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Abstract 

The respiratory microbiome has been less explored than the gut microbiome. Despite the speculated importance 
of dysbiosis of the microbiome in ventilator‑associated pneumonia (VAP) and acute respiratory distress syndrome 
(ARDS), only few studies have been performed in invasively ventilated ICU patients. And only the results of small 
cohorts have been published. An overlap exists between bacterial populations observed in the lower respiratory tract 
and the oropharyngeal tract. The bacterial microbiota is characterized by relatively abundant bacteria difficult to culti‑
vate by standard methods. Under mechanical ventilation, a dysbiosis occurs with a drop overtime in diversity. During 
VAP development, lung dysbiosis is characterized by a shift towards a dominant bacterial pathogen (mostly Proteo-
bacteria) whereas enrichment of gut‑associated bacteria mainly Enterobacteriaceae is the specific feature discriminat‑
ing ARDS patients. However, the role of this dysbiosis in VAP and ARDS pathogenesis is not yet fully understood. A 
more in‑depth analysis of the interplay between bacteria, virus and fungi and a better understanding of the host‑
microbiome interaction could provide a more comprehensive view of the role of the microbiome in VAP and ARDS 
pathogenesis. Priority should be given to validate a consensual and robust methodology for respiratory microbiome 
research and to conduct longitudinal studies. A deeper understanding of microbial interplay should be a valuable 
guide for care of ARDS and VAP preventive/therapeutic strategies. We present a review on the current knowledge and 
expose perspectives and potential clinical applications of respiratory microbiome research in mechanically ventilated 
patients.

Keywords: Lung microbiome, 16S rRNA gene, High‑throughput sequencing, Dysbiosis, Metagenomics, Ventilator‑
associated pneumonia, Mechanical ventilation, Acute respiratory distress syndrome

Introduction

The study of microbial populations within the human 
body has long been hampered by the limits of conven-
tional microbiology. Because of the poor sensitivity of 
these methods, the lung was considered sterile. Thanks to 
the development of culture-independent techniques, par-
ticularly high throughput sequencing, this hypothesis has 
been challenged. Many microorganisms including bacte-
ria, viruses and fungi, coexist in the lungs of healthy indi-
viduals to constitute the lung microbiome.

The study of the lung microbiome has, until recently, 
been limited to the sole bacterial microbiota, using 
16S rRNA genes (genes encoding 16S ribosomal RNA) 
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sequencing. In the field of intensive care medicine, 
investigations are in their infancy compared to chronic 
respiratory diseases where studies have shown (as 
with the gut) that lung microbiota interactions with 
the host, as well as dysbiosis, likely play a key role in 
the pathophysiology of chronic inflammatory diseases 
such as asthma, chronic obstructive pulmonary disease 
(COPD) and cystic fibrosis. Moreover, no study has 
really focused on the evolution of the fungal microbi-
ota (or mycobiota) or the virome in ventilated patients, 
whereas fungal lung colonization and viral reactiva-
tion are extensively described in this population [1, 2]. 
Addressing the dynamic evolution of the whole lung 
microbiome composition (including bacteria, fungi, 
and viruses) is thus one of the main challenges in res-
piratory medicine to redefine our understanding of 
ventilator-associated pneumonia (VAP) and acute res-
piratory distress syndrome (ARDS) pathophysiology.

The purposes of this review are to specify the main 
definitions and terminology used in microbiome 
research, to present current knowledge on respiratory 
microbiome in intensive care, and to describe cur-
rent techniques used, their interests and their limits. 
Finally, we will show how a deeper, general understand-
ing of the composition and the evolution of respiratory 
microbiome will facilitate future research projects lead-
ing to many potential clinical applications to improve 
prevention, diagnosis and treatment of acute lung 
injury in general, and ARDS and VAP in particular.

Definition
Lung bacterial microbiota
Bacterial microbiota represents the composition of all 
bacteria in a medium. Bacterial taxonomy classified from 
the domain to the species is used to describe the bacte-
rial microbiota (example for Pseudomonas aeruginosa in 
Fig. 1). The presence of hypervariable sequences framed 
by extremely conserved sequences within the bacterial 
genomic DNA coding for the 16S rRNA allows identifi-
cation of bacterial composition. Indeed, these conserved 
sequences can be amplified by polymerase chain reaction 
(PCR) using universal primers regardless of the bacterial 
species. In contrast, the hypervariable regions framed by 
conserved regions are specific of the genus or even the 
species. The sequencing of one or more hypervariable 
regions included between these conserved sequences 
permits identification of the different bacteria present 
within the sample (microbiota).

The lung microbiota of an individual can be stud-
ied with a lower respiratory tract sample [3]. The lung 
is interconnected with many reservoirs (oral cavity, 

Take‑home message 

Interactions between fungi, bacteria and viruses (bacteriophages and 
eukaryotic viruses) highlight the need for a concomitant analysis 
of their evolution to understand the pathophysiology of ventilator‑
associated pneumonia and their role in ARDS evolution.

A validated and accepted method of analysis (extraction, amplification, 
sequencing, bioinformatics analysis) should allow homogenization of 
microbiome studies and comparison between studies.

Fig. 1 Bacterial taxonomy, example for Pseudomonas aeruginosa. Adapted from Faner et al. (ref# 6 from the online supplementary material)
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digestive tract especially in intubated patients, and 
ambient air). Recent studies have reported that the 
microbiota of the oropharynx and the lower respira-
tory tract have a similar composition in healthy indi-
viduals, whereas upper and lower respiratory tract 
are clearly different in all chronic respiratory diseases 
(COPD, and interstitial lung diseases as idiopathic 
pulmonary fibrosis) [4–6]. In the field of acute pneu-
monia, there is no published data concerning the 
comparison between oropharyngeal and pulmonary 
microbiota.

Conflicting data exist regarding the similarity 
between lower respiratory tract microbiota collected 
from the bronchial tree or from the alveolar surface 
of healthy individuals [7, 8]. In the context of inten-
sive care, bronchoalveolar lavage (BAL) has been used 
more often than endotracheal aspirate (ETA) [9–15]. To 
the best of our knowledge, there are however no stud-
ies that have compared these two sampling methods. 
Hence, it is not possible to make any clear recommen-
dation on which to use preferentially.

The main singularity of the lower respiratory tract is 
the low bacterial density, as assessed by conventional 
microbiology, of about  105 colony-forming units per 
millilitres. This corresponds to a biomass of  105 bacteria 
per gram of tissue [16]. Despite this low density, a high 
diversity is observed, which constitutes a biomarker of 
respiratory health. Within this diversity can be identi-
fied a group of bacterial species present in the major-
ity of healthy individuals, representing a pulmonary 
"core microbiota" [17]. This core microbiota is com-
posed of the main genera Prevotella, Streptococcus, Veil-
lonella, Fusobacterium and Haemophilus [7, 16, 18]. For 
each individual, lung microbiota composition derives 
from this core microbiota and results from the balance 
between microbial spread from the upper respiratory 
tract and microbial elimination by host-defense mecha-
nisms [18, 19]. Finally, like the gut microbiota, final lung 
microbiota composition is probably shaped by many 
endogenous forces, such as mucus production and 
innate immune mechanism, but also exogenous forces 
such as environmental diversity [18, 20–23].

Mycobiota
Like the bacterial microbiota, fungal microbiota rep-
resents all the fungal species of an ecosystem or a 
sample of it. The fungi genomes also contain highly 
conserved sequences within the fungal kingdom, which 
framed hypervariable regions allowing their identifica-
tion. These sequences encode various parts of riboso-
mal RNA (rRNA) or are adjacent regions such as ITS 1 
(internal transcribed spacer 1) or ITS 2 [24].

Virome
The human virome corresponds to all genomes of DNA 
and RNA viruses in a medium. It includes two major 
entities: eukaryotic viruses and prokaryotic viruses, 
also called bacteriophages. In contrast to bacteria and 
fungi, no genomic sequence is conserved within the 
viral kingdom. Thus, there is no “virote” analysis. Only 
virome can be studied and this requires a deep sequenc-
ing of all nucleic acids in the sample to analyse the viral 
population.

Method of biota analysis
The progress made in the field of high throughput 
sequencing enables in-depth investigations of abun-
dance and diversity, without resorting to conventional 
culture-based techniques. The Table 1 specifies the defi-
nitions necessary for a clear understanding of this field of 
expertise. General principles of the methods for airway 
microbiome analysis, including microbiota, mycobiote 
and virome (Fig. 2) and their limits are presented in the 
supplementary material (see online supplementary mate-
rial). The Fig. 3 illustrates these notions of diversity with 
an example of evolution over time.

State of the art
Most publications studying the pulmonary microbiome 
are limited to a subset of its components, mainly the bac-
terial microbiota.

Lung bacterial microbiota in intensive care unit (ICU)
Lung microbiota and invasive mechanical ventilation
To date, most studies on the respiratory microbiota have 
been conducted in patients with chronic respiratory dis-
eases such as asthma, COPD and cystic fibrosis [25–27]. 
Some interesting concepts have been highlighted. Studies 
seem to indicate: (1) that each chronic respiratory disease 
is associated with a different microbiota pattern or signa-
ture, (2) an association between the severity of the dys-
biosis and the clinical status [6, 28].

Only a few descriptive studies have been conducted 
in ICU [11, 13, 14, 29–31]. One work demonstrated the 
extreme diversity of microbial populations within ETA 
collected from ventilated and colonized patients with 
Pseudomonas aeruginosa [29]. Bousbia et al. also observed 
important bacterial diversities in BAL from ICU patients 
under mechanical ventilation for a community-acquired 
pneumonia (CAP) or a VAP. A large repertoire of 146 
species belonging to 7 phyla was identified, of which 73 
bacterial species had never been described in patients 
with pneumonia [11]. Subsequently, Smith et  al. specifi-
cally focused on the microbiota of 15 uninfected venti-
lated patients admitted to a surgical ICU with negative 
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BAL by conventional microbiology. Same phylum were 
identified and the three major were Firmicutes, Bacteroi-
detes and Proteobacteria [30]. Most patients had profiles 
with a high degree of alpha diversity (species diversity 
within a sample of a given individual). Inter-individual 

variations were mostly described at the genus level [30]. 
However, the question of the dynamic evolution of the 
airway microbiota during mechanical ventilation, which is 
probably the most relevant study, has just been addressed 
in two more recent works. In 2016, Kelly et al. reported a 

Table 1 Glossary of definitions used for the evaluation of the human microbiota

Terms Definition

Microbiota All microorganisms contained in a given biotope

Microbiome All genomes (genetic information) and gene products of a given microbiota

Metagenome All genes within a given biotope

Amplicon sequencing method Method based on sequencing a DNA product of specific amplification via PCR

Shotgun sequencing method Method for DNA sequencing based on random sequencing of total DNA from human and microbial origin after 
DNA fragmentation into short segments

16S ribosomal RNA (16S rRNA) Component of the 30S small subunit of prokaryotic ribosomes encoded by the 16SrRNA gene and used to obtain 
bacterial phylogenetic data. 16SrRNA gene contained constant and hypervariable sequences which allow uni‑
versal amplification of hypervariable regions and microbial identification through sequencing. 16SrRNA gene is a 
specific taxonomic marker gene for bacteria

Nuclear ribosomal internal tran‑
scribed (ITS) spacer gene

Region of the nuclear ribosomal DNA gene used to obtain fungal phylogenetic data and formally proposed as the 
primary barcode marker

OTU (operational taxonomic unit) Cluster of microorganisms identified from sequencing data and characterized by DNA sequencing similarity of 
16SrRNA for bacteria or ITS for fungi

Taxon Group of one or more populations of microorganisms considered to form a unit

Dysbiosis Imbalance in the composition of the microbiota of a given biotope, linked to changes in local conditions, which 
may lead to a pathological state

Alpha diversity Appreciates the number of OTUs in a single sample. A greater alpha diversity indicates a higher number of OTUs
Main alpha‑diversity index used are the Shannon index and the Simpson index

Beta diversity Describe the differences in OTUs diversity between samples. Widely used beta‑diversity index are Bray–Curtis dis‑
tance, Manhattan distance and Weighted‑Unifrac distance. A greater beta diversity indicates higher differences 
of OTUs between samples

Resilience Capacity of the microbiota to return to its initial state after various external challenges (such as antibiotics)

Fig. 2 Schematic view of microbiome analysis by high throughput sequencing. Specific stages for bacteria and fungi appeared in blue and those 
for virus in green
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rapidly decreasing alpha diversity after intubation which 
gradually dropped with prolongation of mechanical venti-
lation, compared to control patients (healthy, unventilated 
subjects). Microbiota profiles also revealed more diver-
sity between individuals in the ventilated patients (higher 
beta diversity) than in control patients. This was mainly 
due to the dominance of a single operational taxonomic 
unit (OTU) in ventilated patients [31]. The same obser-
vation was made in 35 ventilated patients, for whom 111 
samples were analysed. In this population, alpha diversity 
decreased overtime under mechanical ventilation and, 
interestingly, antibiotics had no influence on the airway 
microbiota [13]. Recently, Emonet et al. failed to observe 
significant intra-individual changes in diversity between 
two time points (day of endotracheal intubation and a 
subsequent sample) in VAP patients compared to controls 
[14]. Reasons for this discrepancy are discussed below.

Lung microbiota and acute respiratory distress syndrome 
(ARDS)
Beyond the specific effect of mechanical ventilation on 
the lung microbiome, ARDS or severe systemic inflam-
matory response syndrome (SIRS) can have an impact on 
its composition directly or through enrichment from the 

gut microbiome. Only few preclinical studies have inves-
tigated these aspects in critically ill patients, but the rela-
tionship between gut and lung microbiome has been well 
described in asthma or in cystic fibrosis and is called the 
“gut-lung” axis [32, 33].

In a murine model of sepsis, Dickson et  al. reported 
an enrichment of the lung microbiome with gut bacte-
ria, including Bacteroidales order, Enterococccus species 
and Lachnospiracea species. Authors concluded that the 
“lung microbiome was altered following experimental 
sepsis, remained altered for at least 5 days, and normal-
izes by 2 weeks”. In BAL samples from 68 patients with 
ARDS, Bacteroides species were observed in 33% of cases 
as compared to only 3% in those from healthy controls 
[9]. The same authors found that gut-associated bac-
teria in the lung microbiome was associated with the 
presence of ARDS in a recent study of 91 mechanically 
ventilated patients [10]. They thus suggested a poten-
tial undetermined common mechanism behind the gut 
microbiome’s role in these two common critical illnesses. 
Similarly, Panzer et al. observed “significant differences in 
the lung microbiota composition in critically ill patients 
blunt trauma injuries related to both smoking status and 
subsequent development of ARDS, as well as a marked 

Fig. 3 Alpha and beta diversity for microbiome analysis. On day 0 (D0), endotracheal aspirate of patient A  (EAA0) contained five different OTUs, 
three of which are common with patient B whose endotracheal aspirate on D0  (EAB0) contained four different OTUs. Endotracheal aspirate of 
patient A on D5  (EAA5) contained only two OTUs: alpha diversity has decreased. In contrast,  EAB5 had five different OTUs on D5: alpha diversity has 
increased.  EAA and  EAB contained three common OTUs on D0 and only one common OTU on D5, beta diversity has increased
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divergence in bacterial community composition between 
0 and 48 h of ICU admission” [15].

Two other studies reported a decreased alpha diversity 
in ARDS patients as compared to controls [12, 34]. How-
ever, the high heterogeneity of lung microbiota in ARDS 
patients did not allow individualization of a specific pro-
file [34]. The Table 2 summarizes these publications.

Further studies, with comparable methodologies, are 
required to better characterize the role of the different 
actors in the vicious circle of dysbiosis, inflammation 
and lung injury, and to determine the actual role and 
impact of the enrichment with gut bacteria of the lung 
microbiota.

Bacterial microbiota and lung nosocomial infections
The bacterial pulmonary microbiota has received little 
attention in the context of acute pulmonary infections, 
especially in patients under mechanical ventilation. Fla-
nagan et al. were the first in 2007 to sequence 16S rRNA 
gene from ETA of ventilated patients with a known air-
way colonization with Pseudomonas aeruginosa [29]. 
The most prevalent bacteria belonged to the three major 
phyla Firmicutes, Bacteroidetes and Proteobacteria asso-
ciated with other less abundant species belonging to the 
flora of the oropharyngeal, nasal, and gastrointestinal 
tracts such as Lactobacillus, Enterococcus and Veillonella. 
Antibiotic therapy was associated with a decreased diver-
sity of the microbiota and a strong predominance of Pseu-
domonas aeruginosa (selection of colonized patients in 
this study). It then appears that oropharyngeal and diges-
tive microbiota could be the source of colonizing bacteria 
that induce dysbiosis during mechanical ventilation.

More recently, Zakharkina et  al. compared the evolu-
tion of the respiratory microbiota of ventilated patients, 
irrespective of whether they developed a VAP or not [13]. 
The greater heterogeneity of the bacterial populations 
in patients who developed a VAP explained the marked 
increase of the beta diversity as compared to the venti-
lated patients without a VAP. A concept seems to emerge 
that the bacteria responsible for VAP which represents 
the dominant OTU (Staphylococcus aureus, Acineto-
bacter Baumannii and Pseudomonas spp in this study) 
would reduce other bacterial communities. From results 
of these studies, we could also hypothesize that some 
non-pathogenic species have a protective barrier effect 
against the development of a VAP and VAP, if developed, 
is reduced [9]. Moreover, Bousbia et al. and Zakharkina 
et al. failed to identify a specific profile that could easily 
distinguish CAP from VAP [11, 13].

Finally, the identification of respiratory microbiota 
risk-markers is probably the more pertinent ques-
tion. Emonet et  al. have recently tried to identify met-
ataxonomic VAP markers early during intubation and 

they found no significant changes of ETA microbiota 
between VAP patients and control patients at any point 
in time. However, ETA from VAP patients contained 
more Gammaproteobacteria class (Pseudomonas spp, 
Enterobacteriaceae) 3 days before VAP and less Bacilli 
class (Enterococcus spp, Streptococcus spp, Lactobacil-
lus spp and Staphylococcus spp) as soon as orotracheal 
intubation was performed. The authors tried to use this 
difference to classify patients between VAP and a con-
trol group but their results have yet to be confirmed 
[14]. More details concerning main studies concerning 
mechanically ventilated patients are presented in Table 3. 
Further studies are needed for a deeper insight into the 
pathophysiological continuum that leads from intubation 
to airway colonization and eventually VAP.

Lung mycobiota
Limiting the study of the microbiome to that of the 
composition of bacterial microbiota remains restric-
tive because of the important interaction of bacteria 
with viruses, fungi, and Archaea. Recently a few studies 
have evaluated the pulmonary mycobiota using high-
throughput sequencing [35, 36]. The study of pulmonary 
mycobiota in healthy individuals revealed many envi-
ronmental fungi including Aspergillus sp., mold (Penicil-
lium and Cladosporium) and yeasts belonging to the two 
main phyla Ascomycota (Candida) and Basidiomycota 
(Malassezia) [35, 37]. In contrast to the bacterial micro-
biota, the fungal populations identified in the URT and 
the LRT were very distinct in healthy subjects [38]. The 
study of dysbiotic mycobiota and its correlation with pul-
monary diseases is in its infancy, showing a restriction of 
diversity [37].

In most media, an interplay between bacterial and fun-
gal communities exists, and the evolution of one com-
munity induces a modification of the other. An airway 
colonization with some yeasts, notably the genus Can-
dida, has been observed in 25 to 50% of patients after a 
few days of invasive mechanical ventilation [39, 40]. This 
colonization has been statistically associated with the 
occurrence of bacterial lung infections [39, 41, 42]. It is 
therefore plausible that bacteria-fungi interactions play 
a significant role in the pathogenesis of VAP even if the 
precise mechanisms underlying interactions between 
fungi, bacteria and host remain poorly understood. In 
a multicentre study of immunocompetent critically ill 
patients over a 4-year period, 214 patients (26%) with a 
respiratory tract colonization were matched and com-
pared to 214 unexposed patients. Bronchial Candida col-
onization was found to be an independent risk factor for 
Pseudomonas pneumonia (9 vs 4,8%) with adjusted odds 
ratio (aOR) = 2.22 [1,00; 4,92] (p = 0.049) without impact 
on mortality [39]. One possible mechanism behind these 
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Table 3 Studies concerning lung microbiota of mechanically ventilated patient and ventilator‑associated pneumonia

Authors Study design Number of enrolled 
patients

Subgroups Samples Size effect and statistical 
significance

Negative result

Smith et al. 2016 Prospective study MV patients in a sur‑
gical ICU ventilated 
more than 36 h

5 MV patient 
with sus‑
pected VAP

10 patients 
without VAP

BAL after 36 h 
of mechanical 
ventilation or 
in case of VAP 
suspicion

55 total genera identified 
in the common microbi‑
ome samples

20 genera with abun‑
dance > 1%

No comparison 
between groups

Bousbia et al. 2012 185 pneumonia 
patients

25 control patient

32 CAP
106 VAP
22 NV‑ICU 

pneumonia
25 aspiration 

pneumonia

ETA on admis‑
sion and at 
24 h

93/106 VAP patients had a 
positive BAL by molecu‑
lar assays

48 had an association of 
two type of microorgan‑
isms between bacteria 
virus and fungi

146 different bacteria 
belonging to seven dif‑
ferent phyla composed 
the bacterial lung micro‑
biota of patients

Fungal microbiota from 
pneumonia patients 
showed the presence of 
22 different new fungal 
species belonging to 
2 phyla not previously 
identified Bacilli and 
Gammaproteobac-
teria were dominant 
in patients, whereas 
anaerobic bacteria 
related to Bacteroidia 
and Clostridia were 
dominant in controls 
n bacterial microbiota 
(p < 0.01)

No specific pattern 
depending on the 
type of pneumonia

Kelly et al. 2016 Prospective study 15 MV patients from 
medical intensive 
care unit versus

healthy unventilated 
patients

4 patients with CAP/
HAP

4 patients with 
CAP/HAP

4 patients with 
aspiration at 
enrollment

4 patients with 
VAP

ETA and OS 
within 24 h of 
orotracheal 
intubation 
and every 72 h 
after

Lower alpha diversity 
in intubated patients 
than healthy controls 
(p = 2.3 × 10−13)

Alpha diversity decreased 
with time in URT of 
VAP patient (Shan‑
non index = 4 on day 
0 versus Shannon 
index = 3,1 beyond day 
0: p = 0.0015)

Alpha diversity decreased 
with time in LRT of 
VAP patient (Shannon 
index = 3 on day 0 ver‑
sus Shannon index = 1,9 
beyond day 0: p = 0.13)

Higher beta diversity in 
MV patients’ group than 
in control group

Lower alpha diversity 
in LRT of VAP patient 
compared to MV patient 
with prolonged courses 
of intubation without 
infection (p = 0.08)
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Table 3 (continued)

Authors Study design Number of enrolled 
patients

Subgroups Samples Size effect and statistical 
significance

Negative result

Zakharkina et al. 
Thorax 2017

Post hoc analysis 
of patients ini‑
tially included in 
an international 
multicentre 
prospective 
observational 
cohort study

11 patients 
with VAP

18 patients 
without VAP

6 HAP/CAP

BAL for VAP 
suspicion

ETA at ICU 
admission and 
twice a week 
after admis‑
sion

Association between 
duration of MV and 
decreased in Shannon 
diversity; fixed effect 
regression coefficient 
(β): − 0.03 CI 95% 
[− 0.05; − 0.005]

Statistical difference 
in Weighted Unifrac 
distance between VAP 
patient and control 
patient without colo‑
nized airways 0.4 (0.25; 
0.5) vs. 0.65 (0.5;0.85), 
p = 0.02

Increase of β diversity for 
VAP patients is statisti‑
cally higher analyzed by 
PCo analysis (p = 0.03)

Acinetobacter, Pseu-
domonas, Staphylocco-
cus, and Burkholderia are 
genera correlated with 
changes in β diversity

No statistical differ‑
ence in Weighted 
Unifrac distance 
between VAP 
patient and colo‑
nized patient

Emonet et al. 2019 Case control study 
nested in a pro‑
spective single 
center cohort 
study

MV adult patient 
intubated less than 
24 h in polyvalent 
ICU

16 late onset 
confirmed 
VAP patient

38 matched 
control

‑ ETA and OPS 
at five time 
points during 
MV D0 (of 
intubation), 
D3 (3 days 
after intuba‑
tion, DVAP‑3 
(3 days before 
VAP) DVAP 
(day of VAP 
diagnosis), 
DVAP + 3 
(3 days after 
VAP)

Progressive increase in 
Proteobacteria (25% on 
D0 vs. 55% on DVAP + 3) 
and decreased in 
Firmicutes (40% vs. 30%) 
in OS and ETA of VAP 
patient

The absolute abundance 
of the class Bacilli was 
significantly higher in 
ETA from controls at 
D0. At D0 class Bacilli 
had a relative abun‑
dance > 12% in 82.8% 
of controls but only in 
18.8% of VAP patients. 
(p < 0.0001)

Quantity of human DNA 
in ETA are significantly 
higher for VAP patients 
than in controls. A 
cutoff of 124.7 ng/μL 
allowed to differentiate 
VAP vs controls with a 
sensitivity of 94.1% and 
a specificity of 83.3%

General trend 
of changes in 
β‑diversity during 
MV are not differ‑
ent between VAP 
patients and control

No significant changes 
of ETA or OS micro‑
biota between VAP 
patient and control 
patient at any time 
point

No lower respira‑
tory tract micro‑
biota markers of VAP 
clearly identified

MV patients mechanically ventilated patients, BAL bronchoalveolar lavage, ETA endotracheal aspirate, OS oropharyngeal swab, URT  upper respiratory tract, LRT lower 

respiratory tract, VAP ventilator associated pneumonia, CAP community acquired pneumonia, HAP hospital acquired pneumonia, D day
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findings is an alteration in bacterial phagocytosis induced 
by the presence of C. albicans. Roux et al. showed in rats, 
that C. albicans airway colonization elicited a Th1-Th17 
immune response that favored the development of bac-
terial pneumonia via the inhibition of bacterial phago-
cytosis by alveolar macrophages [43]. They also showed 
in  vitro that C. albicans impeded alveolar macrophage 
ROS production and was correlated in  vivo with an 
increase of P. aeruginosa pneumonia prevalence in rats 
[44]. Tan et al. showed that the same C. albicans coloni-
zation favored A. baumannii pneumonia in rats [45]. The 
same team also identified Candida spp. airway coloniza-
tion as an independent risk factor for A. baumannii VAP 
in mechanically ventilated ICU patients [42].

To date, only two studies have focused specifically on 
the mycobiota of ventilated patients with pneumonia in 
ICUs. Bousbia et al., in their pioneering study performed 
in 31 patients with pneumonia and in 6 controls, identi-
fied 22 fungal species belonging to 2 phyla: Ascomycota 
and Basidiomycota. Distinct patterns emerged with some 
classes found specifically in cases of VAP, CAP or con-
trols. No specific association between the mycobiota 
and bacterial species was observed [11]. In the study of 
Krause et al. on the mycobiota of ICU patients, a decrease 
of fungal diversity was observed in each ventilated patient 
with pneumonia. Candida was frequently found in pul-
monary mycobiota, representing 75% of fungi species [1].

To understand how fungi contribute to the healthy 
equilibrium in the respiratory tract will need an impor-
tant work, notably by analysing lung mycobiota with high 
throughput sequencing.

Virome
Viruses are the most abundant and diverse entities and 
virome includes eukaryotic viruses (eukaryotic virome) 
and bacteriophages (prokaryotic virome). Eukaryotic 
viruses infect cells of the human host. They can be patho-
genic, causing acute or chronic infections. They can also 
be reactivated in connection with a pathological state 
(Cytomegalovirus, Herpes simplex virus) and can per-
sist without any pathology. Their interaction with the 
immune system seems to play an important role in the 
development of respiratory diseases [46] although no 
causal link can be asserted. The second group of viruses, 
the bacteriophages, infects bacterial cells. They represent 
most of the viruses identified within the human respira-
tory tract. It therefore appears essential to integrate all 
components of the virome to obtain a comprehensive 
view of the human microbiome [47].

Virome, invasive mechanical ventilation and VAP
The impact of mechanical ventilation on the respira-
tory virome remains unclear and rarely studied. Viruses 

of the Herpesviridae, Paramyxoviridae and Picornaviri-
dae families have been identified in all ventilated ICU 
patients [11]. The human virome is strongly altered in 
ICU patients, due to viral reactivation especially among 
the herpes group. Viral reactivation in the respiratory 
tract of septic patients with Epstein-Barr Virus (EBV) 
(14.6%), HSV type 1 (33–68.3%) and CMV (17%) have 
been described [2, 48]. This virome dysbiosis may be 
associated with a longer stay in ICU and in mortality [49]. 
In a population of 93 mechanically ventilated patients 
with suspected VAP, cytomegalovirus (CMV) pulmo-
nary infection that was defined as replicating CMV in the 
BAL was associated with increased duration of invasive 
ventilation, ICU length of stay and mortality, whereas 
HSV replication in the lung was not [2]. Furthermore, 
an increased rate of bacterial or fungal superinfections 
was observed in ICU patients with CMV reactivation 
[50]. The role of viruses in the occurrence of VAP and 
their impact on patient outcome depends on the virus 
[51]. Most of these data are obtained from targeted PCR. 
Thus, metagenomic studies are needed to comprehen-
sively describe the lung virome evolution during invasive 
ventilation in ICUs, and to determine the role and the 
mechanisms of viral dysbiosis on patient prognosis and 
VAP development.

Perspectives
As discussed above, high-throughput sequencing and 
metagenomics analysis present some limitations. Nota-
bly, methodological heterogeneity between studies 
restricts comparability. Efforts must be made to move 
towards procedure standardization and a consensual 
definition of a robust methodology for lung microbiome 
research. Priorities reside at different levels. Control of all 
sources of contamination and the use of adequate posi-
tive and negative controls are the first step. Comparative 
methodological studies have to be performed to optimize 
sampling methods to determine the most efficient DNA 
extraction procedure and the hypervariable region of the 
16S rRNA gene which confers the most reproductive and 
accurate assessment of the lung bacterial microbiota. In 
the specific field of intensive care and mechanical venti-
lation, consistent sample choices must be made for each 
clinical issue, between oropharyngeal swabs from the 
upper respiratory tract and both ETA or BAL from the 
lower respiratory tract. At best, the method of nucleic 
acid extraction should allow a study of bacterial, viral, 
and fungal populations. Finally, bioinformatics devel-
opment of standardized pipelines and databases would 
improve comparability between studies.

Beyond technical aspects many pathophysiological 
questions need to be answered. To better understand the 
pathogenesis of VAP, a complex interaction between the 
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microbiome and the host response needs to be explored. 
In addition, studying the density of the lung microbiota 
in combination to 16S rRNA gene analysis is likely more 
pertinent than just analysing its taxonomical composi-
tion. This can be an explanation for the lack of identifi-
cation of specific patterns for VAP patients comparing 
to ventilated patients without VAP [14, 52]. To measure 
markers of host response could be an option. Previous 
studies have also shown good discriminative power of 
interleukin-8 and interleukin-1β measured in BAL or of 
neutrophil-derived proteases, such as human neutrophil 
elastases, released in excess in BAL of VAP patients, for 
demarcating VAP patients from suspected VAP patients 
[53, 54]. More recently, Emonet et al. who failed to iden-
tify a specific profile of the lung microbiota among VAP 
patients, found a much higher human DNA count in 
these patients [14]. This approach has also been used in 
ARDS, which is one of the most frequent complication 
of respiratory infections [12]. This apparent discrepancy 
does not rule out the link between changes in the lung 
microbiome composition and subsequent occurrence 
of VAP but highlights the importance of studying lung 
microbiome and host response simultaneously.

Similarly, new insights into microbial roles in VAP 
pathogenesis must be found from microbiome studies.

The concept of VAP due to a single bacterial pathogen 
could be replaced by a more hypothetic complex model 
in which VAP would be induced by or associated with a 
dysbiosis. As discuss above, changes in lung microbiota 

of mechanically ventilated patients are characterized by a 
decreased relative abundance of the two major phyla Bac-
teroidetes and Firmicutes, composed of non-pathogenic 
anaerobes, in most clinical situations: either mechanical 
ventilation, VAP or ARDS [14, 31, 34]. These commen-
sal bacteria play a key role in maintaining lung immune 
homeostasis and contribute to immune tolerance [55]. 
The most convincing evidence that the lung microbiota 
reciprocally affects local immune response is that specific 
lung bacteria such as Prevotella spp or Veillonella.spp 
were associated with an increased number of lympho-
cytes in BAL, Th17 cell-mediated lung inflammation and 
an increased TLR4 response by alveolar macrophages 
[56].

Even if this lung microbiome dysregulation is well 
described in ARDS with an enrichment with gut asso-
ciated bacteria including Enterobacteriaceae, the exact 
process of bacterial translocation to the lung is not 
clearly understood [15]. To date such dysbiosis is less well 
characterized in VAP patients without ARDS complica-
tion [14]. In the context of critical illness and mechanical 
ventilation, many factors may contribute to lung dysbio-
sis such as hyperoxia [57]. The Fig. 4 synthesizes the vari-
ous factors that may be implicated in such lung dysbiosis 
(see also the online supplementary material). Lung dysbi-
osis could even be only a marker of a generalized dysbio-
sis associated to critical illness with no direct role in the 
occurrence of VAP [58]. On the other hand, the proven 
responsibility of intestinal dysbiosis in an increased 

Fig. 4 Influential factors on lung dysbiosis in ventilated patients. Lung microbiome can be altered by a variety of factors, either intrinsic or extrinsic, 
when intubation and mechanical ventilation are in place. This figure summarizes the main influential factors potentially involved
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susceptibility to infections gives support to the role of 
lung dysbiosis in VAP pathogenesis. Gut microbiota con-
tributes to protection against pathogens through nutri-
ents competition, production of antibacterial peptides or 
other antibacterial factors by epithelial cells [59]. Com-
mensal gut microbiota also modulates systemic immunity 
using several mechanisms linked to its structural compo-
nents otherwise known as microbe-associated molecu-
lar patterns (MAMPs) or microbial metabolites, which 
can translocate from the gut to systemic circulation and 
to the lung and induce both pro and anti-inflammatory 
responses [60]. For example, direct interactions between 
segmented filamentous bacteria can enhance mucosal 
immunity by up regulating T helper 17 (Th17) cells in 
both the gut and in the lung. Gut metabolite desamino-
tyrosine enhances clearance of respiratory viruses by 
inducing a type 1 interferon response [60]. More recently, 
Wilmore and colleagues have shown that enriching 
the microbiota with members of Proteobacteria phy-
lum considered as commensal, led to T cell-dependent 
increases in serum IgA levels which specifically targeted 
a restricted number of pathogens that translocate from 
the gut [61]. Microbiota is involved in the systemic host-
defense against sepsis and two hypotheses emerged: i) 
shifts in microbiota composition potentially predispose 
patients to a state of immunosuppression and ii) systemic 
translocation of opportunistic gut bacteria increased the 
risk of organ failure [62, 63]. These data thus support the 
idea that lung dysbiosis with gut-associated bacteria may 
lead to local immunosuppression and lung dysfunction 
allowing VAP to occur.

These hypotheses have to be tested in future studies. If 
proven correct, they will broaden our understanding of 
the pathophysiology of VAP and will allow for the identi-
fication of potential therapeutic or preventive targets.

Clinical applications
Although the efficacy of sampling and data processing 
is improving, applications of microbiome analysis in the 
clinical settings for medical decisions are not yet devel-
oped. Nevertheless, development of real-time sequencing 
technologies could influence diagnostic methods through 
faster and accurate species identification.

Capturing temporal dynamics and defining dysbiosis 
signatures and thresholds of microbial abundance are 
key to make a difference between airway colonization 
and VAP. In addition, early detection of dysbiosis profiles 
with a high risk of VAP would go a long way to improve 
clinical practices. Early targeted VAP antibiotic therapy 
in anticipation of conventional microbiological analy-
sis in selected patients, instead of empiric use of broad-
spectrum antibiotics, would be a step forward in the 
fight against antimicrobial resistance. To enable clinical 

applications, more longitudinal and comparative studies 
are now required. Much better than targeted VAP antibi-
otic therapy, early identification of patients with dysbiosis 
profiles associated with a high risk of VAP could lead to 
targeted preventive strategies. A proposition regarding 
the methodology for such studies is detailed in the online 
supplementary material.

Future research in metagenomics longitudinal analy-
sis in the field of intensive care will also have to focus on 
microbial interactions to identify bacterial, fungal and 
viral markers associated with an increased risk of VAP 
development. Focusing in parallel on the host response 
will help better define the profiles of patients. Overall, a 
better understanding of pathophysiological insights can 
help us to define targeted interventions on the micro-
biota, the mycobiote and the virome, including prokary-
otic and eukaryotic viruses. Treating the dysbiosis using 
probiotics or prebiotics or administration of preventive 
aerosolized antibiotics to patients at high risk of VAP 
could be an approach (see online supplementary mate-
rial). Clinical benefits could also be obtained by other 
approaches such as antiviral therapy or phagotherapy.

Conclusion
All these data underline the necessity of a global 
approach to the human respiratory microbiome, includ-
ing, not only the bacterial, but also the fungal microbiota 
and the virome. The analysis of a single type of microbial 
population can result in a truncated and therefore erro-
neous view of the impact of the microbiome on health. In 
the future, priority must be given to reaching an agreed 
methodology and to performing longitudinal studies for 
a better understanding of VAP pathogenesis. Develop-
ments in high-throughput sequencing and bioinformatic 
analysis methods, although complex and expensive, will 
enable us to explore the global human respiratory micro-
biome and to get closer to clinical applications for pre-
ventive and therapeutic strategies against nosocomial 
pneumonia and ARDS.
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