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Abstract 

Nasal high flow (NHF) has gained popularity among intensivists to manage patients with acute respiratory failure. An 
important literature has accompanied this evolution. In this review, an international panel of experts assessed poten‑
tial benefits of NHF in different areas of acute respiratory failure management. Analyses of the physiological effects of 
NHF indicate flow-dependent improvement in various respiratory function parameters. These beneficial effects allow 
some patients with severe acute hypoxemic respiratory failure to avoid intubation and improve their outcome. They 
require close monitoring to not delay intubation. Such a delay may worsen outcome. The ROX index may help clini‑
cians decide when to intubate. In immunocompromised patients, NHF reduces the need for intubation but does not 
impact mortality. Beneficial physiological effects of NHF have also been reported in patients with chronic respiratory 
failure, suggesting a possible indication in acute hypercapnic respiratory failure. When intubation is required, NHF can 
be used to pre-oxygenate patients either alone or in combination with non-invasive ventilation (NIV). Similarly, NHF 
reduces reintubation alone in low-risk patients and in combination with NIV in high-risk patients. NHF may be used in 
the emergency department in patients who would not be offered intubation and can be better tolerated than NIV.
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Introduction

In the past years, nasal high flow has gained an impor-
tant popularity among intensivists to manage patients 
with acute respiratory failure, filling a gap in the venti-
latory support escalation between facemask oxygen and 
noninvasive or invasive mechanical ventilation. Interest-
ingly, use of NHF was widely and rapidly adopted in ICUs 
before in-depth knowledge of its physiological effects 
and evidence of its efficacy were published. Since, a great 
amount of literature has been published and indications 

other than acute respiratory failure have emerged. In this 
narrative review, we have aimed to summarize the avail-
able data and address the different clinical scenarios in 
which NHF can be used, highlighting areas where further 
research is required to confirm or not the potential for 
NHF to improve patient outcome.

Nasal High Flow (NHF) in acute hypoxemic 
respiratory failure (AHRF)
Physiological effects of NHF
A unique feature of NHF is its ability to comfortably 
deliver high flows of warmed humidified gas, 20–70  L/
min, with a FiO2 range of 0.21–1.0. Physiological 
responses to NHF therapy include increases in airway 
pressure, end-expiratory lung volume (EELV), and oxy-
genation which are probably optimal with higher flows 
(60–70 L/min), while the effects on dead-space washout, 
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work of breathing, and respiratory rate may be obtained 
with intermediate flows (20–45  L/min) [1–3] (Fig.  1). 
Most of this evidence relates to patients with hypoxemic 
respiratory failure and, to date, few physiological data 
have been obtained in hypercapnic populations [4].

As NHF rate increases, so does EELV [2] (ESM Fig. 1). 
This relationship is linear with each litre of increased 
flow resulting in 0.7% increase in EELV [5]. A strong cor-
relation exists between increases in airway pressure and 
EELV (r = 0.7) [5], suggesting that this mechanism is 
responsible for the improvements in oxygenation seen 
with NHF, particularly at higher flows [2], through alveo-
lar recruitment (ESM Fig. 2).

Inspiratory effort decreases with increasing flow rates, 
and Mauri et al. [2] suggest it is best supported by flows 
of 60 L/min. However these, and other authors, also rec-
ognised that important reductions in work of breath-
ing can still be achieved with lower rates of 20–45  L/
min [1, 2] (ESM Fig.  3). As flow increases, respiratory 
rate decreases [2, 4], along with minute ventilation [2, 
4], without any resultant hypercapnia. In other words, 
alveolar ventilation (minute ventilation  −  dead-space 
ventilation) remains stable whereas minute ventilation 
decreases. The main mechanism to explain the stability 
in PaCO2 is the washout of physiological dead space.

Importantly, higher flows are well tolerated by hypox-
emic patients, whose comfort was not adversely affected 
by higher gas flows [6].

As NHF is used for respiratory support in a wide range 
of conditions, clinicians should titrate flow to patient’s 
response to therapy. ESM Table  1 provides some guid-
ance on achieving optimal flow rates for patients with 
hypoxemic respiratory failure. If tolerated, the highest 
flow as a starting point seems optimal in patients with 

hypoxemic respiratory failure, while lower flows may 
be efficient to reduce the respiratory rate and work of 
breathing, especially in hypercapnic patients (see dedi-
cated section).

Avoidance of intubation
Since the introduction of NHF in the armamentarium 
of respiratory failure management, a number of obser-
vational studies have shown that respiratory status of 
patients with AHRF is significantly improved with NHF 
in comparison with standard oxygen [7–11]. Although 
they suggested that intubation may have been avoided 
in some patients, design of these studies precluded any 
formal demonstration of intubation rate reduction with 
NHF. The characteristics of NHF and the related physi-
ological effects account for the superiority of NHF in 
terms of comfort, tolerance, alleviation of respiratory 
distress and improved oxygenation. The Florali study 
[12] showed in a post hoc subgroup (patients with 
a PaO2/FiO2 < 200) analysis that intubation rate was 
lower in patients treated with NHF compared to those 
treated with NIV or standard oxygen. This clinically 
relevant difference translated into a reduction in hos-
pital and 90-day mortality rate in favour of patients that 
received NHF as first-line therapy. Several meta-anal-
ysis [13], but not all [14], also found that use of NHF 

Take‑home message 

In every segment of acute hypoxemic respiratory failure manage‑
ment (first-line ventilatory support, preoxygenation, post-extuba‑
tion, palliative care), evidence suggests that nasal high flow has the 
potential to benefit the patient. Beneficial effects also seem to be 
seen in patients with chronic respiratory disease.

Fig. 1  Schematic representation of the physiologic effects of Nasal High Flow (NHF) and possible impact of the flow. Increase in airway pres‑
sure and FiO2 improve oxygenation by different mechanisms and may be optimal at higher flows. Most of dead-space wash-out-related effects 
(increased CO2 clearance, decrease respiratory drive, respiratory rate and effort to breathe) may be obtained for lower flows. All these physiological 
effects probably explain the improved comfort in patients with respiratory failure and possibly the outcomes. NHF nasal high flow, Paw airway pres‑
sure; FiO2 fraction of inspired oxygen, EELV end-expiratory lung volume, RR respiratory rate, VE minute volume, WOB work of breathing
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was associated with a reduction in intubation rate. A 
concern with some is the inclusion of studies assess-
ing patients with very different intubation risks and 
required information size was not reached [14]. Intu-
bation rates in patients with AHRF admitted to the 
ICU range between 30 and 40%. These figures are only 
1–2% in the ED as those needing immediate intubation 
or NIV for AHRF were excluded. Thus, the choice of 
primary outcome selected in certain settings may not 
have been the most relevant. In the ED, three of five 
RCT of NHF compared to conventional oxygen therapy 
reported intubation rates, with no studies finding a dif-
ference between the groups [15–17]. A meta-analysis of 
the studies with either undifferentiated respiratory dis-
tress [15, 17, 18] or cardiogenic pulmonary oedema [16] 
found only 7/571 patients required intubation (1.2%), 
with no difference in intubation rates: RR 0.69 (0.12, 
4.12), p = 0.68 [19]. A single RCT comparing NHF to 
NIV for undifferentiated respiratory failure found that 
NHF was non-inferior to NIV for intubation rates [20]. 
It, therefore, appears that contrary to the ICU, delayed 
intubation is a rare event in the ED, so much larger 
studies would be required to demonstrate any benefit 
with respect to avoiding intubation.

Severe AHRF
In patients with AHRF, NHF is usually initiated in case 
of persistence of hypoxemia and/or respiratory dis-
tress despite conventional oxygen therapy. Hence, lev-
els of hypoxemia of these patients vary considerably, 
from mild- to-moderate to severe hypoxemia (PaO2/
FiO2 < 200). Although a noticeable proportion of them 
is successfully treated with NHF, the lower boundary in 
terms of PaO2/FiO2 has not been established.

In the Florali study [12], among the 80% of patients 
with a PaO2/FiO2 below 200, this ratio was in the range 
of 120 and many had bilateral chest X-ray involvement. 
They would have probably qualified as ARDS patients. 
They clearly presented the clinical, radiographical and 
biological features of ARDS. It has indeed been con-
vincingly shown by Garcia-de-Acilu et  al. that hypox-
emic patients with bilateral infiltrates treated with 
NHF present the same levels of plasma biomarkers 
of epithelial and endothelial injury and biomarkers of 
inflammation as ARDS patients who undergo mechani-
cal ventilation [21]. Importantly, half of these patients 
treated with NHF did not require intubation. Similar 
findings were reported by Messika et al. In their cohort 
of 45 patients treated with NHF, all of whom met all the 
Berlin criteria other than PEEP, success rate was 60%. 
Of note, worst recorded PaO2/FiO2 for the cohort was 

108.6 and number of quadrants involved in the chest 
X-ray was 3 [7].

Hence, in the absence of criteria for immediate intu-
bation, patients presenting with ARDS can be offered a 
NHF trial. Those with a low PaO2/FiO2 (< 100) will be at 
greater risk of intubation. Hence, a close monitoring will 
be required to anticipate when intubation needs to be 
performed in a timely fashion. (see below for the preoxy-
genation strategy in such patients).

Anticipating outcome with NHF
This close monitoring mentioned above should include 
several variables (oxygenation, thoracoabdominal asyn-
chrony, need for vasopressors, SOFA score or disease 
severity) that have been shown to be associated with 
NHF failure [7, 9–11]. This association is not, how-
ever, directly predictive of the outcome of NHF. More 
recently, the ROX index, defined as the ratio of SpO2/
FiO2 over RR, has been described and prospectively vali-
dated to predict success and failure of NHF in pneumo-
nia patients with AHRF [22, 23]. The rationale behind 
this index is that it combines in a single value, the best 
describers of patients’ respiratory status. Patients with 
a ROX index greater than or equal to 4.88 after 2, 6 and 
12 h of NHF therapy were less likely to be intubated. In 
contrast, patients with a ROX index below 2.85, 3.47 and 
3.85 after 2, 6 and 12  h of HFNC therapy, respectively, 
were more likely to fail. In addition, patients who failed 
presented a smaller increase in the ROX index between 
2 and 12 h and 6 and 12 h, which highlights the fact that 
dynamic assessment of the ROX index may also be help-
ful to identify those patients who are more likely to fail. 
This dynamic assessment could be especially useful in 
classifying those patients who have ROX index values 
between the boundaries of failure and success facilitating 
the day-to-day clinical decision process of NHF patients 
and minimizing the risk of delaying a needed intubation 
(see Fig. 2 and ESM for detail). Of note however, the ROX 
was validated in patients with pneumonia-related AHRF. 
Although severe pneumonia is the most frequent cause 
of AHRF, to what extent the same cut-offs values for the 
ROX will have the same performances in other etiologies 
of AHRF remains to be shown.

Hazards associated with NHF
As mentioned earlier, between 30 and 40% of patients 
with AHRF initially treated with NHF will require inva-
sive mechanical ventilation finally. Hence, the principal 
hazard associated with NHF is the delay in intubat-
ing these patients in which NHF is insufficient. One 
study has shown that delayed intubation is associated 
with increased mortality in patients with community-
acquired pneumonia. This observation was initially 
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made in patients with AHRF receiving NIV [24] and has 
been shown to occur also in patients treated with NHF. 
Rello et al. found that patients who failed NHF in H1N1 
pneumonia-related ARDS had a 27% mortality rate 
whereas this figure was 20% in those immediately intu-
bated, suggesting that in some instances at least, a delay 
in intubation might be detrimental [10]. Kang et  al. 
further explored this hazard. They found very different 
mortality rates in patients treated with NHF between 
those intubated within 48 h of therapy and those intu-
bated after. This landmark study clearly illustrated the 
risk of a delayed intubation [25]. Several reasons may 
explain these findings. Leaving a patient breathe spon-
taneously for too long may worsen the nature and the 
extent of the initial injury, a concept termed patient 
self-inflicted lung injury. In addition, oxygen supple-
mentation through NHF may rapidly normalize oxy-
gen saturation leading to the misjudgment that the 
patient is improving whereas in fact, the underlying 
disturbances (such as ventilation perfusion mismatch 
or alveolar hypoventilation requiring inspiratory pres-
sure support and positive-end expiratory pressure) are 
insufficiently corrected [26]. Patients may hence gradu-
ally and “silently” deteriorate to the point of respiratory 
muscle fatigue, cardiac dysfunction, and organ failure, 
thus contributing to a worse prognosis. Hence, close 

monitoring as described above of patients under NHF is 
mandatory to enable early detection of clinical deterio-
ration, and thereby prevent evitable delay in intubation.

NHF in immunocompromised patients
In the past years, several studies have assessed non-
invasive management of AHRF in immunocompromised 
patients (ESM Table 2). Most of them were retrospective. 
Comparators (NIV or standard oxygen or NIV + NHF), 
primary endpoint (intubation or mortality) as well as 
type of immunosuppression differed between studies, 
making direct comparisons difficult [9, 27–33]. None-
theless, taken together, these studies suggested that NHF 
might reduce intubation rate, particularly when com-
pared to NIV. They also showed that use of HNFC was 
possibly associated with a lower mortality rate and was 
not harmful.

Those results were confirmed in an international mul-
ticentre observational cohort study [34] in which patients 
admitted to ICU who received either NHF, NIV, standard 
oxygen or NHF + NIV were analysed. Intubation rate was 
similar for each oxygenation strategy. However, the mul-
tivariate analysis indicated a trend towards lower intuba-
tion rate with NHF.

These observational data required a prospective multi-
centre RCT to confirm the trends their results suggested. 

Fig. 2  Suggested algorithm using the ROX index to help with intubation decision. Because the index includes in a single value three relevant 
respiratory parameters, the overall philosophy of the index is that if its value is increasing, the patient’s respiratory status is improving. For each time-
point, there are three possibilities: (1) the patient’s ROX index is below the cut-off value, we suggest considering intubation of the patient; (2) the 
index is between the lower and the higher cut-off value, we suggest increasing the level of NHF (increase flow to its maximum and FiO2 to 1) and 
re-evaluate after 30 min; (3) finally, if the index is above the upper boundary, we suggest pursuing NHF and close monitoring of the patient. Of note, 
this algorithm will require a formal validation by a RCT comparing standard of care and application of the algorithm in terms of safety and efficacy 
(timing of intubation)
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Such a trial was recently performed in 776 immunocom-
promised patients who either received standard oxygen 
or NHF [32]. Primary endpoint was D-28 mortality and 
secondary endpoints included intubation rate. NIV was 
not used according to the results of a previous study [32]. 
Patients were mostly admitted for pneumonia. Mortality 
rates did not differ between NHF (35, 6%) and standard 
oxygen (36, 1%) (p = 0, 94), as well as intubation rates 
(respectively, 38, 7% and 43.8%, p = 0, 17). The mortality 
rates for patients who required intubation did not dif-
fer either. In a predefined subgroup of patients (oxygen 
flow > 9 l/min, duration between ICU admission and ran-
domization > 3 days or use of vasopressors), primary and 
secondary endpoints did not differ. In this study, greater 
PaO2/FiO2 obtained with NHF did not translate into bet-
ter outcome.

More recently Dumas et al. analysed the daily probabil-
ity of intubation according to the patient’s characteristics 
the day before [33]. Using a propensity score, authors 
did not find any impact of the oxygenation device on the 
probability of intubation the following day. In this post 
hoc joint analysis of three previously published studies, 
only a small proportion of patients received NHF.

How can data from non-immunocompromised 
patients indicating more positive effects of NHF be rec-
onciled with the more neutral data coming from immu-
nocompromised patients? One possible explanation is 
that patients’ underlying disease and/or the precipitat-
ing factor leading to AHRF in immunocompromised 
patients require more time for recovery. Consequently, 
these patients may have a longer duration of oxygen 
dependency and may require more invasive procedures. 
In addition, comfort was not improved in these patients. 
This may be related to other sources of discomfort (side 
effects of chemotherapy) than respiratory ones in those 
patients that were not relieved by NHF. For all those rea-
sons, the nature of the ventilatory support may not have 
such impact in this particular setting.

Recent meta-analyses focusing on immunocom-
promised patients [35, 36] have included the stud-
ies presented here and all conclude that use of NHF is 
associated with a decreased intubation rate but with no 
impact on mortality.

NHF in hypercapnic respiratory failure
Physiological effects in stable COPD
As illustrated above, there is a strong rationale for the use 
of NHF in patients with chronic respiratory failure [37].

Comparable to patients with AHRF, NHF may reduce 
the entrainment of room air during high breathing 
efforts, such as during exercise [38]. Early physiologi-
cal studies revealed an increase in mean airway pressure 
[39], and a decrease in dead-space ventilation [40]. These 

changes increase tidal volume, decrease respiratory rate 
and end-expiratory lung volume [4, 39, 41, 42] which 
result in a measurable reduction in work of breathing 
[23].

A direct comparison of respiratory parameters under 
three conditions (oxygen, NHF and NIV) was conducted 
by Longhini et  al. [43]. Diaphragmatic sonography and 
ventilatory parameters rose during interruptions of NIV 
trials (30 min). PaCO2 remained stable irrespective of the 
modality of oxygen administration. However, respiratory 
rate and diaphragm contractile activation (inspiratory 
thickening fraction) increased with standard oxygen, but 
not with NHF. The latter was associated with improved 
comfort. This study, therefore, suggested that NHF might 
lead to a greater unload of the diaphragm than standard 
oxygen.

In stable COPD patients, studies have consist-
ently shown that NHF reduces hypercapnia despite a 
decreased respiratory rate [41, 42, 44]. This is related to 
a flow- and leakage-dependent clearance of upper air-
way gases that reduces CO2 rebreathing [44, 45]. These 
findings were confirmed by Bräunlich et al. in the clinical 
setting [46]. They found that after 6 weeks, reduction of 
hypercapnia and improvement in quality of life obtained 
with NHF were non-inferior to those obtained with NIV. 
These results may be, however, limited to patients with-
out overlap syndrome (i.e. association of COPD and 
obstructive sleep apnea), as recently demonstrated [47]. 
A summary of these studies is detailed in ESM Table 3.

Strategies for NHF in hypercapnic respiratory failure
NIV is the ventilatory modality of first choice in hyper-
capnic ARF [48]. However poor tolerance often limits its 
success.

NHF has been suggested as complementary therapy 
during breaks off NIV [43, 49], or as an alternative to NIV 
[50] or controlled oxygen therapy [51] in mild respiratory 
acidosis.

By overcoming the drawbacks of standard oxygen dur-
ing breaks off NIV [43], NHF could reduce the time spent 
on ventilator and improve work of breathing during 
breaks [50]. A single RCT assessed NHF in this scenario, 
on a mixed population with 22 out of 54 hypercapnic 
subjects [49], while not reducing the time spent on NIV, 
NHF improved comfort, control of dyspnea and respira-
tory rate compared to standard oxygen. The main limita-
tions of this study, i.e. small sample size and possibility to 
override the criteria for NIV sessions, are expected to be 
overcome by the High-flow ACRF trial [52]. This ongo-
ing large-scale RCT will assess ventilator-free days when 
comparing NHF to standard oxygen during breaks off 
NIV.
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NHF has been proposed as an alternative to NIV in 
mild-to-moderate respiratory acidosis [51]. An ongoing 
non-inferiority multi-center trial will further explore this 
strategy by assessing short-term effects on gas exchange 
and treatment failure [53].

These and future studies will be needed to better assess 
the role of NHF in hypercapnic ARF, to understand 
which strategies are better to pursue.

NHF and preoxygenation
A significant proportion of patients admitted to the 
ICU for AHRF will fail a noninvasive ventilatory strat-
egy and, thus, require tracheal intubation [54]. In these 
patients, this procedure is at even greater risk of com-
plications, mainly oxygen desaturation [55]. Studies 
have clearly shown that standard preoxygenation, even 
when properly performed, is insufficient to ensure satis-
factory oxygenation levels in critically ill patients. This 
has led clinicians to investigate other modes of pre-
oxygenation. NIV was convincingly shown to be supe-
rior to standard oxygen [56], although a confirmatory 
trial failed to confirm NIV’s superiority [57]. Because a 
growing number of patients with AHRF are treated with 
NHF as first-line ventilatory support [58], the device is 
often in place when the decision to intubate is taken. 

Hence, NHF has also been evaluated as a means to pre-
vent desaturation during intubation [59]. Compared 
to standard oxygen, results of preoxygenation with 
NFH seem consistent in patients with mild-to-moder-
ate hypoxemia [57, 60]. Paradoxically, in patients with 
more severe hypoxemia, NHF failed to prove superior 
than standard oxygen to prevent profound desaturation 
during intubation [61, 62]. Of note however, subopti-
mal preoxygenation procedures (absence of jaw thrust 
which is essential to promote apneic oxygenation) may 
explain these discrepancies [63]. This illustrates the 
importance of the two components of the “preoxygena-
tion process”: preoxygenation and apneic oxygenation. 
Intuitively, because of the greater levels of positive 
pressure applied, NIV may be seen superior to NHF 
during the spontaneously breathing phase and NHF 
may prove more beneficial during apnea and laryngos-
copy because it can be left in place. This hypothesis was 
tested in a recent RCT that compared NIV and NHF to 
ensure preoxygenation of patients with AHRF requir-
ing tracheal intubation in the ICU [64]. Primary out-
come measure was incidence of profound desaturation 
(SpO2 < 80%). There was no difference between the two 
strategies in this incidence (23% with NIV v. 27% with 
HFNC) in the overall study patients. In patients with 

Fig. 3  Suggested algorithm for deciding how to preoxygenate a patient with AHRF who requires tracheal intubation. NIV: non-invasive ventila‑
tion; NHF: nasal high flow; PEEP: positive-end expiratory pressure; PSV: pressure support ventilation. *The MACOCHA score can be used; **low dose 
vasopressor may be also started in unstable patients; ***RSI: rapid sequence induction; ****jaw thrust is essential to ensure patent upper airway and 
efficient apneic oxygenation
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moderate-to-severe hypoxemia (PaO2/FiO2 ≤ 200  mm 
Hg), desaturation < 80% occurred less frequently after 
preoxygenation with NIV than with nasal high-flow 
(24% v. 35% respectively, p = 0·046). Serious adverse 
events did not differ between the two groups. Finally, 
based on the above, the combination of both NIV and 
NHF to prevent desaturation during intubation was 
compared to NIV alone. Significantly less desaturations 
occurred with the combination [65]. Based on all these 
results, we can suggest an algorithm to guide clinicians 
in their choice of preoxygenation technique (see Fig. 3).

NHF in the postextubation
Preventing reintubation is the cornerstone of patient 
management after extubation because of the complica-
tions associated with reintubation (prolonged mechanical 
ventilation and ICU stay, ventilator-associated pneumo-
nia…). It has been suggested that NIV should not be used 
in patients with established post-extubation respiratory 
failure [48], after a safety concern was raised secondary 
to the risk of delaying reintubation. However, NIV has a 
preventive role in patients at high-risk for failure [48, 66].

Estimation of risk for failure generates controversy, 
as no score predicting failure in a general population of 
intubated patients has been validated and risks depend 
largely on patient population. ESM Table  4 displays 
these different risk factors. In surgical patients, expected 
reintubation rate is low because of the short duration of 
mechanical ventilation, and reasons for failing extubation 
are specific (e.g. anaesthetic factors, airway patency, sur-
gical complications) [67]. Thus, studies in these patients 
are usually powered for primary outcomes different 
from the reintubation rate, and include composite end-
points or have a non-inferiority design [68, 69]. In medi-
cal patients, many risk factors have been described, but 
most of them with a low level of evidence [70]. In addi-
tion, subjective definitions for these risks (those related 
to cough and secretions management for example) limit 
their reproducibility in clinical trials. Traditional defi-
nition of patients at high-risk required at least one risk 
factor, but recent trials including a large number of those 
risk factors, suggest that the risk for failing extubation 
should be better defined [71, 72]. This is supported by 
results of multivariable models, reporting more than one 
independently associated high-risk factor to reintuba-
tion [70], with a potential summation effect, and previous 
data reporting a synergistic interaction between high-risk 
factors for reintubation [73]. These issues are worth con-
sidering when analyzing the data.

Several studies have compared NHF to standard oxy-
gen to prevent reintubation according to a given risk for 
failure. In a large heterogeneous population of patients 
at low risk [74], including complicated surgical patients 

with more than 12 h of mechanical ventilation, NHF sig-
nificantly reduce post-extubation respiratory failure and 
reintubation rate after 24 h in comparison with standard 
oxygen. No such difference was found in another study 
in uncomplicated patients after abdominal surgery [69]. 
A probably lower risk for respiratory complications in 
the OPERA trial explains this discrepancy [69]. Recent 
meta-analyses confirm the superiority of NHF over con-
ventional oxygen therapy in terms of post-extubation res-
piratory failure and reintubation rate [75].

In high-risk patients, two large studies found that NHF 
was non-inferior to NIV [68, 72]: one in a general popula-
tion [72], the other cardiothoracic surgery patients [68]. 
Discomfort limited the effective time under NIV in these 
studies to 14 and 6.6 h, respectively, during the first 24 h. 
This was particularly the case after cardiothoracic sur-
gery, where discomfort was significantly more frequent 
with NIV than with NHF.

A recent trial compared NHF to the combination of 
NHF and NIV in high-risk patients [76]. Patients received 
preventive therapy for a minimum of 48 h. Very similar 
to previous results [72], time spent under NIV was 13 h 
during the first 24 h highlighting the fact that NIV toler-
ance may be a limitation to this strategy in this subset of 
patients. Nonetheless, authors found that the combina-
tion of NHF and NIV led to less reintubation that NHF 
alone. Interestingly, reintubation rate at day 7 was signifi-
cantly lower with NIV than with NHF alone in patients 
with PaCO2 > 45  mmHg before extubation, but no such 
difference was found in patients with PaCO2 < 45 mmHg.

In high-risk patients, the combination of NIV and NHF 
therefore seems to benefit more patients with pre-extu-
bation hypercapnia. Duration of preventive therapy and 
date of assessment of reintubation are important vari-
ables to take into account.

NHF in the ED and palliative care
Several RCTs compare NHF to standard oxygen via 
low-flow nasal prongs or facemask in ED for adults with 
moderate-to-severe respiratory distress in different 
conditions [15–18]. A systematic review of these RCTs 
[15–18] found no difference in mortality (RR 1.20; 95% 
CI 0.58, 2.48, p = 0.62) or treatment failure (RR 1.49; 95% 
CI 0.33, 6.82, p = 0.60) compared to standard oxygen. 
However, more patients did not tolerate NHF than stand-
ard oxygen (RR 6.81; 95% CI 1.18, 39.19, p = 0.03) [19]. 
These data are limited as rates of intubation (1.2%) and 
NIV (3.1%) were low, despite enrolment of patients with 
AHRF in the included studies. This is because patients 
needing immediate NIV or intubation were excluded 
from the studies. Standard care in ED is usually effec-
tive in avoiding mechanical ventilation in the remain-
ing patients and studies may have included patients with 
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ceilings of care. So, any differences between NHF and 
standard oxygen for these outcomes are likely to be small. 
Compared to NIV for undifferentiated respiratory failure, 
there was no difference between NHF for any outcome in 
a single RCT [20]. In contrast, a small RCT in palliative 
patients with limitations on invasive ventilation found 
dyspnea was reduced with NHF compared to NIV [77]. 
NHF may have a role in some ED patients who would not 
be offered intubation or when NIV is not well tolerated. 
More studies are required to confirm this.

NIV is recommended in palliative care [48]. However, 
patient discomfort and inability to eat or communicate 
may limit its use. NHF may be an alternative method for 
providing oxygen and respiratory support in this setting. 
Many studies have reported the benefit of NHF by allevi-
ating dyspnea in patients with advanced cancer and do-
not-intubate patients with hypoxemic respiratory failure 
[78–81]. Furthermore, NHF might not be inferior to NIV 
in palliation of dyspnea in patients with terminal cancer 
[82]. However, further studies are needed to evaluate the 
benefits of NHF in terms of patient comfort and quality 
of life in palliative care.

Concluding remarks
In a small 10-year span, NHF has found its place in the 
armamentarium of AHRF treatment. In every segment of 
AHRF management (first-line ventilatory support, pre-
oxygenation, post-extubation, palliative care), evidence 
suggests benefits to the patient. Interestingly, there are 
still aspects that further need investigation. These include 
improving comfort, exploring the potential for even 
higher flows, and addressing the issue of weaning.
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