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A 60-year-old woman is brought to the emergency 
department following an out-of-hospital cardiac arrest 
with non-shockable rhythm. Return of spontaneous cir-
culation was achieved in the field with cardio-pulmo-
nary resuscitation and one dose of epinephrine, but she 
remains comatose. She is intubated, fluid resuscitated, 
and admitted to the intensive care unit (ICU) where she 
is cooled to a temperature of 33 °C. Continuous multipa-
rameter physiological monitoring is initiated, includ-
ing 5-lead electrocardiography (cECG), pulse oximetry 
 (SpO2), core and peripheral thermometry, invasive arte-
rial and central venous blood pressure monitoring, and 
electroencephalography (cEEG).

Over the next few days, her care team works to opti-
mise the chance of a meaningful recovery. Many ques-
tions arise: Is she at risk of a second arrest? Are infection 
and sepsis lurking? Will she develop organ-threatening 
hypotension? In the event that she does, would she bene-
fit from additional fluid resuscitation? Most importantly, 
the team must inform her family as to the likelihood of 
survival with a good functional outcome.

After more than half a century of innovation in criti-
cal care, the modern intensivist has access to a wide array 
of sophisticated diagnostic tools with which to answer 
these and other questions. Yet the mainstay of clini-
cal evaluation—and that which in part defines the ICU 
itself—is the continuous monitoring of physiological 
waveforms. These waveforms, also called telemetry data, 
are usually displayed locally at the bedside, but can now 
be monitored remotely as well, in the context of eICU or 
tele-ICU practices. These signs are deemed “vital” with 

good reason; even basic values like heart rate, blood pres-
sure, and oxygen saturation tell us a lot about a patient’s 
condition.

But beneath these simple numbers lies more informa-
tion still. Complex measures, such as heart rate vari-
ability (HRV) [1], pulse pressure variation [2], and pulse 
contour [3], describe cardiopulmonary and autonomic 
functioning, in unexpectedly rich detail. What is more, 
these signals are collected throughout a patient’s ICU 
stay, providing not only a snapshot of the current physi-
ological state, but also medium- and long-term trends. 
These time series telemetry data are a key constituent of 
the rich ICU data ecosystem that also includes data from 
EHR systems, imaging, pharmacy records, and other data 
types, each of which provides important context and 
complementary detail.

Unlike these latter data types, telemetry data are 
ubiquitous; most are collected for the vast majority of 
patients, simply by virtue of their being admitted to the 
ICU. As such, they are largely without bias. By contrast, 
lab values, X-rays, and medication records, exist only if 
someone decided to order a test or administer a drug, 
and therefore encode patterns of care [4]. Instead, where 
telemetry is universally applied the resulting data are 
largely robust to practice variation, and may implicitly 
mitigate bias associated with sex, gender, and ethnicity 
[5].

Advances in artificial intelligence are beginning to 
unlock the potential of telemetry data to directly inform 
diagnosis and personalized treatment [6] (Fig. 1). We can 
see hints of this in considering the case above. Is a second 
arrest on the horizon? Retrospective studies have shown 
how machine learning might be used to make such pre-
dictions based on changes in continuous ECG signals [7]. 
Will she develop sepsis? Similar studies have suggested 
that machine learning analysis of HRV may serve as a 
harbinger of sepsis, even days in advance of its clinical 
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onset [8]. Will hypotension arise as a result? Machine 
learning deployed across high-frequency vital signs data 
may well prove capable of providing some measure of 
advanced warning [9], and has been shown to reduce 
the duration of hypotension during non-cardiac surgery 
[10]. In the area of neuroprognostication, deep neural 
networks have been used with cEEG signals to accurately 
classify patients post-cardiac arrest, identifying those 
with little to no chance of a meaningful neurological 
recovery [11].

Promising results have been achieved in artificial intel-
ligence (AI) research using telemetry data, but much 
computational, translational, and clinical research 
remains to bring these tools to the bedside [12]. Experts 
are needed with multi-disciplinary training, as famil-
iar with critical illness as they are with machine learn-
ing and signal processing. Expert teams are needed that 
bring together engineers, computer scientists, and clini-
cians. These research teams need broad access to data, 
vast computing resources, a framework for implementa-
tion provided by an incentivised healthcare environment, 
and a clear regulatory environment [13]. The ESICM and 
SCCM have convened a Joint Task Force to meet this 
need by establishing multinational collaborations, and 
setting shared priorities for research and implementation.

The main currency in this space are the data them-
selves, and here there is a paradox to be reconciled; 

nearly all patients in the ICU have telemetry data stream-
ing across their bedside monitors in real time, yet for the 
most part, these data are purged at the end of their stay, 
and lost to further analysis. Software and hardware sys-
tems are needed that can capture and store these data, 
and make them available for research [14]. Ideally such 
tools should be open source, and supported by data 
standards and ethics protocols that maximize sharing 
and collaboration.

These efforts have begun in earnest. The MIMIC data-
set, hosted by MIT, is now widely known and broadly 
used as a public access repository of clinical and wave-
form data. MIMIC is part of a larger collection called 
Physionet, which hosts other waveform datasets. More 
large datasets are coming online, such as the eICU Col-
laborative Research Database (eICU-CRD) and the first 
freely available European ICU database, AmsterdamUM-
Cdb [15]. The coronavirus disease 2019 (COVID-19) 
pandemic has significantly accelerated efforts at produc-
ing rich multi-center, multi-domain, interoperable data-
sets to enhance rapid understanding of this generational 
challenge. Work is ongoing to add telemetry data to 
existing clinical datasets, and to develop data standards 
and open source tools that will help other stakeholders to 
do the same.

Despite the considerable potential of pairing AI and 
telemetry data, challenges remain before clinical tools 

Fig. 1 Data sources and potential applications for artificial intelligence (AI) and telemetry data in the intensive care unit
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can be successfully deployed [16]. Telemetry data contain 
frequent artefacts, and though AI systems may be capa-
ble of identifying noise, a preponderance of artifact could 
create a drag on algorithm performance. Telemetry data 
must be accompanied by clinical data to provide context, 
and current EHR-based systems are not without short-
comings [17, 18]. Where AI systems can predict clinical 
deterioration, there are no guarantees that the decline 
can be prevented. Even when an algorithm performs well 
in silico, or in an initial prospective cohort, it may not 
necessarily yield durable benefits when evaluated in other 
settings [19]. Clinical implementation remains an impor-
tant barrier, and it is as yet unclear what sort of evidence 
will be needed to recommend widespread adoption of a 
new AI system.

What, then, should the critical care clinician know 
about AI and telemetry data in the ICU? Increased lit-
eracy in machine learning and AI will serve clinicians 
well as studies using these methods make their way into 
clinical journals. Cautious optimism is warranted; while 
there is tremendous promise in the use of high-frequency 
waveforms to diagnose physiologic states and predict 
clinical sequelae, it is also likely that as datasets prolifer-
ate, so too will the number of classification and predic-
tion models being generated. Not all of these will be of 
equal reliability and generalizability, and the majority of 
these may in fact never see clinical deployment.

Returning to our case, AI analysis of cEEG data at 
12 h allowed the team to rapidly determine that a good 
6-month functional outcome might still be achieved. 
Machine learning analysis of telemetry data empowered 
the team to detect sepsis in its earliest stages, and deter-
mine the optimal timing for antibiotics and additional 
fluids. The patient improved, was discharged to the ward, 
and eventually back home, where a sensor-enabled smart 
watch allowed her doctors to monitor key parameters of 
her recovery in real time, including heart rate, step count, 
and sleep quality. While this vignette describes a future 
state of practice, it is one that may well be close at hand. 
Cross-disciplinary, collaborative efforts supported by 
open source tools and a view to solving clinical problems 
stands to breathe new life into the vital signs that have for 
decades informed practice in the ICU.
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