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Abstract 

Purpose: Ventilator‑induced diaphragm dysfunction or damage (VIDD) is highly prevalent in patients under mechanical 
ventilation (MV), but its analysis is limited by the difficulty of obtaining histological samples. In this study we compared 
diaphragm histological characteristics in Maastricht III (MSIII) and brain‑dead (BD) organ donors and in control subjects 
undergoing thoracic surgery (CTL) after a period of either controlled or spontaneous MV (CMV or SMV).

Methods: In this prospective study, biopsies were obtained from diaphragm and quadriceps. Demographic variables, 
comorbidities, severity on admission, treatment, and ventilatory variables were evaluated. Immunohistochemical analysis 
(fiber size and type percentages) and quantification of abnormal fibers (a surrogate of muscle damage) were performed.

Results: Muscle samples were obtained from 35 patients. MSIII (n = 16) had more hours on MV (either CMV or SMV) 
than BD (n = 14) and also spent more hours and a greater percentage of time with diaphragm stimuli (time in assisted 
and spontaneous modalities). Cross‑sectional area (CSA) was significantly reduced in the diaphragm and quadriceps 
in both groups in comparison with CTL (n = 5). Quadriceps CSA was significantly decreased in MSIII compared to 
BD but there were no differences in the diaphragm CSA between the two groups. Those MSIII who spent 100 h or 
more without diaphragm stimuli presented reduced diaphragm CSA without changes in their quadriceps CSA. The 
proportion of internal nuclei in MSIII diaphragms tended to be higher than in BD diaphragms, and their proportion of 
lipofuscin deposits tended to be lower, though there were no differences in the quadriceps fiber evaluation.

Conclusions: This study provides the first evidence in humans regarding the effects of different modes of MV 
(controlled, assisted, and spontaneous) on diaphragm myofiber damage, and shows that diaphragm inactivity during 
mechanical ventilation is associated with the development of VIDD.
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Introduction

Most critically ill patients admitted to the intensive care 
unit (ICU) require mechanical ventilation (MV) because 
of respiratory failure. MV may be associated with adverse 
effects on respiratory muscles, and disuse atrophy may be 
the most important mechanism in patients under con-
trolled mechanical ventilation (CMV) [1]. During CMV, 
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the electromyographic activity of the respiratory muscle 
fibers is diminished or may even stop [2], resulting in 
the rapid development of respiratory muscle dysfunc-
tion, especially diaphragm weakness. Ventilator-induced 
diaphragm dysfunction (VIDD) is defined as the loss of 
the diaphragm’s capacity to generate force, together with 
muscle injury and fiber atrophy, and the same acronym 
has been used previously to describe ventilator-induced 
diaphragm damage [3]. Both types of VIDD are associ-
ated particularly with the use of MV, typically after peri-
ods of CMV [4–6].

VIDD may play a key role in the pathophysiological 
mechanisms that make it difficult to wean critically ill 
patients off MV. It causes direct systemic and pulmonary 
complications and may exacerbate the patient’s comor-
bidities, thus extending hospital stay. It is also associ-
ated with important functional limitations after hospital 
discharge, reduced quality of life, significantly increased 
mortality [7], and an increase in costs for the national 
health systems [8].

Multiple studies with animal [9–15] and human 
[16–20] models have examined the pathophysiology of 
VIDD and the molecular pathways involved. The inac-
tivity of the diaphragm caused by MV triggers a state of 
mitochondrial vulnerability that produces an enzymatic 
deficiency [10, 19], generating excessive reactive oxygen 
species production and reducing antioxidant activity 
[14]. It activates apoptotic [12, 16] and proteolytic path-
ways [9–11, 14, 17, 20] and promotes the accumulation of 
lipids in diaphragm due to an excess of energy substrate 
[18]. It also leads to atrophy of the respiratory muscles 
and reduces their force-generation capacity.

The loss of muscle strength occurs quickly in some 
animal models under CMV (6  h), with muscle atrophy 
appearing later (12–18  h) [13]. However, other animal 
studies show fast and complete diaphragmatic recovery 
from VIDD within 24  h after returning to spontaneous 
breathing when CMV is removed before 12 h [21, 22]. As 
in animal models, the establishment of VIDD in humans 
occurs very quickly (< 24 h), and it increases in severity 
over time [5].

VIDD severity may be related to several factors that 
are important for the development of new therapeutic 
strategies to decrease diaphragm damage. Animal stud-
ies [23–28] have shown that spontaneous mechanical 
ventilation (SMV) may provide more protection than 
CMV. To date, however, these data have not been con-
firmed in humans because of the difficulty of obtaining 
diaphragm biopsies in ventilated critically ill patients; the 
human data available come from mechanically ventilated 
brain-dead (BD) organ donors undergoing CMV but they 
are not representative of ICU patients as a result of mul-
tiple limitations. Recently, in some European countries, 

donors after circulatory death (DCD) have been accepted 
for donation and transplantation activity. Maastricht cat-
egory III donors (MSIII) are DCD in whom cardiac arrest 
follows planned, controlled withdrawal of life-sustaining 
treatments. These donors can undergo SMV, but the his-
tological characteristics of their diaphragm have not been 
evaluated to date.

This is the first study to assess the histological charac-
teristics of the diaphragm in a new human physiopatho-
logical model in critical care—MSIII donors—and to 
compare them with the same data from BD donors. Our 
hypothesis was that MSIII donors who are able to stimu-
late their diaphragm may present less VIDD than BD who 
cannot. The main objective was to compare the histo-
logical characteristics of MSIII and BD donors ventilated 
with different forms of MV in respiratory and peripheral 
muscles.

Methods
See also the additional information in the online 
supplement.

Subjects
MSIII donors, BD donors, and control subjects (CTL) 
undergoing resection of located pulmonary nodules were 
included. All patients included were clinically stable at 
the time of the study; CTL subjects had no episodes of 
exacerbation or oral steroid treatment in the previous 
4  months. Exclusion criteria included age younger than 
18 years, chronic respiratory failure, treatment with oral 
steroids, chronic metabolic diseases, suspected para-neo-
plastic or myopathic syndromes and/or treatment with 
drugs known to alter muscle structure and/or function. 
Protocols were approved by the Ethics Committees of 
Hospital del Mar. All biopsies were performed after writ-
ten informed consent was obtained.

Biopsies
All diaphragm biopsy specimens were obtained from the 
anterior costal diaphragm, lateral to the insertion of the 
phrenic nerve. All quadriceps biopsies were obtained 
from the vastus lateralis. All muscle samples were imme-
diately immersed in an alcohol-formol bath and then 

Take‑home message 

Maastricht III donors present less ventilator‑induced diaphragm 
damage (VIDD) than brain‑dead donors, probably owing to their 
ability to stimulate their diaphragm. In this regard, we recommend 
that the period of controlled mechanical ventilation in critically ill 
ventilated patients should be kept short and that ventilation modes 
with sustained patient effort should be introduced promptly.
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embedded in paraffin. These tissues were used for the 
histological analysis.

Clinical data
Age, sex, and body mass index were recorded for all sub-
jects. In both donor groups, reason for donation, sever-
ity scores on admission (Acute Physiology and Chronic 
Health Evaluation II or APACHE II and Sequential Organ 
Failure Assessment or SOFA), comorbidities, previous 
treatments, treatments received in the ICU, complica-
tions during ICU stay, and vital signs prior to surgery 
were registered. In MSIII donors, the type of preserva-
tion [extracorporeal membrane oxygenation (ECMO), 
cold perfusion, or rapid extraction] was also recorded.

The following data on the MV received were recorded: 
period of time on MV, time on CMV, time on SMV, time 
with diaphragm stimuli [hours on CMV with real respira-
tory rate (RRR) above the predetermined respiratory rate 
(PRR) + hours in SMV] and without diaphragm stimuli 
(hours on CMV with same RRR and PRR) in hours, and 
percentage of time with diaphragm stimuli [(period of 
time with diaphragm stimuli/hours on MV) × 100]. Defi-
nitions for these variables are shown in online supple-
ment Table 1.

Experimental analyses
The analysis was carried out in the two muscles of 
both donor groups and CTL. Fiber cross-sectional area 
(CSA), mean least diameter, and proportions of myofib-
ers expressing myosin heavy chain (MHC) I (type I) or 
MHCII (type II) were assessed by immunohistochemi-
cal analysis under light microscopy (Olympus, Series 
BX50F3, Olympus Optical Co., Hamburg, Germany). 
Muscle structure abnormalities (a surrogate of muscle 
damage) were evaluated by previously published meth-
odologies [29, 30]. The proportion of abnormal muscle 
(online supplement Table 2) in paraffined samples stained 
with hematoxylin–eosin was determined by means of the 
same optic microscopy.

Statistics
Following the Kolmogorov–Smirnoff test results, con-
tinuous variables were expressed as means and standard 
deviation (SD) when the data were normally distributed 
or as medians and interquartile range (IQR 25–75%) oth-
erwise, and categorical variables as frequencies and per-
centages. Chi-square, Fisher’s test, Student’s t test, and 
Mann–Whitney U test were used. Comparisons between 
groups were performed through one-way ANOVA with 
post hoc Bonferroni test for intragroup comparisons. 
Relationships between MV duration and CSA were 
assessed with the Spearman’s Rho correlation coefficient. 
Statistical significance was established at p < 0.05. The 

data were analyzed using the statistical package for social 
sciences 15.0  BM® SPSS  Statistics®, Chicago, IL, USA) 
for Windows.

Results
See also the additional information in the online 
supplement.

Characteristics of patients
Thirty-five mechanically ventilated patients (16 MSIII, 
14 BD, and 5 CTL) were prospectively included in the 
study. MSIII were older than BD but not older than 
CTL (though this may have been due to the small sam-
ple size), and there were no significant differences in sex 
and body mass index among the three groups (Table 1). 
Clinical characteristics of both donor groups are shown 
in Table 2. Briefly, the groups did not present differences 
regarding the severity scores at admission (APACHE II 
and SOFA), the percentage of comorbidities, or treat-
ment prior to admission. During the ICU stay, BD donors 
received more neuromuscular blockers (NMB, cisatra-
curium in all cases) and fewer benzodiazepines, opioids, 
and enteral feeding (and for a shorter time) than MSIII 
donors.

Ventilatory characteristics of donor groups are shown 
in Table 1. MSIII donors had longer ICU stay with more 
hours on MV, CMV, and SMV than BD. MSIII donors 
also spent more hours (and a higher percentage of time) 
with diaphragm stimuli than BD donors.

Immunohistochemical data
The size of type I and type II fibers was significantly 
reduced in the diaphragm and quadriceps of both donor 
groups in comparison with CTL. There were no dif-
ferences in the MHCI and MHCII CSA of diaphragm 
between MSIII and BD donors but quadriceps MHCI 
and MHCII were significantly smaller in MSIII than in 
BD. These results are shown in Fig. 1. The proportions of 
isoforms did not differ between the three groups (online 
supplement Table 3).

CSA of diaphragm MHCI and MHCII was lower in 
MSIII donors who spent 100 h or more on CMV without 
diaphragm stimuli than in MSIII donors who spent less 
than 100 h without it. These differences did not appear in 
quadriceps CSA of the same patients (Fig. 2). This thresh-
old was used because 100  h was the median of hours 
in CMV without diaphragm stimuli in the MSIII group 
(Table 1). Representative cases of diaphragm and quadri-
ceps biopsy specimens are shown in Figs. 1 and 2 of the 
online supplement.

MHCI and MHCII diaphragm and quadriceps CSA in 
all ventilated subjects presented a significant moderate 
positive correlation with the time spent in CMV without 
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diaphragm stimulation (online supplement Fig.  3). Dia-
phragm atrophy seemed to appear sooner under CMV 
without diaphragm stimulation than quadriceps atrophy 
(100 h vs 150 h), but no significant differences were found 
(online supplement Fig. 4).

Differences between MSIII with cold perfusion and 
rapid extraction are shown in the online supplement 
(Table  4). There were no differences in the time under 
MV, but donors with cold perfusion preservation spent 

more hours under CMV and without diaphragm stimuli 
than donors with rapid extraction. Cold perfusion pre-
sented smaller fibers in diaphragm MHCII than rapid 
extraction, without differences in any other clinical 
variables.

Muscle structure abnormalities
The histological evaluation of muscle structure abnor-
malities showed an increase in abnormal fibers in 

Table 2 Clinical characteristics of included subjects

SD standard deviation, IQR interquartile range, APACHE II Acute Physiology and Chronic Health Evaluation II, SOFA Sequential Organ Failure Assessment, COPD chronic 
obstructive pulmonary disease, ICU intensive care unit, NMB neuromuscular blockers, NS not significant

Brain-dead
n = 14

Maastricht III
n = 16

p value

Severity scores, mean (SD)

 APACHE II score at admission 29 (8) 24 (6) NS

 SOFA score at admission 9 (3) 7 (3) NS

Days of ICU stay, median (IQR) 4 (2–6) 8 (5–12) 0.002

Toxic habits, n (%)

 Smoking 7 (50) 3 (18.8) NS

 Alcoholism 3 (21.4) 2 (12.5) NS

Comorbidities, n (%) 6 (42.9) 6 (37.5) NS

 Asthma 1 (7.1) 0 (0) NS

 COPD 2 (14.3) 3 (18.8) NS

 Diabetes mellitus 2 (14.3) 5 (31.3) NS

 Heart failure 0 (0) 1 (6.3) NS

 Chronic Kidney disease 2 (14.3) 0 (0) NS

 Hematologic disease 0 (0) 0 (0) NS

 Obesity 4 (28.6) 2 (12.5) NS

Previous treatment, n (%)

 Corticosteroids 0 (0) 0 (0) NS

 Statins 4 (28.6) 4 (25) NS

 Insulin 2 (14.3) 0 (0) NS

ICU treatment, n (%)

 Corticosteroids 10 (71.4) 6 (37.5) NS

 NMB 10 (71.4) 4 (25) 0.014

  Days with NMB, mean (SD) 1 (1–2) 1 (0–2) NS

 Insulin 12 (85.7) 15 (93.8) NS

 Rehabilitation 0 (0) 1 (6.3) NS

 Benzodiazepines 7 (50) 14 (87.5) 0.032

  Days with benzodiazepines, mean (SD) 0.5 (0–2) 2.5 (2–6.5) 0.013

 Opioids 9 (64.3) 16 (100) 0.014

  Days with opioids, mean (SD) 1.5 (0–3) 4.5 (2–6.75) 0.007

 Vasoactive drugs 13 (92.9) 12 (75) NS

  Maximum dose, μg/kg/min, mean (SD) 1.3 (0.8) 0.67 (1.35) NS

 Enteral nutrition 5 (35.7) 13 (81.3) 0.014

  Days with enteral nutrition, mean (SD) 0 (0–2) 7 (3.35–11.5) < 0.001

 Total parenteral nutrition 0 (0) 0 (0) NS

Infectious complications, n (%) 2 (14.3) 11 (68.8) 0.004

Non‑infectious complications, n (%) 2 (14.3) 5 (31.3) NS
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diaphragms of MSIII and BD compared with CTL, 
although the difference was not statistically significant 
(possibly due to the small sample size). Diaphragms of BD 
had a higher proportion of lipofuscin deposits than CTL; 
this proportion tended to be higher in MSIII, though 
the difference did not reach statistical significance. Both 
donor groups presented decreased internal nuclei com-
pared to CTL. The proportion of internal nuclei in MSIII 

diaphragms tended to be higher than in BD diaphragms 
and their proportion of lipofuscin deposits tended to 
be lower. There were no significant differences in the 
fiber evaluation in quadriceps between the three groups 
(Table 3); nor were there significant differences in other 
categories assessed in diaphragms. Several representative 
images are shown in the online supplement (Figs. 5 and 
6).

Fig. 1 Cross‑sectional area of MHCI (type I) and MHCII (type II) fibers of diaphragm (a) and quadriceps (b) in ventilated patients. *p < 0.05; **p < 0.01; 
***p < 0.001
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Fig. 2 Cross‑sectional area of MHCI (type I) and MHCII (type II) fibers of diaphragm (a) and quadriceps (b) in ventilated patients without DIA‑
PHRAGM stimuli. *p < 0.05
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Discussion
This is the first study with human samples to analyze the 
histological characteristics of respiratory (diaphragm) 
and peripheral (quadriceps) muscles in two types of 
organ donor (MSIII and BD) undergoing different forms 
of MV (SMV and CMV). The results show that MSIII 
who have the capacity to stimulate their diaphragm pre-
sent less VIDD than BD.

Until now, human data related to VIDD have basically 
been available from two groups of patients. The bulk of 
the evidence derives from mechanically ventilated BD 
donors; only very recently have studies expanded to 
include mixed ICU populations with underlying diseases. 
Levine et al. [31] were the first to demonstrate that com-
plete diaphragmatic inactivity and MV result in atrophy 
of human diaphragm myofibers in BD. But studies with 
BD donors present a clear limitation, given that brain 
death itself can generate multiple systemic changes, and 
is thus an important confounder [32–35]. BD donors do 
not exhibit the clinical features of critically ill patients; 
they are distinguished by the complete absence of neural 
activation of the diaphragm, metabolic stress, and brain 
ischemia [32–35]. Recent studies in mixed ICU popula-
tions present an important limitation due to the difficulty 
of obtaining diaphragmatic samples that allow the perfor-
mance of histological studies [20]. A relevant advance in 
the present study is our use of a novel pathophysiological 
model, MSIII organ donors, and our assessment of their 
diaphragmatic structure. This recently described donor 

profile [36] could present multiple advantages over the 
groups used in previous models.

First, MSIII are critically ill patients with irreversible 
severe disease in whom the decision is taken to withdraw 
life support measures in a controlled manner. This means 
that they are a highly representative population of criti-
cally ventilated patients. MSIII presented a longer ICU 
stay with a lower need for NMB and a higher need for 
sedation and opioids than BD and also had more infec-
tious complications. With regard to these differences, 
anesthetics can be ruled out as a cause of VIDD, since 
studies using appropriate controls concluded that the 
decreased contractility was due to the effects of MV per 
se [37]. The decreased contractility secondary to CMV 
cannot be attributed solely to NMB, since it was also 
observed in studies that did not use these drugs. How-
ever, the effects of 24 h of CMV and aminosteroidal NMB 
(rocuronium) are synergistic in depressing diaphragm 
contractility, in inducing atrophy, and in upregulat-
ing proteolysis, a synergism not observed with different 
doses of benzylisoquinoline NMB (cisatracurium) [37].

Second, among other differences with respect to BD, in 
most cases MSIII were able to spontaneously stimulate 
their diaphragm and tolerated SMV well, since they spent 
more hours under SMV and with diaphragm stimuli.

Another strength of this study is the analysis of two 
muscles, one respiratory (diaphragm) and the other non-
respiratory (quadriceps). As we expected, both presented 
significant CSA reductions in MSIII and in BD compared 

Table 3 Histological evaluation of muscle structure abnormalities in the three groups

See the categories and definitions for point counting in online supplement Table 1
a Between brain-dead and control, p < 0.01
b Between brain-dead and control, p < 0.001
c Between Maastricht III and control, p < 0.05

Control
n = 5

Brain-dead
n = 14

Maastricht III
n = 16

p

Diaphragm, %, mean (SD)

 Total abnormal muscle fibers 3.5 (1.1) 9.4 (10.7) 6.5 (14.2) 0.709

 Internal nuclei 2.4 (1.0) 0.3 (0.3)a 1.1 (1.5)c 0.003

 Inflammatory cells 0.5 (0.3) 0.5 (0.1) 0.5 (0.1) 0.392

 Lipofuscin deposits 0.4 (0.1) 7.9 (10.5)b 4.2 (12.2) 0.000

 Abnormal viable 0.2 (0.1) 0.1 (0.2) 0.1 (0.2) 0.748

 Inflamed/necrotic 0 (0) 0.6 (0.4) 0.6 (0.5) 0.485

Quadriceps, %, mean (SD)

 Total abnormal muscle fibers 2.4 (0.6) 2.3 (5.0) 1.8 (2.4) 0.730

 Internal nuclei 1.0 (0.5) 0.2 (0.4) 0.5 (0.8) 0.247

 Inflammatory cells 0.1 (0.1) 0 (0) 0.1 (0.1) 0.343

 Lipofuscin deposits 1.3 (0.5) 2.0 (5.0) 1.0 (2.2) 0.487

 Abnormal viable 0 (0) 0 (0) 0 (0) 0.223

 Inflamed/necrotic 0 (0) 0.1 (0.4) 0.2 (0.3) 0.787
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to CTL. It is known that in limb muscles, contractile 
activity regulates protein turnover and muscle mass, and 
muscle disuse accelerates protein degradation [38]. MV 
may impose bed rest and may indirectly prolong immo-
bility as a result of the use of sedatives or NMB, which 
may promote neuropathy, muscle wasting, and loss of 
muscle function in non-respiratory muscles. Indeed, our 
results showed that quadriceps of MSIII patients, who 
spent more days intubated and immobilized in the ICU 
with greater need for these drugs, presented a decreased 
fiber size than BD. Similarly, Powers and colleagues [39] 
recently speculated that the sudden creation of a state 
of diaphragm disuse during “full support” MV is the key 
initiator of the cascading changes that lead to VIDD. But 
while the diaphragm is characterized by a permanent 
cyclic activity, normal limb muscles are not constantly 
active. Furthermore, although both are striated muscles, 
their fiber type composition differs, as shown both by our 
results and by previous reports [40, 41].

Animal experiments in recent years have demonstrated 
that increasing diaphragm muscle contraction by use of 
assisted modes during MV may slow the evolution of 
VIDD [23–28]. On the one hand, in rats, rabbits, and 
piglets, partial support MV has been shown to prevent 
protease activation in the diaphragm [23], the increased 
expression of ubiquitin–proteasome system components 
and diaphragm atrophy, and maintains contractile func-
tion [24–26]. On the other, reducing the level of support 
also protects rat diaphragm against oxidative stress and 
atrophy [27]. Finally, intermittent spontaneous breathing 
in ventilated rats minimizes the reduction in diaphragm 
force and fiber size during MV [28].

As we expected, our results regarding muscle atrophy 
and diaphragm abnormalities in humans are in accord-
ance with these data observed in animal models. First of 
all, our results showed that BD and MSIII donors pre-
sented major diaphragmatic atrophy in both types of 
muscle fibers, slow-twitch (type I or expressing MHCI) 
and fast-twitch (type II or expressing MHCII) after a 
variable long-term period of ventilation compared to 
CTL. Second, there were no differences between dia-
phragm CSA in MHC I or MHC II in MSIII compared 
to BD, although MSIII donors spent significantly longer 
under MV and CMV. In addition, MSIII donors spent 
more hours under SMV and a higher proportion of time 
with diaphragm stimuli. Moreover, when MSIII donors 
were divided into two groups according to the number of 
hours without diaphragm stimuli, it was found that dia-
phragm CSA of MSIII donors with more hours of ventila-
tion without diaphragm stimuli were smaller than those 
with fewer hours without diaphragm stimuli. So it seems 
that MSIII donors present a protective factor against the 
development of respiratory muscle atrophy which could 

be attributed to the higher rate of SMV used and the dia-
phragm stimulation maintained during MV.

At present there are no data regarding other mor-
phological muscle abnormalities existing in the res-
piratory muscles of ventilated patients. Our results 
showed that diaphragm of MSIII had a lower percent-
age of lipofuscin and a higher percentage of internal 
nuclei than diaphragm of BD, and there were no dif-
ferences in peripheral muscles in any of the groups 
analyzed. The accumulation of lipofuscin indicates 
more remains of lipid destruction, which is an indi-
rect marker of oxidative stress and may indicate a 
more advanced stage of muscle protein degradation 
in BD. These findings are in accordance with previous 
reports indicating that CMV induces the production 
of reactive oxygen species in the diaphragm, which 
is required for the activation of several key proteo-
lytic systems involved in MV-induced diaphragmatic 
atrophy [2]. The lesser appearance of internal nuclei 
indicates a lower capacity of muscle repair in the dia-
phragm of the same patients. These results suggest 
that respiratory muscles of MSIII donors are less dam-
aged than those from BD, and once again this may be 
due to a protective factor induced by diaphragmatic 
stimulation. Although increases in the proportion of 
necrotic fibers in the diaphragm of some ventilated 
patients have been reported in the literature [42, 43], 
these studies analyzed septic patients in whom VIDD 
and sepsis-induced diaphragm dysfunction (SIDD) 
may have coexisted. This combination of sepsis and 
ventilation could have an additive (if not synergic) del-
eterious impact on diaphragm function, but was not 
present in our series or in the BD series described by 
Levine [31].

A variety of interventions may be useful in prevent-
ing VIDD. Muscle-protective ventilation strategies 
(proportional assist ventilation and neurally adjusted 
ventilatory assist) aim to titrate ventilation in order 
to maintain appropriate levels of inspiratory muscle 
effort and optimize synchrony between patient and 
ventilator [44]. Moreover, interventions involving the 
molecular pathways studied and the reversal of mus-
cle disuse through electrostimulation are under inves-
tigation. The time is indeed ripe for clinical trials in 
this important area, but new tools are also needed that 
allow us to evaluate respiratory muscle function at 
the bedside. The current literature suggests that dia-
phragm ultrasound could be a useful and accurate tool 
for detecting diaphragmatic dysfunction in critically 
ill patients, predicting extubation success or failure, 
monitoring respiratory workload, and assessing atro-
phy in patients who are mechanically ventilated [45].



499

Study limitations
First of all, the groups compared contained different 
kinds of patients (BD and MSIII). However, the aim 
of this study was to present the first assessment of the 
histological characteristics of MSIII patients, and to 
compare them with those of BD, the only previously 
studied population. Neither group was pure in terms of 
the ventilatory methods used, so it is difficult to attrib-
ute the changes described to the type of ventilation 
received. To minimize this heterogeneity, in this study 
the hours under CMV and SMV were carefully counted 
as well as the difference between the PRR and RRR in 
order to calculate the time under MV in which patients 
stimulated or did not stimulate their diaphragm. These 
data are detailed in Table 2. Moreover, inside the MSIII 
group we also compared those who spent more hours 
on CMV with those under fewer hours of CMV, and 
cold perfusion versus rapid extraction. Further stud-
ies will be necessary to compare pure groups. Another 
limitation is that we cannot exclude the possibility that 
factors other than MV per se were involved in the his-
tological alterations found in both donor groups. We 
eliminated patients suffering from other conditions 
known to alter respiratory muscle function in our 
study, and we recorded the treatments known to be 
deleterious. We also included a limb muscle as internal 
control, subjected to the same systemic factors as the 
diaphragm (except for MV) in order to assess whether 
the changes were due to the different forms of ventila-
tion used. Likewise—and this is a major limitation—
since our data are histological we can only speculate 
about their functional significance and we can only 
refer to ventilator-induced diaphragm damage. Further 
studies will be necessary to elucidate why diaphrag-
matic rest reduces diaphragm CSA, and how preserving 
a certain degree of spontaneous diaphragm contractile 
activity protects against diaphragm atrophy.

Conclusions
This study provides the first evidence in humans regard-
ing the effects of different modes of MV (controlled, 
assisted, and spontaneous) on diaphragm myofiber dam-
age, and shows that diaphragm inactivity during mechan-
ical ventilation is associated with the development of 
VIDD. The results suggest that the deleterious effects 
of diaphragm unloading generated by CMV in humans 
can be attenuated by maintaining a certain level of res-
piratory muscle stimulation during MV. Future studies 
using MSIII donor models should include more decisive 
measures of protein turnover and redox balance along 
with diaphragmatic contractile measurements in these 
patients.
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