruitable’ 
lung always will remain closed.

Alveolar over-distention: Some over-distention is una-
voidable when PEEP exceeds 10/15  cmH2O, a level that 
causes normal lung units to approach their total capacity.

Hemodynamics: Hemodynamic impairment is, in our 
opinion, an ever-present side effect whose consequences 
are largely neglected. PEEP-compromised hemodynam-
ics often are not considered problematic, as they usually 
respond with apparent ease to fluids and cardioactive 
drugs. Yet, the resulting histologic consequences of such 
‘remedies’ are quite demonstrable in experimental ani-
mals [17].

Without question, the judicious application of PEEP has 
saved many lives. Yet, history has shown that the quest 
for unique “best PEEP” guidelines is quixotic; rather, best 
PEEP may simply be that individual-specific, empiri-
cal value which provides viable oxygenation  (SpO2 > 90% 
without excessive  FiO2 (e.g., > 0.7) and acceptable  PaCO2 
(< 50/55  mmHg), with minimal need for fluid resus-
citation or cardioactive drugs. Starting with a PEEP 
10–12 cm  H2O is likely the most prudent approach, stay-
ing alert to possible hemodynamic consequences when-
ever PEEP is increased. Once the level is set, it is wise to 
periodically question and test its need and adequacy.
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