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Abstract 

Introduction:  This narrative review summarizes current knowledge on the physiology and pathophysiology of 
expiratory muscle function in ICU patients, as shared by academic professionals from multidisciplinary, multinational 
backgrounds, who include clinicians, clinical physiologists and basic physiologists.

Results:  The expiratory muscles, which include the abdominal wall muscles and some of the rib cage muscles, are an 
important component of the respiratory muscle pump and are recruited in the presence of high respiratory load or 
low inspiratory muscle capacity. Recruitment of the expiratory muscles may have beneficial effects, including reduc‑
tion in end-expiratory lung volume, reduction in transpulmonary pressure and increased inspiratory muscle capacity. 
However, severe weakness of the expiratory muscles may develop in ICU patients and is associated with worse out‑
comes, including difficult ventilator weaning and impaired airway clearance. Several techniques are available to assess 
expiratory muscle function in the critically ill patient, including gastric pressure and ultrasound.

Conclusion:  The expiratory muscles are the "neglected component" of the respiratory muscle pump. Expiratory 
muscles are frequently recruited in critically ill ventilated patients, but a fundamental understanding of expiratory 
muscle function is still lacking in these patients.

Keywords:  Expiratory muscles, Acute respiratory failure, Mechanical ventilation, Respiratory muscle weakness, 
Respiratory muscle monitoring

Introduction

The respiratory muscle pump drives alveolar ventilation 
and is therefore of vital importance. The diaphragm, rib 
cage muscles and abdominal wall muscles are the most 
important components of the respiratory muscle pump 
[1]. Recruitment of each muscle depends on the (relative) 
load imposed on the respiratory system, lung volume, 
and the phase of the respiratory cycle. An acute imbal-
ance between respiratory muscle load and capacity will 

result in respiratory failure and, ultimately, the need for 
mechanical ventilation. Many studies and reviews have 
focused on diaphragm structure and function in patients 
with acute respiratory failure, including critically ill 
patients [2–11]. However, the role of expiratory muscles 
in the physiology of breathing in acute respiratory failure 
is largely neglected in the literature. This is surprising, 
given the important role of these muscles in respiration, 
especially in patients with impending respiratory failure.

The aim of the current paper is to discuss the role of 
the expiratory muscles in respiration, in particular in 
critically ill patients in whom respiratory muscle weak-
ness develops rapidly, and may thus have a large clinical 
impact. We will also describe techniques used to evalu-
ate expiratory muscle function in intensive care unit 
(ICU) patients. We will not focus in detail on the role of 
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the expiratory muscles in coughing or maintaining body 
position.

Physiology of expiratory muscle recruitment
The expiratory muscles include those of the abdominal 
wall (transversus abdominis muscle, internal oblique 
muscle, external oblique muscle, and rectus abdominis 
muscle) and some of the rib cage ones (e.g., the internal 
intercostal muscles and the triangularis sterni muscle) 
[1, 12–16] (Fig. 1). During tidal breathing, the expiratory 
muscles are largely inactive, although the transversus 
abdominis muscle may occasionally show some activity 
during quiet breathing [16]. Also, in the upright posi-
tion, the abdominal wall muscles exhibit tonic activity to 
counteract the gravitational forces acting on the abdomi-
nal contents and thus to maintain the diaphragm at opti-
mal length for pressure generation [17–19].

Figure  2 shows the physiology of expiratory muscle 
recruitment. Activation of the expiratory muscles dur-
ing breathing occurs when the (relative) load imposed 
on the inspiratory muscles increases. High absolute res-
piratory loading may occur under different conditions, 
such as exercise, low respiratory system compliance, 
and intrinsic positive end-expiratory pressure (PEEPi). 
Low inspiratory muscle capacity (high relative load on 
inspiratory muscles) is common in ICU patients due 
to ICU-acquired respiratory muscle weakness [20]. In 
the presence of an imbalance between inspiratory mus-
cle load and capacity, the abdominal wall muscles are 

recruited during expiration in a fixed hierarchy [21–24]: 
initially the transversus abdominis muscle, followed 
by the internal oblique muscle and the external oblique 
muscle, and finally the rectus abdominis muscle [16, 17, 
25]. Activation of the abdominal wall muscles increases 
abdominal pressure in the expiratory phase. As the dia-
phragm is relaxed during (most of the) expiratory phase, 
this increased abdominal pressure is transmitted to the 
pleural space, consequently reducing the expiratory 
transpulmonary pressure, which helps to deflate the lung 
(less pulmonary hyperinflation/lung strain). Further-
more, increased abdominal pressure enhances inspira-
tory muscle capacity via at least two mechanisms. First, 
increased abdominal pressure moves the diaphragm at 
end expiration to a more cranial position, which results 
in a more optimal length for tension generation [26, 
27]; second, when the end-expiratory lung volume falls 
below functional residual capacity (FRC), elastic energy 
is stored in the respiratory system. This stored energy 
facilitates the next inspiration (i.e., allows more rapid and 
greater development of negative pleural pressure) [28, 

Take home message 

The expiratory muscles are the “neglected component” of the 
respiratory muscle pump. This narrative review summarizes the 
physiology and pathophysiology of expiratory muscles in critically ill 
ventilated patients. Techniques to monitor expiratory muscle func‑
tion in these patients are also discussed.

Fig. 1  The expiratory muscles of the respiratory muscle pump. The respiratory muscle pump is a complex organ that involves a large number 
of muscles that contribute to inspiration or expiration. This figure schematically demonstrates the expiratory muscles. With the exception of the 
diaphragm, other inspiratory muscles are not shown
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29]. In fact, during strenuous inspiratory loading up to 
28% of tidal volume is generated below FRC, which can 
be attributed to expiratory muscle contraction [21].

It should be recognized that isolated contraction of 
the abdominal expiratory muscles causing an increase in 
abdominal pressure and pleural pressure would result in 
chest wall distortion, in particular expansion of the lower 
rib cage. This would likely increase the elastic inspiratory 
work of breathing and flatten the diaphragm. To limit dis-
tortion of the lower rib cage during active expiration, the 
internal intercostal muscles are recruited to stabilize the 
rib cage [1].

In addition to an imbalance between inspiratory 
muscle load and capacity, an increased end-expiratory 
lung volume, as in application of positive end-expir-
atory pressure (PEEP), may also recruit the abdomi-
nal wall muscles (Figs.  2 and 3) [30]. For example, in 
patients with normal respiratory system compliance 
(i.e., 80 mL/cmH2O), application of 10 cmH2O of PEEP 
would, theoretically, increase end-expiratory lung 
volume by 800 mL (in the absence of airway closure). 
However, a physiological feedback mechanism involv-
ing vagal pathways or proprioceptive influences limits 

the increase in end-expiratory lung volume by activa-
tion of the abdominal wall muscles during expiration, 
and thus protects against high lung strain [31, 32].

Another fundamental role of the expiratory mus-
cles is to develop effective cough pressure to facilitate 
airway clearance [33]. Contraction of the expiratory 
muscles against a closed airway may increase the 
intrathoracic pressure may increase to as high as 300 
mmHg within 0.2  s. Once the glottis is open, a very 
high expiratory flow (up to 720  L/min) can be gener-
ated [33, 34]. Expiratory muscle weakness reduces 
cough strength and peak flow velocity, predisposing 
patients to pneumonia and atelectasis [33, 35, 36].

Undesirable effects of expiratory muscle 
recruitment
Recruitment of the expiratory muscles during expira-
tion may have undesirable effects in critically ill patients 
(Fig. 4 and Table 1).

First, in patients with acute respiratory distress syn-
drome (ARDS) or atelectasis, increased pleural pres-
sure during expiration resulting from expiratory muscle 
recruitment may result in negative transpulmonary 

Fig. 2  Physiology of expiratory muscle recruitment. Schematic illustration of the causes and consequences of expiratory muscle recruitment 
under physiological (healthy) conditions. All the consequences of expiratory muscle recruitment occur during expiration, except for the increased 
inspiratory muscle capacity (which occurs during the subsequent inspiration). See main text for explanation. EELV end-expiratory lung volume, PEEPi 
intrinsic positive end-expiratory pressure, PEEPe external positive end-expiratory pressure
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pressure during expiration, leading to cyclic alveolar 
collapse or airway closure and thereby facilitating small 
airway and alveolar injury [37–40]. Consistent with this 
reasoning, a recent study in ARDS patients demonstrated 
a higher expiratory transpulmonary pressure in patients 
receiving neuromuscular blockers compared with con-
trol patients (1.4 ± 2.7 cmH2O versus − 1.8 ± 3.5 cmH2O, 
respectively, p = 0.02) [41]. Interestingly, neuromuscular 
blockers also abolish expiratory activity of the diaphragm 
(if present) [42] which is expected to decrease expiratory 
transpulmonary pressure. However, the pressure gener-
ated by the diaphragm in the expiratory phase is relatively 
low compared with that generated by the expiratory mus-
cles. Therefore, the effects of neuromuscular blockers on 
expiratory transpulmonary pressure largely depend on 
the relaxation of the expiratory muscles.

Second, expiratory flow limitation is a condition in 
which expiratory flow cannot be increased, despite an 
increase in expiratory driving pressure (pressure dif-
ference between alveoli and mouth during expiration) 
[43]. Typically, this occurs in patients with emphysema, 

but it may also occur during tidal breathing in patients 
with expiratory muscle activity. The exact mechanism is 
unclear, but it has been proposed that dynamic airway 
compression plays an important role [44] (Fig.  5). Ele-
vated pleural pressure during active expiration decreases 
the airway transluminal pressure, which subsequently 
may compress the collapsible part of the airway. Total 
airway collapse is prevented as increased pleural pressure 
is also transmitted to the alveoli/airways (for an extensive 
discussion see also [43]). Expiratory airway compression 
may result in elevated end-expiratory lung volume and 
PEEPi [43], especially in patients with chronic obstruc-
tive pulmonary diseases (COPD) and in patients failing 
ventilator weaning [24, 45].

Third, in patients weaning from mechanical ventila-
tion, expiratory muscle recruitment is expected when 
an imbalance exists between the respiratory load and 
inspiratory muscle capacity. Indeed, activation of the 
expiratory muscles has been demonstrated during ven-
tilator weaning, especially in patients failing a weaning 
trial [22–24]. We recently found that expiratory muscle 

Fig. 3  Activation of the abdominal muscles during high PEEP. Tracing of airway pressure (Paw), flow, EMG of the abdominal muscles (EMGabd) and 
gastric pressure (Pga) obtained from a healthy subject during non-invasive ventilation with PEEP levels of 2 cmH2O (left) and 15 cmH2O (right). At 
2 cmH2O of PEEP there is no evidence of activation of the abdominal wall muscles (no EMGabd activity during expiration and no rise in Pga during 
expiration), however at 15 cmH2O of PEEP, the abdominal muscles are recruited during the expiratory phase, as shown by the presence of EMGabd 
activity during expiration and the rise in Pga during expiration. White column: inspiration; blue column: expiration. In the Pga tracing obtained 
during PEEP 15 cmH2O calculation of parameters to estimate expiratory muscle activity are shown: increase in gastric pressure during expira‑
tion (ΔPgaexp); and the gastric pressure–time product during expiration (PTPgaexp) represented by the orange area. EMGabd electromyography of 
abdominal wall muscles, Paw airway pressure, PEEP positive end-expiratory pressure, Pga gastric pressure, PTPgaexp gastric pressure-time product 
during expiration
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effort progressively increased throughout the trial in such 
patients [24]. The neuromuscular efficiency of the dia-
phragm was lower in weaning failure patients compared 
with weaning success patients, which challenges the 
concept that expiratory muscle activation improves dia-
phragm contractile efficiency [24], although this requires 
further evaluation. Nevertheless, recruitment of the 
expiratory muscles during a weaning trial appears to be a 
strong marker of weaning failure.

Technically, expiratory muscle activity interferes with 
the assessment of PEEPi.

PEEPi can be measured using different techniques. In 
patients with expiratory muscle activity, an end-expir-
atory occlusion will be highly influenced and exagger-
ated by the contraction of the expiratory muscles [46]. 
Similarly, the relaxation of the expiratory muscles at the 
beginning of the effort explains part of the initial drop in 
esophageal pressure, which is not entirely explained by 
so-called dynamic PEEPi. Either the drop in gastric pres-
sure (Pga) or the rise in Pga during expiration must be 
subtracted from the esophageal drop in order to measure 
a reliable PEEPi [47].

Expiratory muscle strength in critically ill patients
Several studies have demonstrated the development of 
expiratory muscle weakness in critically ill patients [48–
62, 64]. Most studies used the maximum expiratory pres-
sure (MEP) as a marker of expiratory muscle strength 
[48–57]. Despite the heterogeneity of the studies in 
terms of populations and measurement techniques, the 
MEP was lower than the reference values [63] in all stud-
ies that obtained MEP at the time of ventilator weaning 
[48–55, 64]. Patients failing extubation exhibit a lower 
MEP (mean decrease varying from 9 to 31 cmH2O) com-
pared with extubation success patients [48–55, 64]. This 
indicates that expiratory muscle weakness is a potential 
predictor of weaning outcome. How expiratory mus-
cle weakness affects weaning and extubation outcome is 
largely unknown. Potential explanations include inade-
quate secretion clearance and insufficient cough capacity 
resulting in atelectasis, reduced contractile efficiency of 
the diaphragm, or inadequate reduction of PEEPi.

Remarkably, no studies have investigated the associa-
tion between diaphragm weakness and expiratory muscle 
weakness.

Risk factors for expiratory muscle weakness 
in critically ill patients
Risk factors for the development of ICU-acquired weak-
ness of the peripheral muscles and diaphragm have been 
discussed recently [2, 4, 57, 65]. Whether these risk fac-
tors also have an impact on the expiratory muscles is 
largely unknown. We briefly discuss risk factors that 
may contribute to the development of expiratory muscle 
weakness.

Sepsis
Sepsis and systematic inflammation have been linked to 
the development of muscle weakness, including weak-
ness of the expiratory muscles [2, 61, 65]. Sepsis induces 
a severe and persistent increase in protein catabolism, 
resulting in muscle wasting and muscle weakness [59, 
60]. Compared with non-septic surgical patients, the 

Fig. 4  Pathophysiology of expiratory muscle recruitment. Schematic 
illustration of the pathophysiological consequences of expiratory 
muscle recruitment in critically ill patients. The depicted relationships 
are mostly hypothetical due to the low number of studies on expira‑
tory muscle function in ICU patients. The elevated pleural pressure 
caused by expiratory muscle recruitment might lead to dynamic 
airway collapse, especially in patients who already have expiratory 
flow limitation (EFL). This leads to an equal or increased end-
expiratory lung volume (EELV). On the other hand, elevated pleural 
pressure might lead to negative expiratory transpulmonary pressures, 
especially in diseases with an increased lung elastance such as in 
ARDS, which in turn leads to atelectasis and tidal recruitment. EFL 
expiratory flow limitation, ARDS acute respiratory distress syndrome, 
VILI ventilator-induced lung injury

Table 1  Clinical impact of expiratory muscle dysfunction

Clinical event Expiratory muscles-related 
mechanisms

Weaning failure/extubation failure Increased respiratory energy 
consumption, ineffective cough, 
inability to improve diaphragm 
efficiency

Atelectasis/pneumonia Ineffective cough

Small airway and alveolar injury Negative expiratory transpul‑
monary pressure resulting in 
alveolar collapse and/or airway 
closure

Pulmonary hyperinflation Inability to increase expiratory flow
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rectus abdominis muscle from surgical patients with sep-
sis showed significantly lower in  vitro contractility [59]. 
In addition, the reduced MEP (≤ 30 cmH2O) found at the 
time patients regained normal consciousness showed an 
independent association with septic shock [57].

Mechanical ventilation
Mechanical ventilation plays an important role in the 
development of diaphragmatic dysfunction in critically 
ill patients [2, 9, 10, 66]. Potential mechanisms include 
disuse atrophy due to ventilator over-assist, or load-
induced injury as a result of ventilator under-assist. The 
impact of mechanical ventilation on expiratory muscles 
has not been systematically investigated. However, as 
mentioned earlier, ventilator settings including PEEP 

and the level of inspiratory assist may have an impact 
on the activity of the expiratory muscles (Fig.  3) [46, 
67], although the ultimate impact of mechanical venti-
lation on expiratory muscle strength is largely unknown 
and should be further investigated.

Other risk factors
Co-morbidities, such as COPD and myopathies, or 
complications such as intra-abdominal hypertension, 
may put patients at increased risk of ICU-associated 
expiratory muscle weakness [68, 69]. Drugs such as 
sedatives, neuromuscular blockers and corticosteroids 
have been shown to affect peripheral muscle function 
and diaphragm muscle function in ICU patients [2, 65, 
70]. The effects of these drugs on expiratory muscle 
function have not been systematically studied.

Strategies to maintain or improve expiratory 
muscle strength
Strategies that aim to improve diaphragm function [71, 
72] may also benefit the expiratory muscles, although 
clinical studies are lacking. The feasibility of neuromus-
cular electrical stimulation to reduce expiratory muscle 
atrophy in ICU patients is under investigation (NCT 
03453944).

Quantification of expiratory muscle effort 
in critically ill patients
While visual inspection of the trunk and palpation of 
the abdominal wall may reveal activation of the expira-
tory muscles, they do not allow quantification of effort. 
In this section, we summarize the main clinical tech-
niques that can be used to quantify expiratory muscle 
effort in ICU patients.

Gastric pressure
Activation of the abdominal wall muscles increases 
abdominal pressure. Changes in Pga during expiration 
reflect changes in abdominal pressure and can thus be 
used to quantify expiratory muscle effort [22, 24, 39, 63, 
73]. Pga is measured using an air-filled balloon catheter 
inserted into the stomach. Bladder pressure has also 
been proposed as a means of quantifying intra-abdom-
inal pressure [74, 75], and showed an acceptable cor-
relation with Pga in supine position (bias = 0.5 mmHg, 
and precision = 3.7  mmHg (limits of agreement, − 6.8 
to 7.5  mmHg)) [74]. To quantify the effort of expira-
tory muscles, Pga amplitude and the Pga pressure–time 
product (PTP) during expiration can be calculated 
(Fig. 3).

a

b

c

Fig. 5  Role of expiratory muscle recruitment in the development of 
expiratory flow limitation (EFL). Schematic and simplified illustration 
demonstrating the role of expiratory muscle activation in EFL. a–c 
With activation of the expiratory muscles the abdominal pressure 
increases, also increasing pleural pressure during expiration. This 
decreases the transluminal pressure resulting in partial airway col‑
lapse and therefore EFL. With higher expiratory muscle pressure the 
flow-limiting site, or choking point, moves towards the alveoli. Note 
that gravitational forces are not considered in this illustration. Pab 
abdominal pressure, Palv alveolar pressure, Pao airway opening pres‑
sure, Ppl pleural pressure
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Amplitude of gastric pressure
Both the rise in Pga over the course of expiration [46] 
and the drop in Pga at the onset of the next inspiration 
[76] have been used to quantify the activity of the expir-
atory muscles. However, only the expiratory increase in 
Pga showed a good correlation with the electromyo-
graphic amplitude of the transverse abdominis muscle 
(correlation coefficient ranging from 0.70 to 0.95) [77].

Pressure–time product
The PTP of the expiratory muscles has been quanti-
fied using the area enclosed by the esophageal pressure 
curve and the static chest-wall recoil pressure curve 
during expiration [78]. The PTP accounts for the energy 
expenditure during both the isometric and dynamic 
phases of expiration (independently of volume displace-
ment). However, expiratory esophageal pressure only 
represents the pressure generated by the abdominal 
wall muscles when the diaphragm is completely relaxed 
[39, 79]. As diaphragm activity has been demonstrated 
during expiration [42, 67], abdominal wall muscle 
effort cannot be reliably quantified using the expiratory 
esophageal PTP alone. Therefore, it is recommended to 
use the expiratory Pga in order to calculate the PTP of 
the expiratory muscles [80–83]. The gastric PTP can be 
obtained from the area under the expiratory Pga curve, 
in which the baseline is defined as the resting end-
expiratory Pga from the preceding breath [24, 80, 81].

Work of breathing
Traditionally, the Campbell diagram is used to quantify 
the inspiratory work of breathing [84], but it allows esti-
mation of the expiratory work as well. The area of the 
esophageal pressure–volume loop at the right side of the 
chest wall relaxation curve represents expiratory mus-
cle effort [85, 86]. By definition, work is performed only 
when there is volume displacement (work = pressure ×   
volume). However, as explained above, during dynamic 
airway collapse part of the pressure generated by the 
expiratory muscles does not result in lung volume dis-
placement, and therefore the Campbell diagram underes-
timates the total effort of the expiratory muscles [44, 87]. 
Under these circumstances, the PTP may better reflect 
expiratory muscle effort.

Volitional tests of expiratory muscle strength
The MEP is the most widely used measure of expiratory 
muscle strength [63]. Standard procedures for non-intu-
bated subjects have been established [63]. For intubated 
patients, the MEP can be measured using a unidirectional 
valve that allows inspiration but prevents expiration [48, 
51, 88]. Some investigators coached subjects to perform 
an expiratory effort against an occluded airway for 25 

to 30  s, and then recorded the most positive pressure 
developed [48, 51, 88]. Calculating the ratio of maximum 
inspiratory pressure to MEP is a simple way to assess the 
relative impairment of the inspiratory muscles versus the 
expiratory muscles [89]. As MEP measurement requires 
a voluntary patient effort, this might not be feasible in 
a proportion of ICU patients. As an alternative to MEP, 
cough pressure can be assessed to quantify expiratory 
muscle strength [33, 63, 73].

Cough test
The cough test is a relatively easy-to-perform, com-
plementary test for the diagnosis of expiratory muscle 
weakness. Both cough pressure measured  via air-filled 
balloons in the stomach or esophagus, and cough peak 
expiratory flow measured at the opening of an endotra-
cheal tube or using the ventilator flow sensor [90], are 
feasible in ICU patients. In patients unable to cooperate, 
a cough may be induced either by instilling physiological 
saline [35] or by advancing a suctioning catheter through 
the patient’s tube [36].

Abdominal wall muscle ultrasound
Ultrasound has become a popular tool for quantifying 
changes in the thickness and activity of the diaphragm in 
ICU patients [3, 91, 92], but few studies have used this 
technique to evaluate the expiratory muscles. Abdomi-
nal ultrasound allows direct visualization of the three 
layers of the abdominal wall muscles and the rectus 
abdominis muscle [93–96] (Fig.  6). In our experience, 
the abdominal wall muscles are easy to visualize using 
ultrasound, and measurement of thickness is feasible in 
almost all patients. In healthy subjects, the thickness of 
individual abdominal wall muscles follows a certain pat-
tern: transversus abdominis < external oblique < inter-
nal oblique < rectus abdominis [96]. The thickness of the 
transversus abdominis muscle measured with ultrasound 
is strongly correlated with the pressure developed dur-
ing an expiratory maneuver (assessed by the change in 
Pga) [94]. In addition,  the transversus abdominis mus-
cle thickness increase is significantly correlated with the 
muscle’s electrical activity [93]. However, all these stud-
ies were performed in healthy subjects, and further stud-
ies are needed to determine the reliability and validity of 
ultrasound assessment of expiratory muscle thickness 
and function in ICU patients.

Other diagnostic tests
Electrical and magnetic stimulation of the abdominal wall 
muscles are other methods used to quantify the strength 
of these muscles [25, 79, 81]. As these techniques are 
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cumbersome and uncomfortable, they are rarely used 
either in clinical practice or for research purposes.

Electromyography of the expiratory muscles has been 
used in research settings to study the timing of expira-
tory muscle recruitment during respiration [17, 77], but 
has not reached clinical implementation. Therefore, these 
techniques are beyond the scope of this review.

Conclusions
The expiratory muscles are the “neglected component” 
of the respiratory muscle pump. Rather as the heart does 
not comprise only a left ventricle, but also a right one, 
the respiratory muscle pump is much more than just 
the diaphragm. In this paper, we have summarized the 
physiology and pathophysiology of expiratory muscles, 
with a special focus on critically ill patients. Expiratory 

muscles are frequently recruited in critically ill ventilated 
patients, but a fundamental understanding of expiratory 
muscle function is still lacking in these patients. Gastric 
pressure monitoring provides multiple bedside param-
eters for analysis of expiratory muscle effort, but their 
clinical implications need to be established.
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Fig. 6  Ultrasound image of the abdominal muscles. Left: ultrasound image of the rectus abdominis muscle (RA) (top), obtained with the probe 
placed 2–3 cm above the umbilicus and 2–3 cm from the midline (bottom). Right: ultrasound image of the external oblique muscle (EO), internal 
oblique muscle (IO) and transversus abdominis muscle (TrA) (top), obtained with the probe placed midway between the costal margin and the iliac 
crest, along the anterior axillary line (bottom)
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