Skip to main content
Log in

Targeted temperature management following out-of-hospital cardiac arrest: a systematic review and network meta-analysis of temperature targets

  • Systematic Review
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Purpose

Targeted temperature management (TTM) may improve survival and functional outcome in comatose survivors of out-of-hospital cardiac arrest (OHCA), though the optimal target temperature remains unknown. We conducted a systematic review and network meta-analysis to investigate the efficacy and safety of deep hypothermia (31–32 °C), moderate hypothermia (33–34 °C), mild hypothermia (35–36 °C), and normothermia (37–37.8 °C) during TTM.

Methods

We searched six databases from inception to June 2021 for randomized controlled trials (RCTs) evaluating TTM in comatose OHCA survivors. Two reviewers performed screening, full text review, and extraction independently. The primary outcome of interest was survival with good functional outcome. We used GRADE to rate our certainty in estimates.

Results

We included 10 RCTs (4218 patients). Compared with normothermia, deep hypothermia (odds ratio [OR] 1.30, 95% confidence interval [CI] 0.73–2.30), moderate hypothermia (OR 1.34, 95% CI 0.92–1.94) and mild hypothermia (OR 1.44, 95% CI 0.74–2.80) may have no effect on survival with good functional outcome (all low certainty). Deep hypothermia may not improve survival with good functional outcome, as compared to moderate hypothermia (OR 0.97, 95% CI 0.61–1.54, low certainty). Moderate hypothermia (OR 1.23, 95% CI 0.86–1.77) and deep hypothermia (OR 1.27, 95% CI 0.70–2.32) may have no effect on survival, as compared to normothermia. Finally, incidence of arrhythmia was higher with moderate hypothermia (OR 1.45, 95% CI 1.08–1.94) and deep hypothermia (OR 3.58, 95% CI 1.77–7.26), compared to normothermia (both high certainty).

Conclusions

Mild, moderate, or deep hypothermia may not improve survival or functional outcome after OHCA, as compared to normothermia. Moderate and deep hypothermia were associated with higher incidence of arrhythmia. Routine use of moderate or deep hypothermia in comatose survivors of OHCA may potentially be associated with more harm than benefit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Berdowski J, Berg RA, Tijssen JG, Koster RW (2010) Global incidences of out-of-hospital cardiac arrest and survival rates: systematic review of 67 prospective studies. Resuscitation 81:1479–1487

    Article  PubMed  Google Scholar 

  2. Neumar RW, Nolan JP, Adrie C, Aibiki M, Berg RA, Böttiger BW, Callaway C, Clark RS, Geocadin RG, Jauch EC, Kern KB, Laurent I, Longstreth WT Jr, Merchant RM, Morley P, Morrison LJ, Nadkarni V, Peberdy MA, Rivers EP, Rodriguez-Nunez A, Sellke FW, Spaulding C, Sunde K, Vanden Hoek T (2008) Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. A consensus statement from the International Liaison Committee on Resuscitation (American Heart Association, Australian and New Zealand Council on Resuscitation, European Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Asia, and the Resuscitation Council of Southern Africa); the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; and the Stroke Council. Circulation 118:2452–2483

    Article  PubMed  Google Scholar 

  3. Holzer M (2010) Targeted temperature management for comatose survivors of cardiac arrest. N Engl J Med 363:1256–1264

    Article  CAS  PubMed  Google Scholar 

  4. Drury PP, Gunn ER, Bennet L, Gunn AJ (2014) Mechanisms of hypothermic neuroprotection. Clin Perinatol 41:161–175

    Article  PubMed  Google Scholar 

  5. Nielsen N, Sunde K, Hovdenes J, Riker RR, Rubertsson S, Stammet P, Nilsson F, Friberg H (2011) Adverse events and their relation to mortality in out-of-hospital cardiac arrest patients treated with therapeutic hypothermia. Crit Care Med 39:57–64

    Article  PubMed  Google Scholar 

  6. Knight WA, Hart KW, Adeoye OM, Bonomo JB, Keegan SP, Ficker DM, Szaflarski JP, Privitera MD, Lindsell CJ (2013) The incidence of seizures in patients undergoing therapeutic hypothermia after resuscitation from cardiac arrest. Epilepsy Res 106:396–402

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kirkegaard H, Taccone FS, Skrifvars M, Søreide E (2019) Postresuscitation care after out-of-hospital cardiac arrest: clinical update and focus on targeted temperature management. Anesthesiology 131:186–208

    Article  PubMed  Google Scholar 

  8. Nolan JP, Sandroni C, Böttiger BW, Cariou A, Cronberg T, Friberg H, Genbrugge C, Haywood K, Lilja G, Moulaert VRM, Nikolaou N, Olasveengen TM, Skrifvars MB, Taccone F, Soar J (2021) European Resuscitation Council and European Society of Intensive Care Medicine guidelines 2021: post-resuscitation care. Intensive Care Med 47:369–421

    Article  PubMed  PubMed Central  Google Scholar 

  9. Panchal AR, Bartos JA, Cabañas JG, Donnino MW, Drennan IR, Hirsch KG, Kudenchuk PJ, Kurz MC, Lavonas EJ, Morley PT, O’Neil BJ, Peberdy MA, Rittenberger JC, Rodriguez AJ, Sawyer KN, Berg KM (2020) Part 3: adult basic and advanced life support: 2020 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 142:S366-s468

    Article  PubMed  Google Scholar 

  10. Minini A, Annoni F, Peluso L, Bogossian EG, Creteur J, Taccone FS, (2021) Which target temperature for post-anoxic brain injury? A systematic review from "real life" studies. Brain Sci 11

  11. Steen PA, Newberg L, Milde JH, Michenfelder JD (1983) Hypothermia and barbiturates: individual and combined effects on canine cerebral oxygen consumption. Anesthesiology 58:527–532

    Article  CAS  PubMed  Google Scholar 

  12. Kim JJ, Yang HJ, Lim YS, Kim JK, Hyun SY, Hwang SY, Shin JH, Park JB, Lee G (2011) Effectiveness of each target body temperature during therapeutic hypothermia after cardiac arrest. Am J Emerg Med 29:148–154

    Article  PubMed  Google Scholar 

  13. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C, Ioannidis JP, Straus S, Thorlund K, Jansen JP, Mulrow C, Catalá-López F, Gøtzsche PC, Dickersin K, Boutron I, Altman DG, Moher D (2015) The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med 162:777–784

    Article  PubMed  Google Scholar 

  15. Sampson M, Shojania KG, McGowan J, Daniel R, Rader T, Iansavichene AE, Ji J, Ansari MT, Moher D (2008) Surveillance search techniques identified the need to update systematic reviews. J Clin Epidemiol 61:755–762

    Article  PubMed  Google Scholar 

  16. Huang FY, Huang BT, Wang PJ, Zuo ZL, Heng Y, Xia TL, Gui YY, Lv WY, Zhang C, Liao YB, Liu W, Chen M, Zhu Y (2015) The efficacy and safety of prehospital therapeutic hypothermia in patients with out-of-hospital cardiac arrest: a systematic review and meta-analysis. Resuscitation 96:170–179

    Article  PubMed  Google Scholar 

  17. Guyatt GH, Busse JW, Modification of cochrane tool to assess risk of bias in randomized trials. https://www.evidencepartners.com/resources/methodological-resources/

  18. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188

    Article  CAS  PubMed  Google Scholar 

  19. White IR (2015) Network meta-analysis. Stata J 15:951–985

    Article  Google Scholar 

  20. White IR, Barrett JK, Jackson D, Higgins JP (2012) Consistency and inconsistency in network meta-analysis: model estimation using multivariate meta-regression. Res Synth Methods 3:111–125

    Article  PubMed  PubMed Central  Google Scholar 

  21. Higgins JP, Jackson D, Barrett JK, Lu G, Ades AE, White IR (2012) Consistency and inconsistency in network meta-analysis: concepts and models for multi-arm studies. Res Synth Methods 3:98–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lu G, Ades AE (2006) Assessing evidence inconsistency in mixed treatment comparisons. J Am Stat Assoc 101:447–459

    Article  CAS  Google Scholar 

  24. Harbord RM, Egger M, Sterne JA (2006) A modified test for small-study effects in meta-analyses of controlled trials with binary endpoints. Stat Med 25:3443–3457

    Article  PubMed  Google Scholar 

  25. Brignardello-Petersen R, Bonner A, Alexander PE, Siemieniuk RA, Furukawa TA, Rochwerg B, Hazlewood GS, Alhazzani W, Mustafa RA, Murad MH, Puhan MA, Schünemann HJ, Guyatt GH (2018) Advances in the GRADE approach to rate the certainty in estimates from a network meta-analysis. J Clin Epidemiol 93:36–44

    Article  PubMed  Google Scholar 

  26. Brignardello-Petersen R, Florez ID, Izcovich A, Santesso N, Hazlewood G, Alhazanni W, Yepes-Nuñez JJ, Tomlinson G, Schünemann HJ, Guyatt GH (2020) GRADE approach to drawing conclusions from a network meta-analysis using a minimally contextualised framework. BMJ 371:m3900

    Article  PubMed  Google Scholar 

  27. Santesso N, Glenton C, Dahm P, Garner P, Akl EA, Alper B, Brignardello-Petersen R, Carrasco-Labra A, De Beer H, Hultcrantz M, Kuijpers T, Meerpohl J, Morgan R, Mustafa R, Skoetz N, Sultan S, Wiysonge C, Guyatt G, Schünemann HJ (2020) GRADE guidelines 26: informative statements to communicate the findings of systematic reviews of interventions. J Clin Epidemiol 119:126–135

    Article  PubMed  Google Scholar 

  28. Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, Smith K (2002) Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 346:557–563

    Article  PubMed  Google Scholar 

  29. Dankiewicz J, Cronberg T, Lilja G, Jakobsen JC, Levin H, Ullén S, Rylander C, Wise MP, Oddo M, Cariou A, Bělohlávek J, Hovdenes J, Saxena M, Kirkegaard H, Young PJ, Pelosi P, Storm C, Taccone FS, Joannidis M, Callaway C, Eastwood GM, Morgan MPG, Nordberg P, Erlinge D, Nichol AD, Chew MS, Hollenberg J, Thomas M, Bewley J, Sweet K, Grejs AM, Christensen S, Haenggi M, Levis A, Lundin A, Düring J, Schmidbauer S, Keeble TR, Karamasis GV, Schrag C, Faessler E, Smid O, Otáhal M, Maggiorini M, Wendel Garcia PD, Jaubert P, Cole JM, Solar M, Borgquist O, Leithner C, Abed-Maillard S, Navarra L, Annborn M, Undén J, Brunetti I, Awad A, McGuigan P, Bjørkholt Olsen R, Cassina T, Vignon P, Langeland H, Lange T, Friberg H, Nielsen N (2021) Hypothermia versus normothermia after out-of-hospital cardiac Arrest. N Engl J Med 384:2283–2294

    Article  PubMed  Google Scholar 

  30. Hypothermia After Cardiac Arrest Study Group (2002) Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 346:549–556

    Article  Google Scholar 

  31. Hachimi-Idrissi S, Corne L, Ebinger G, Michotte Y, Huyghens L (2001) Mild hypothermia induced by a helmet device: a clinical feasibility study. Resuscitation 51:275–281

    Article  CAS  PubMed  Google Scholar 

  32. Lascarrou JB, Merdji H, Le Gouge A, Colin G, Grillet G, Girardie P, Coupez E, Dequin PF, Cariou A, Boulain T, Brule N, Frat JP, Asfar P, Pichon N, Landais M, Plantefeve G, Quenot JP, Chakarian JC, Sirodot M, Legriel S, Letheulle J, Thevenin D, Desachy A, Delahaye A, Botoc V, Vimeux S, Martino F, Giraudeau B, Reignier J (2019) Targeted temperature management for cardiac arrest with nonshockable rhythm. N Engl J Med 381:2327–2337

    Article  PubMed  Google Scholar 

  33. Laurent I, Adrie C, Vinsonneau C, Cariou A, Chiche JD, Ohanessian A, Spaulding C, Carli P, Dhainaut JF, Monchi M (2005) High-volume hemofiltration after out-of-hospital cardiac arrest: a randomized study. J Am Coll Cardiol 46:432–437

    Article  PubMed  Google Scholar 

  34. Le May M, Osborne C, Russo JJ, So DY, Chong AY, Dick A, Froeschl M, Glover CA, Hibbert B, Marquis JF, De roock S, Labinaz M, Bernick J, Marshall S, Maze R, Wells GA (2021) Moderate vs. mild therapeutic hypothermia in comatose survivors of out-of-hospital cardiac arrest. American College of Cardiology: https://www.acc.org/education-and-meetings/image-and-slide-gallery/media-detail?id=7E356ECFC1574DA7A704DA39C44EA730

  35. Lopez-de-Sa E, Rey JR, Armada E, Salinas P, Viana-Tejedor A, Espinosa-Garcia S, Martinez-Moreno M, Corral E, Lopez-Sendon J (2012) Hypothermia in comatose survivors from out-of-hospital cardiac arrest: pilot trial comparing 2 levels of target temperature. Circulation 126:2826–2833

    Article  PubMed  Google Scholar 

  36. Lopez-de-Sa E, Juarez M, Armada E, Sanchez-Salado JC, Sanchez PL, Loma-Osorio P, Sionis A, Monedero MC, Martinez-Sellés M, Martín-Benitez JC, Ariza A, Uribarri A, Garcia-Acuña JM, Villa P, Perez PJ, Storm C, Dee A, Lopez-Sendon JL (2018) A multicentre randomized pilot trial on the effectiveness of different levels of cooling in comatose survivors of out-of-hospital cardiac arrest: the FROST-I trial. Intensive Care Med 44:1807–1815

    Article  CAS  PubMed  Google Scholar 

  37. Nielsen N, Wetterslev J, Cronberg T, Erlinge D, Gasche Y, Hassager C, Horn J, Hovdenes J, Kjaergaard J, Kuiper M, Pellis T, Stammet P, Wanscher M, Wise MP, Åneman A, Al-Subaie N, Boesgaard S, Bro-Jeppesen J, Brunetti I, Bugge JF, Hingston CD, Juffermans NP, Koopmans M, Køber L, Langørgen J, Lilja G, Møller JE, Rundgren M, Rylander C, Smid O, Werer C, Winkel P, Friberg H (2013) Targeted temperature management at 33 °C versus 36 °C after cardiac arrest. N Engl J Med 369:2197–2206

    Article  CAS  PubMed  Google Scholar 

  38. Lemiale V, Dumas F, Mongardon N, Giovanetti O, Charpentier J, Chiche JD, Carli P, Mira JP, Nolan J, Cariou A (2013) Intensive care unit mortality after cardiac arrest: the relative contribution of shock and brain injury in a large cohort. Intensive Care Med 39:1972–1980

    Article  PubMed  Google Scholar 

  39. Salter R, Bailey M, Bellomo R, Eastwood G, Goodwin A, Nielsen N, Pilcher D, Nichol A, Saxena M, Shehabi Y, Young P (2018) Changes in temperature management of cardiac arrest patients following publication of the target temperature management trial. Crit Care Med 46:1722–1730

    Article  PubMed  Google Scholar 

  40. Nolan JP, Orzechowska I, Harrison DA, Soar J, Perkins GD, Shankar-Hari M (2021) Changes in temperature management and outcome after out-of-hospital cardiac arrest in United Kingdom intensive care units following publication of the targeted temperature management trial. Resuscitation 162:304–311

    Article  CAS  PubMed  Google Scholar 

  41. Goligher EC, Zampieri F, Calfee CS, Seymour CW (2020) A manifesto for the future of ICU trials. Crit Care 24:686

    Article  PubMed  PubMed Central  Google Scholar 

  42. Viele K, Girard TD (2021) Risk, results, and costs: optimizing clinical trial efficiency through prognostic enrichment. Am J Respir Crit Care Med 203:671–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chan PS, McNally B, Tang F, Kellermann A (2014) Recent trends in survival from out-of-hospital cardiac arrest in the United States. Circulation 130:1876–1882

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kragholm K, Wissenberg M, Mortensen RN, Hansen SM, Malta Hansen C, Thorsteinsson K, Rajan S, Lippert F, Folke F, Gislason G, Kober L, Fonager K, Jensen SE, Gerds TA, Torp-Pedersen C, Rasmussen BS (2017) Bystander efforts and 1-year outcomes in out-of-hospital cardiac arrest. N Engl J Med 376:1737–1747

    Article  PubMed  Google Scholar 

  45. Kern KB, Lotun K, Patel N, Mooney MR, Hollenbeck RD, McPherson JA, McMullan PW, Unger B, Hsu CH, Seder DB (2015) Outcomes of comatose cardiac arrest survivors with and without ST-segment elevation myocardial infarction: importance of coronary angiography. JACC Cardiovasc Interv 8:1031–1040

    Article  PubMed  Google Scholar 

  46. Pareek N, Dworakowski R, Webb I, Barash J, Emezu G, Melikian N, Hill J, Shah A, MacCarthy P, Byrne J (2021) SCAI cardiogenic shock classification after out of hospital cardiac arrest and association with outcome. Catheter Cardiovasc Interv 97:E288-e297

    Article  PubMed  Google Scholar 

  47. Fernando SM, Tran A, Cheng W, Rochwerg B, Taljaard M, Vaillancourt C, Rowan KM, Harrison DA, Nolan JP, Kyeremanteng K, McIsaac DI, Guyatt GH, Perry JJ (2019) Pre-arrest and intra-arrest prognostic factors associated with survival after in-hospital cardiac arrest: systematic review and meta-analysis. BMJ 367:l6373

    Article  PubMed  PubMed Central  Google Scholar 

  48. Chan PS, Berg RA, Tang Y, Curtis LH, Spertus JA (2016) Association Between Therapeutic Hypothermia and Survival After In-Hospital Cardiac Arrest. JAMA 316:1375–1382

    Article  PubMed  PubMed Central  Google Scholar 

  49. Taccone FS, Picetti E, Vincent JL (2020) High quality targeted temperature management (TTM) after cardiac arrest. Crit Care 24:6

    Article  PubMed  PubMed Central  Google Scholar 

  50. Arrich J, Herkner H, Müllner D, Behringer W (2021) Targeted temperature management after cardiac arrest. A systematic review and meta-analysis of animal studies. Resuscitation 162:47–55

    Article  PubMed  Google Scholar 

  51. Stær-Jensen H, Sunde K, Olasveengen TM, Jacobsen D, Drægni T, Nakstad ER, Eritsland J, Andersen G (2014) Bradycardia during therapeutic hypothermia is associated with good neurologic outcome in comatose survivors of out-of-hospital cardiac arrest. Crit Care Med 42:2401–2408

    Article  PubMed  Google Scholar 

  52. Thomsen JH, Hassager C, Bro-Jeppesen J, Søholm H, Nielsen N, Wanscher M, Køber L, Pehrson S, Kjaergaard J (2015) Sinus bradycardia during hypothermia in comatose survivors of out-of-hospital cardiac arrest—a new early marker of favorable outcome? Resuscitation 89:36–42

    Article  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

SMF, PD, JPN, and BH conceived the study idea. SMF and BH coordinated the systematic review. SMF and PD designed the search strategy. SMF and PD screened abstracts and full texts. SMF and PD acquired the data and judged risk of bias in the studies. BS verified the data and performed the analyses. BR created the GRADE evidence profiles. All authors interpreted the data analyses. All authors co-wrote and revised the manuscript for intellectual content. All authors provided their final approval for manuscript submission. JPN and BH contributed equally as co-senior authors. All authors agree to be accountable for all aspects of the work. SMF is guarantor.

Corresponding author

Correspondence to Shannon M. Fernando.

Ethics declarations

Conflicts of interest

Dr. Shannon M. Fernando has no conflicts to report. Dr. Pietro Di Santo has no conflicts to report. Dr. Behnam Sadeghirad reports receiving funding from PIPRA AG, outside of the submitted work. Dr. Jean-Baptiste Lascarrou reports receiving lecture fees from Zoll Medical Inc. and BD. Dr. Bram Rochwerg has no conflicts to report. Dr. Rebecca Mathew has no conflicts to report. Dr. Mypinder S. Sekhon has no conflicts to report. Dr. Laveena Munshi has no conflicts to report. Dr. Eddy Fan reports receiving personal fees from ALung Technologies, Baxter, Boehringer-Ingelheim, Fresenius Medical Care, MC3 Cardiopulmonary, and Vasomune, outside of the submitted work. Dr. Daniel Brodie reports receiving research support from ALung Technologies, outside of the submitted work, and was previously on their medical advisory board. He has been on the medical advisory boards for Baxter, Abiomed, Xenios, and Hemovent. Dr. Kathryn M. Rowan has no conflicts to report. Dr. Catherine L. Hough has no conflicts to report. Dr. Shelley L. McLeod has no conflicts to report. Dr. Christian Vaillancourt has no conflicts to report. Dr. Sheldon Cheskes reports receiving research support from Zoll Medical Inc., outside of the submitted work. Dr. Niall D. Ferguson reports consulting for Baxter and Xenios, outside of the submitted work. He is a member of the Editorial Board of Intensive Care Medicine. Dr. Damon C. Scales has no conflicts to report. Dr. Claudio Sandroni is a member of the Editorial Board of Intensive Care Medicine. Dr. Jerry P. Nolan is Editor-in-Chief of Resuscitation. Dr. Benjamin Hibbert reports receiving research support from Abbott, Edwards Lifesciences, Boston Scientific, and Bayer, outside of the submitted work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 KB)

Supplementary file2 (DOCX 62 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernando, S.M., Di Santo, P., Sadeghirad, B. et al. Targeted temperature management following out-of-hospital cardiac arrest: a systematic review and network meta-analysis of temperature targets. Intensive Care Med 47, 1078–1088 (2021). https://doi.org/10.1007/s00134-021-06505-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-021-06505-z

Keywords

Navigation