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Abstract 

The massive consumption of antibiotics in the ICU is responsible for substantial ecological side effects that promote 
the dissemination of multidrug‑resistant bacteria (MDRB) in this environment. Strikingly, up to half of ICU patients 
receiving empirical antibiotic therapy have no definitively confirmed infection, while de‑escalation and shortened 
treatment duration are insufficiently considered in those with documented sepsis, highlighting the potential benefit 
of implementing antibiotic stewardship programs (ASP) and other quality improvement initiatives. The objective of 
this narrative review is to summarize the available evidence, emerging options, and unsolved controversies for the 
optimization of antibiotic therapy in the ICU. Published data notably support the need for better identification of 
patients at risk of MDRB infection, more accurate diagnostic tools enabling a rule‑in/rule‑out approach for bacte‑
rial sepsis, an individualized reasoning for the selection of single‑drug or combination empirical regimen, the use of 
adequate dosing and administration schemes to ensure the attainment of pharmacokinetics/pharmacodynamics 
targets, concomitant source control when appropriate, and a systematic reappraisal of initial therapy in an attempt to 
minimize collateral damage on commensal ecosystems through de‑escalation and treatment‑shortening whenever 
conceivable. This narrative review also aims at compiling arguments for the elaboration of actionable ASP in the ICU, 
including improved patient outcomes and a reduction in antibiotic‑related selection pressure that may help to con‑
trol the dissemination of MDRB in this healthcare setting.
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Introduction

Antibiotics are massively used in ICUs around the world 
[1]. While the adequacy and the early implementation 
of empirical coverage are pivotal to cure patients with 
community- and hospital-acquired sepsis, antimicro-
bial therapy is not always targeted and, in more than one 
out of two cases, may be prescribed in patients without 

confirmed infections. Moreover, antibiotic de-escala-
tion is insufficiently considered. The resulting selection 
pressure together with the incomplete control of cross-
colonization with multidrug-resistant bacteria (MDRB) 
makes the ICU an important determinant of the spread 
of these pathogens in the hospital. As instrumental con-
tributors of antimicrobial stewardship programs (ASP), 
intensivists should be on the leading edge of conception, 
optimization, and promotion of therapeutic schemes for 
severe infections and sepsis, including the limitation of 
antimicrobial overuse.

In this narrative review based on a literature search 
(MEDLINE database) completed in September 2018, 
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we sought to summarize recent advances and emerging 
perspectives for the optimization of antibiotic therapy in 
the ICU, notably better identification of patients at risk 
of MDRB infection, more accurate diagnostic tools ena-
bling a rule-in/rule-out approach for bacterial sepsis, an 
individualized reasoning for the selection of single-drug 
or combination empirical regimen, the use of adequate 
dosing and administration schemes to ensure the attain-
ment of pharmacokinetics/pharmacodynamics targets, 
concomitant source control when appropriate, and a 
systematic reappraisal of initial therapy in an attempt to 
minimize collateral damage on commensal ecosystems 
through de-escalation and treatment-shortening when-
ever conceivable. We also aimed to compile arguments 
for the elaboration of actionable ASP in the ICU, includ-
ing improved patient outcomes and a reduction in anti-
biotic-related selection pressure that may help to control 
the dissemination of MDRB in this healthcare setting.

How antimicrobial therapy influences bacterial 
resistance
The burden of infections due to extended-spectrum 
beta-lactamase-producing Enterobacteriaceae (ESBL-
E) and MDR Pseudomonas aeruginosa is rising stead-
ily, carbapenem-resistant Acinetobacter baumannii and 
carbapenemase-producing Enterobacteriaceae (CRE) 
are spreading globally, while methicillin-resistant 
Staphylococcus aureus (MRSA) and vancomycin-resist-
ant enterococci generate major issues in several geo-
graphical areas [2–14]. These trends now apply for both 
ICU-acquired infections and imported bacterial sepsis 
as a result of the successful dissemination of MDRB 
in hospital wards and other healthcare environments 
(Fig. 1).

Up to 70% of ICU patients receive empirical or defi-
nite antimicrobial therapy on a given day [1]. The 
average volume of antibiotic consumption in this popu-
lation has been recently estimated as 1563 defined daily 
doses (DDD) per 1000  patient-days (95% confidence 
interval 1472–1653)—that is, almost three times higher 
than in ward patients, with marked disparities for 
broad-spectrum agents such as third-generation cepha-
losporins [15]. Whilst most of the underlying mecha-
nisms ensue from a succession of sporadic genetic 
events that are not directly induced by antibiotics, the 
selection pressure exerted by these drugs stands as a 
potent driver of bacterial resistance (Fig. 2) [16, 17].

At the patient level, antimicrobial exposure allows 
the overgrowth of pathogens with intrinsic or acquired 
resistance to the administered drug within commensal 
ecosystems or, to a lesser extent, at the site of infec-
tion. Of note, some mechanisms may confer resistance 

to various classes, notably the overexpression of efflux 
pumps in non-fermenting Gram-negative bacteria, 
thereby resulting in the selection of MDR mutants fol-
lowing only a single-drug exposure [18]. At the ICU 
scale, consumption volumes of a given class correlate 
with resistance rates in clinical isolates, including for 
carbapenems or polymyxins [19–26], although this may 
fluctuate depending on bacterial species and settings 
[27, 28].

Yet, in addition to its clinical spectrum, anti-anaer-
obic properties should be considered when appraising 
the ecological impact of each antibiotic [29]. Indeed, 
acquisition of MDR Gram-negative bacteria through 
in  situ selection, cross-transmission, or environmental 
reservoirs may be eased by antimicrobial-related altera-
tions of the normal gut microbiota—primarily resident 
anaerobes—and the colonization resistance that it con-
fers [30]. A prior course of anti-anaerobic drugs may 
notably predispose to colonization with ESBL-E [31], 
AmpC-hyperproducing Enterobacteriaceae [32], or 
CRE [33, 34]. The degree of biliary excretion of the drug 
appears as another key factor to appraise its potential 
impact on intestinal commensals [35–37].

Risk factors for multidrug‑resistant pathogens
The clinical value of identifying risk factors for MDRB 
infection is to guide empirical therapy before the avail-
ability of culture results—that is, pathogen identification 
and antimicrobial susceptibility testing (AST). However, 
no single algorithm may be used to predict a MDRB 
infection given the complex interplay between the host, 
the environment, and the pathogen, thus requiring an 
individualized probabilistic approach for the selection of 
empirical drugs (Table 1).

Colonization markedly amplifies the risk of subse-
quent infection with a given MDRB. However, the posi-
tive predictive value of this risk factor never exceeds 
50% whatever the colonizer is [2, 38–40]. For instance, 
ESBL-E infections occur during the ICU stay in only 
10–25% of ESBL-E carriers [41]. Whether an MDRB car-
rier becomes infected is related to a further series of fac-
tors that may or not be related to those associated with 
the risk of acquired colonization [2, 38, 39]. Overall, the 
presence or absence of documented carriage should not 

Take‑home message 

This narrative review summarizes the available evidence, emerg‑
ing options, and unsolved controversies for the optimization of 
antibiotic therapy in the ICU. The potential benefit of antibiotic 
stewardship programs to improve patient outcomes and reduce the 
ecological side effects of these drugs is also discussed.
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be considered as the unique requisite for the choice of 
empirical therapy.

Patients with advanced co-morbid illnesses, prolonged 
hospital stays, use of invasive procedures, and prior anti-
biotic exposure are at increased risk of MDRB infections 
[42, 43].

The patient location is another determinant of risk as 
there are vast differences in the epidemiology of MDRB 
globally, regionally, and even within hospitals in the same 
city [2, 44]. Reasons for these discrepancies may include 
socioeconomic factors as well as variations in case-mix, 
antimicrobial consumption, and hygiene practices.

When not to start antimicrobials in the ICU
Although mixed [45], the available evidence supports a 
beneficial effect of prompt antibiotic administration on 
survival rates in sepsis and septic shock, irrespective of 
the number of organ dysfunctions [46–49]. However, the 
clinical diagnosis of sepsis is challenging in critically ill 
patients having multiple concurrent disease processes, 

with up to 50% of febrile episodes being of non-infectious 
origin [50]. Furthermore, collection of microbiologi-
cal evidence for infection is typically slow, and previous 
antibiotic exposure may render results unreliable. Indeed, 
cultures remain negative in 30–80% of patients clinically 
considered infected [51, 52]. Uncertainty regarding anti-
biotic initiation in patients with suspected lower respira-
tory tract infection is further complicated by the fact that 
as many as one-third of pneumonia cases requiring ICU 
admission are actually viral [53, 54].

In 2016, the Sepsis-3 task force introduced the quick 
sepsis-related organ failure assessment score (qSOFA), 
a bedside clinical tool for early sepsis detection [55]. 
Although the predictive value of qSOFA for in-hospital 
mortality has been the focus of several external valida-
tion studies [56], it remains to be investigated whether 
this new score may help to rationalize antibiotic use 
in patients with suspected infection. Yet, published 
data suggest that qSOFA may lack sensitivity for early 

Fig. 1 Current resistance rates in major pathogens responsible for hospital‑acquired infections according to World Health Organization (WHO) 
regions. 3GCR third‑generation cephalosporin‑resistant, CR carbapenem‑resistant, MDR multidrug‑resistant, MR methicillin‑resistant. Data were 
extracted from the WHO Antimicrobial Resistance Global Report 2014 [171], National Healthcare Safety Network/Centers for Disease Control and 
Prevention Report 2011–2014 [11], European Antimicrobial Resistance Surveillance Network Annual Report 2016 [172], International Nosocomial 
Infection Control Consortium Report 2010–2015 [10], CHINET Surveillance Network Report 2014 [14], and other references [5, 12, 13]. Available 
resistance rates in the specific context of ICU‑acquired infections are in the upper ranges of reported values for all geographical areas
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identification of patients meeting the Sepsis-3 criteria 
for sepsis [57].

Hence, antibiotics are mostly used empirically in ICU 
patients [58]. A provocative before–after study, how-
ever, suggested that aggressive empirical antibiotic use 
might be harmful in this population [59]. In fact, a con-
servative approach—with antimicrobials started only 

after confirmed infection—was associated with a more 
than 50% reduction in adjusted mortality as well as 
higher rates of appropriate initial therapy and shorter 
treatment durations.

Biomarkers may help to identify or—perhaps more 
importantly—rule out bacterial infections in this set-
ting, thus limiting unnecessary antibiotic use and 

Fig. 2 Drivers of antimicrobial resistance in the ICU. MDRB multidrug‑resistant bacteria, ASP antimicrobial stewardship programs, ICP infection 
control programs. “Direct” selection pressure indicates the selection of a pathogen with resistance to the administered drug. Green vignettes indi‑
cate the positioning of countermeasures. ASP may notably encompass every intervention aimed at limiting the ecological impact of antimicrobials 
agents, including rationalized empirical initiation, choice of appropriate drugs with the narrowest spectrum of activity (especially against resident 
intestinal anaerobes) and minimal bowel bioavailability, and reduced treatment duration [173]. ICP may include educational interventions to ensure 
a high level of compliance to hand hygiene and other standard precautions, targeted contact precautions in MDRB carriers (e.g., carbapenemase‑
producing Enterobacteriaceae), appropriate handling of excreta, and environment disinfection [167]

Table 1 Determinants of increased risk of MDRB infection at ICU admission and during the ICU stay

MDRB multidrug-resistant bacteria, ICU intensive care unit

*Especially if agents with broad-spectrum and/or potent activity against intestinal anaerobes

Predictors of MDRB infection At ICU admission During the ICU stay

Patient features Co‑morbid illness/immunosuppression/recent hospital and/or ICU stay Higher severity of acute illness/Invasive 
interventions

Type of infection Hospital‑acquired > healthcare‑associated > community‑acquired ICU‑acquired > others

Antimicrobial selection pressure Prior antibiotics*/antifungals Antibiotics*/antifungals in the ICU

Colonization status Previously documented colonization with MDRB In‑ICU acquisition of MDRB

Local epidemiology Epidemiology of MDRB in community/hospital/areas recently traveled to Local epidemiology of MDRB in the ICU

Infection prevention measures Poor hygiene practices in hospital Poor hygiene practices in the ICU
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encouraging clinicians to search for alternative diag-
noses. Many cytokines, cell surface markers, soluble 
receptors, complement factors, coagulation factors, 
and acute phase reactants have been evaluated for sep-
sis diagnosis [60], yet most offer only poor discrimi-
nation [61]. Procalcitonin (PCT) levels are high in 
bacterial sepsis but remain fairly low in viral infections 
and most cases of non-infectious systemic inflamma-
tory response syndrome (SIRS). However, a PCT-based 
algorithm for initiation (or escalation) of antibiotic 
therapy in ICU patients neither decreases overall anti-
microbial consumption nor shortens time to adequate 
therapy or improves patient outcomes [62]. Thus, PCT 
is currently not recommended as part of the decision-
making process for antibiotic initiation in ICU patients 
[49].

Considering the complexity of the host response and 
biomarker kinetics, a combined approach which inte-
grates the clinical pretest probability of infection could 
facilitate the discrimination between bacterial sepsis 
and non-infectious SIRS in emergency departments 
and probably also in critically ill patients [63]. Given 
their high sensitivity, such multi-marker panels may be 
primarily used to rule out sepsis, albeit only in a sub-
set of patients as a result of their suboptimal specificity 
(Table E1). In contrast, novel molecular assays for rapid 
pathogen detection in clinical samples show good spec-
ificity, yet poor sensitivity, thus providing a primarily 
rule-in method for infection (see below). For the fore-
seeable future, however, physicians will remain con-
fronted with considerable diagnostic uncertainty and, 
in many cases, still have to rely on their clinical judg-
ment for decisions to withhold or postpone antimicro-
bial therapy.

Impact of immune status
The host immune status is a key factor for the initial 
choice of antimicrobial therapy in the ICU [64]. Solid 
organ transplant recipients receiving immunosuppres-
sive medications to prevent allograft rejection can pre-
sent with sepsis or septic shock and very few or even no 
typical warning signs such as fever or leukocytosis. The 
level of required immunosuppression and the site of 
infections vary according to the allograft type; the timing 
of infection from original transplant surgery delineates 
the occurrence of nosocomial sepsis and opportunistic 
infections (Table 2) [65]. In hematological of solid cancer 
patients receiving cytoablative chemotherapy, the dura-
tion and level of neutropenia will be essential factors for 
the choice of empirical therapy [66, 67]. HIV-infected 
patients are not only susceptible to community-acquired 
infections but also to a vast panel of opportunist infec-
tions depending on CD4 cell count [68]. Other host 

immune profiles encompass immunoglobulin deficien-
cies and iatrogenic immunosuppression (Table  2) [69]. 
Because immunocompromised patients may have mul-
tiple concomitant dysfunctional immune pathways, 
co-infections (bacterial and/or viral and/or fungal) are 
possible and, when suspected, required several antimi-
crobials as part of empirical therapy. Of note, ageing has 
been associated with impairments in both innate and 
adaptive immunity that may predispose to severe bacte-
rial infections; yet, the impact of immunosenescence on 
the management of ICU patients warrants further inves-
tigation [70, 71].

Early microbiological diagnosis: from empirical 
to immediate adequate therapy
The concepts of empirical therapy and de-escalation 
originate from the timeframe of routine bacteriological 
diagnosis. With culture-based methods, the turnaround 
time from sampling to AST results necessitates 48  h or 
more, leaving much uncertainty about the adequacy of 
empirical coverage at the acute phase of sepsis. Molecu-
lar diagnostic solutions have therefore been developed 
to accelerate the process without losing performance in 
terms of sensitivity and specificity.

A wide array of automated PCR-based systems tar-
geting selected pathogens and certain resistance mark-
ers have recently been introduced (Table  3). Several 
panels are now widely available in clinical laboratories 
for specific clinical contexts (e.g., suspected blood-
stream infections, pneumonia, or meningoencephali-
tis), offering a “syndromic approach” to microbiological 
diagnosis [72, 73]. Syndromic tests can be run with 
minimal hands-on time and identify pathogens faster 
than conventional methods (i.e., 1.5–6  h), especially 
when implemented as point-of-care systems. However, 
these tests remain expensive (> 100 USD per test) and 
must be performed alongside conventional cultures, 
which they cannot entirely replace. They also provide 
partial information about antibiotic susceptibility since 
only a limited number of acquired resistance genes 
are screened (e.g., those encoding ESBL or carbapen-
emase). Overall, further investigations are warranted 
to fully appraise their potential impact on patient out-
comes [72].

A next step will be the daily use of clinical metagen-
omics—that is, the sequencing of nucleic acids extracted 
directly from a given clinical sample for the identification 
of all bacterial pathogens and their resistance determi-
nants [74]. Fast sequencers such as the Nanopore (Oxford 
Nanopore Technologies, Oxford, UK) allow turnaround 
times of 6–8 h at similar costs to that of syndromic tests 
[75, 76]. This approach can also assess the host response 
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at the infection site by sequencing the retro-transcribed 
RNA, possibly adding to its diagnostic yield [77]. None-
theless, significant improvements in nucleic extraction 
rates, antibiotic susceptibility inference, and the exploita-
tion of results into actionable data must be made before 
clinical metagenomics can be part of routine diagnostic 
algorithms.

Besides new-generation tools, rapidly applicable infor-
mation can still be obtained from culture-based methods 
such as direct AST on lower respiratory tract samples 

(time from sample collection ca. 24 h) [78] or lab auto-
mation with real-time imaging of growing colonies—for 
instance, the Accelerate Pheno™ system (Accelerate 
Diagnostics, Tucson, AZ) provides AST results in 6–8 h 
from a positive blood culture [79].

To be effective, all these tests must be integrated into 
the clinical workflow, thereby raising other organizational 
challenges and requiring the implementation of ASP [80].

Table 2 Spectrum of empirical antimicrobial therapy in immunocompromised patients

HAI hospital-acquired infection, CAI community-acquired infection, OI opportunistic infection, CMV cytomegalovirus, PCP Pneumocystis jirovecii pneumonia
a Encapsulated bacteria: S. pneumoniae, H. influenza, N. meningitidis, Salmonella spp., Klebsiella spp.

Type of immune deficiency Infection risk to guide antimicrobial rationale Antimicrobial empirical coverage

Solid organ transplant Timing from transplant surgery
0–2 months: high risk of HAI
2–6 months: high risk of both HAI and CAI
6–12 months: low risk of HAI, moderate risk of HAI and OI
> 12 months: low risk of HAI, moderate risk of CAI and OI

Pseudomonas spp., S. aureus, Candida spp., Aspergil-
lus spp., Cryptococcus spp.

Nocardia spp., endemic mycoses, CMV
PCP, tuberculosis, S. pneumoniae

Neutropenia Absolute neutrophil count, duration, and comorbidities
> 500 cells/µL, anticipated to last < 7 days
< 100 cells/µL, anticipated to last > 7 days
Shock, mucositis, diarrhea, central line

Low risk
Pseudomonas spp., S. aureus, S. viridans, molds
Pseudomonas spp., S. aureus, S. viridans, Candida spp.

HIV CD4 cell count
200–500 cells/µL: low risk of OI
50–200 cells/µL: high risk of OI
< 50 cells/µL: very high risk of OI
HIV‑induced humoral immunodeficiency at any CD4 level
HIV and intravenous drug abuse

Tuberculosis
Tuberculosis, PCP
Cryptococcosis, toxoplasmosis, CMV
S. pneumoniae
S. aureus

Immunoglobulin deficiency Common variable immunodeficiency
Chronic lymphocytic leukemia
Multiple myeloma
Chronic granulomatous disease

Encapsulated  bacteriaa

Encapsulated  bacteriaa, S. aureus
Encapsulated  bacteriaa

S. aureus, Burkholderia cepacia, Aspergillus spp.

Iatrogenic immunosuppression Steroids (prednisone > 20 mg/day)
Inhibitors of TNF, IL‑1, IL‑6, IL‑17, IL‑12/23
Anti‑CD20 monoclonal antibodies
Anti‑CD52 monoclonal antibodies

Candida spp., PCP, Nocardia spp.
Tuberculosis, S. aureus, Listeria spp., Legionella
Low risk
Aspergillus spp., Mucor, Listeria spp.

Table 3 New diagnostic tools for bacterial infection in critically ill patients

AST antimicrobial susceptibility testing, TAT  turnaround time, NGS next-generation sequencing

Method Based on Available Pros Cons

Direct AST Culture Yes Cheap
Decreases TAT by 24 h

Lacks standardization
Does not work for polymicrobial infection

Accelerate Pheno™ Culture Yes Faster than conventional methods
Automatized
1 h for identification, 6–8 h for AST

Expensive
Low throughput
For positive blood cultures only

Lab automation Culture Yes Real‑time culturing decreasing TAT Integration with stewardship
Cost
Exploitation of results outside working hours

Syndromic tests PCR Yes Fast (TAT 1–8 h)
Minimal hands‑on time

Expensive
Not exhaustive
Minimal information on antibiotic resistance

Clinical metagenomics NGS In development Exhaustive
Potentially fast
Host response

Experimental
Interpretation of results
Expensive
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The right molecule(s) but avoid the wrong dose
Key features to appraise the optimal dozing of a given 
antibiotic include the minimum inhibitory concentra-
tion (MIC) of the pathogen and the site of infection. Still, 
for most cases, clear guidance on how to adapt the dose 
on the basis of such characteristics is lacking, leaving 
much uncertainty on this issue. Defining the right dose 
in patients with culture-negative sepsis is a further chal-
lenge, although targeting potential pathogens with the 
highest MICs may appear to be a reasonable approach.

Underdosing of antibiotics is frequent in critically ill 
patients. Indeed, up to one out of six patients receiving 
beta-lactams does not reach the minimal concentration 
target (i.e., free antibiotic concentrations above the MIC 
of the pathogen during more than 50% of the dosing 
interval), and many more do not reach the target asso-
ciated with maximal bacterial killing (i.e., concentrations 
above 4 × MIC during 100% of the dosing interval) [81]. 
This is particularly worrisome in the first hours of ther-
apy when a maximal effect is highly desirable. Unfortu-
nately, no standard remedy for this problem is available, 
and the solution depends on the physicochemical prop-
erties of the drug (e.g., hydrophilic versus lipophilic), 
patient characteristics, administration scheme, and the 
use of organ support (e.g., renal replacement therapy or 
extracorporeal membrane oxygenation) [82].

The volume of distribution—an important determinant 
of adequate antibiotic concentrations—is not measur-
able in critically ill patients. Yet, those with evidence for 
increased volume of distribution (e.g., positive fluid bal-
ance) require a higher loading dose to rapidly ensure 
adequate tissue concentrations, particularly for hydro-
philic antibiotics, and for both intermittent and con-
tinuous infusion schemes [83]. This first dose must not 
be adapted to the renal function for antibiotics with pre-
dominant or exclusive renal clearance.

Many antibiotics used in the ICU are cleared by the 
kidneys; so, dosing adaptation for subsequent infusions 
must be considered in case of acute kidney injury (AKI) 
or augmented renal clearance (i.e., a measured creatinine 
clearance of 130 mL/min/1.73 m2 or higher). This latter 
situation is associated with lower antibiotic exposure [84] 
and implies higher maintenance doses to keep concentra-
tions at the targeted level, yet therapeutic drug monitor-
ing (TDM) appears necessary to avoid overdosing.

These features can be integrated into pharmacokinetics 
(PK)/pharmacodynamics (PD) optimized dosing which 
can be considered a three-step process (Fig. 3). PK mod-
els can be used when selecting the dose for each of these 
steps [85] even if these predictions are estimations only 
with still important intra- and inter-individual variations. 
These are nowadays available in several stand-alone 
software packages, and integration in prescription drug 

monitoring systems (PDMS) will be the next step. TDM 
can be used to further refine therapy for many antibiotics 
[86].

Is there a role for routine therapeutic drug 
monitoring?
TDM may be employed to minimize the risk of anti-
microbial toxicity and maximize drug efficacy through 
optimized PK, especially for aminoglycosides and gly-
copeptides. Indeed, high peak levels of aminoglycosides 
over the pathogen MIC appear beneficial in patients with 
ventilator-associated pneumonia or other life-threat-
ening MDRB infections [87–89], while adequate trough 
vancomycin concentrations improve the clinical response 
in those with bloodstream infection due to MRSA [90].

However, the role of routine TDM in optimizing beta-
lactam dosing remains controversial. The main issues that 
nowadays prevent the implementation of such a strat-
egy in clinical practice are (1) the lack of a standardized 
method to reliably measure beta-lactam concentrations 
with a high intercenter reproducibility, (2) the delayed 
results of TDM for clinicians (i.e., the lack of a “point-
of-care” for beta-lactam TDM in most of hospitals), (3) 
the optimal timing and number of samples to adequately 
describe the time course of drug concentrations, (4) the 
fact that the association between insufficient beta-lactam 
concentrations and the increased risk of therapeutic fail-
ure or impaired outcome is based only on retrospective 
studies, (5) the absence of clinical data showing a poten-
tial role of adequate beta-lactam levels in the emergence 
of resistant strains, (6) the poor characterization of the 
optimal duration of beta-lactam levels exceeding the 
MIC of the infective pathogen, when available, or of the 
optimal PK target in case of empirical therapy, and (7) the 
time needed to obtain the MIC of the infective pathogen, 
which precludes an adequate targeted therapy using PK 
principles [81, 91]. It is therefore possible that epidemio-
logical cutoff (ECOFF) values are an acceptable option 
[92], but further studies are needed before the routine 
TDM of beta-lactams becomes available in most ICUs. 
Interestingly, high beta-lactam concentrations may result 
in drug-related neurotoxicity, which represents another 
potential role for TDM in critically ill patients [93, 94].

Key questions about antimicrobials
New and long‑established antimicrobials
Polymyxins are considered the cornerstone of therapy 
for infections due to extremely drug-resistant (XDR) 
Gram-negative bacteria, including carbapenem-resist-
ant A.  baumannii, P.  aeruginosa, and K.  pneumoniae. 
Of note, recent studies indicate that colistin and poly-
myxin  B are associated with less renal and neurological 
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toxicity than previously reported. Several questions 
remain incompletely addressed, including the need and 
type of combination therapies, optimal dosing regimen, 
ways to prevent the emergence of resistance, and role of 
aerosolized therapy. Fosfomycin may also have a role in 
these infections.

Drugs newly approved or in late development phase 
mainly include ceftolozane–tazobactam, ceftazidime–
avibactam, ceftaroline–avibactam, aztreonam–avibac-
tam, carbapenems combined with new beta-lactamase 
inhibitors (e.g., vaborbactam, relebactam), cefiderocol, 
plazomicin, and eravacycline (Table 4). These drugs have 
mainly been tested in complicated urinary tract infec-
tion, complicated intra-abdominal infections (cIAI), or 
skin and soft tissue infection (SSTI). Limited data are 
currently available in ICU patients [95], notably for dos-
ing optimization in severe MDRB infections. Piperacil-
lin–tazobactam appears less effective than carbapenems 
in bloodstream infections caused by ESBL-E [96, 97]; 
however, ceftolozane–tazobactam and ceftazidime–avi-
bactam might be considered as carbapenem-sparing 
options for treatment of such infections in areas with 

high prevalence of CRE. The actual question is should we 
still save carbapenems instead of saving new antibiotics?

In addition to glycopeptides, long-established antibiot-
ics with activity against MRSA mainly include daptomy-
cin (e.g., for bloodstream infections) and linezolid (e.g., 
for hospital-acquired pneumonia, HAP) [98, 99]. These 
alternatives may be preferred in patients with risk factors 
for AKI. Daptomycin appears safe even at high doses and 
in prolonged regimens, with rhabdomyolysis represent-
ing a rare, reversible side effect. Conversely, linezolid has 
been linked with several adverse events most often asso-
ciated with specific risk factors (e.g., renal impairment, 
underlying hematological disease, or extended therapy 
duration), suggesting a role for TDM in patients at high 
risk of toxicity. Next, “new-generation” cephalosporins 
such as ceftaroline and ceftobiprole have been approved 
for the treatment of MRSA infections and seem prom-
ising in overcoming the limitations associated with the 
older compounds. Other new agents with activity against 
MRSA include lipoglycopeptides (dalbavancin, orita-
vancin, and telavancin), fluoroquinolones (delafloxacin, 
nemonoxacin, and zabofloxacin), an oxazolidinone (tedi-
zolid), a dihydrofolate reductase inhibitor (iclaprim), and 

Fig. 3 Sequential optimization of antimicrobial pharmacokinetics in critically ill patients. In obese patients, dosing regimen should be adapted 
on the basis of lean body weight or adjusted body weight for hydrophilic drugs (e.g., beta‑lactams or aminoglycosides) and on the basis of lean 
body weight for lipophilic drugs (e.g., fluoroquinolones or glycylcyclines)—see Ref. [174] for details. Dosing regimens for the first antibiotic dose 
(unchanged, increased, or doubled) are proposed by comparison with those usually prescribed in non‑critically ill patients. PD pharmacodynamics, 
MIC minimal inhibitory concentration, AUC area under the curve, ARC augmented renal clearance, TDM therapeutic drug monitoring, AKI acute 
kidney injury, CRRT continuous renal replacement therapy, CrCL creatinine clearance
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a tetracycline (omadacycline); yet, the yield of these new 
options remains to be investigated in critically ill patients 
with severe MRSA infection [100].

Single‑drug or combination regimen
The question of whether antibiotic combinations pro-
vide a beneficial effect beyond the empirical treatment 
period remains unsettled. Meta-analyses of randomized 
controlled trials (RCTs) comparing beta-lactams vs. beta-
lactams combined with another agent demonstrate no 
difference in clinical outcomes in a variety of infections 
caused by Gram-negative pathogens; however, patients 

with sepsis or septic shock were underrepresented [101, 
102]. In contrast, a meta-analysis of randomized and 
observational studies focused on sepsis or septic shock 
showed that combination therapy is beneficial in high-
risk patients (i.e., projected mortality rate greater than 
25%) [103]. This positive impact may be especially pro-
nounced in neutropenic patients and when a pathogen 
with reduced antimicrobial susceptibility is involved (e.g., 
P. aeruginosa) [104].

To date, there is no RCT to examine whether combina-
tion therapy is superior to monotherapy for CRE infec-
tions. Observational studies suggest that the benefit of 

Table 4 Indications and doses of new and long‑established antibiotics for treating MDR bacteria

BSI bloodstream infection, HAP hospital-acquired pneumonia, VAP ventilator-associated pneumonia, cIAI complicated intra-abdominal infection, UTI urinary tract 
infection, CI continuous infusion, FDA US Food and Drug Administration, EMA European Medicines Agency

Drug Usual dosing regimen for serious 
infections

Indication Status

Recent release or late development phases

 Ceftaroline 600 mg q12 h, IV BSI, CAP, cSSTI Approved

 Ceftobiprole 500 mg q8 h IV BSI, HAP Approved

 Ceftazidime/avibactam 2.5 g q8 h IV BSI, HAP, VAP, cIAI, UTI Approved

 Ceftolozane/tazobactam 1.5 g q8 h/3 g q8 h (VAP) IV BSI, UTI, cIAI, HAP, VAP Approved for cIAI and UTI
Phase 3 for HAP and VAP

 Aztreonam/avibactam 6500 mg ATM/2167 mg AVI q24 h 
on day 1 followed by 6000 mg 
ATM/2000 mg AVI q24 h, IV

HAP, VAP, BSI, UTI Phase 3

 Meropenem/vaborbactam 2 g/2 g q8 h IV BSI, UTI, cIAI, HAP/VAP Approved (FDA)

 Cefiderocol 2 g q8 h IV BSI, HAP, VAP, cIAI, UTI Phase 3

 Imipenem/relebactam 500 mg/250–125 mg q6 h IV BSI, HAP, VAP, cIAI, UTI Phase 3

 Eravacycline 1 mg/kg q12 h IV cIAI Under evaluation (EMA and FDA)

 Plazomicin 15 mg/kg q24 h IV In combination for BSI, UTI, HAP, VAP Approved

 Tedizolid 200 mg q24 h IV, oral cSSTI, HAP/VAP Approved for cSSTI, phase 3 for HAP 
and VAP

Long‑established antibiotics

 Piperacillin/tazobactam 4.5 g every 6 h CI BSI, HAP, VAP, UTI, cIAI Approved

 Ceftazidime 6 g every 24 h CI BSI, HAP, VAP, UTI Approved

 Cefepime 2 g every 8 h or CI BSI, HAP, VAP, UTI Approved

 Aztreonam 1 g (2 g) every 8 h BSI, HAP, VAP, UTI, SSTI Approved

 Imipenem/cilastatin 500 mg (1 g) every 6 h BSI, HAP, VAP, UTI, cIAI Approved

 Meropenem 1 g (2 g) every 8 h or CI BSI, HAP, VAP, UTI, cIAI Approved

 Tigecycline 100–200 mg loading those, then 
50–100 mg every 12 h

cIAI Approved

“Old” antibiotics

 Gentamicin 7 mg/kg/day every 24 h In combination for BSI, UTI, c HAP, cIAI, 
VAP

Approved

 Amikacin 25–30 mg/kg/day every 24 h In combination for BSI, UTI,VA HAP, VAP Approved

 Colistin 9 MU loading dose, 4.5 MU every 
8–12 h

In combination for BSI, UTI, HAP, VAP Approved

 Fosfomycin 4–6 g every 6 h CI In combination for BSI, UTI, HAP, VAP Approved

 Vancomycin 15–30 mg/kg loading dose, 30–60 mg/
kg every 12 h, 6 h or CI

BSI, HAP, VAP Approved

 Linezolid 600 mg every 12 h BSI, HAP, VAP, SSTI Approved
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combination therapy is mainly observed in patients with 
serious underlying diseases or high pretreatment prob-
ability of death (e.g., septic shock) [105–109]. The most 
effective regimen is challenging to define, as only one 
of the aforementioned studies reported survival benefit 
with a specific drug combination (colistin plus tigecycline 
plus meropenem) after adjustment for potential con-
founders [109].

Although there have been five RCTs and several meta-
analyses for the treatment of carbapenem-resistant 
A. baumannii infections, the optimal treatment regimen 
has not yet been determined [110–115]. Notably, none of 
the RCTs demonstrated a survival benefit with combina-
tion therapy, although one study showed a better clinical 
response with colistin plus high-dose ampicillin/sulbac-
tam and three studies reported faster microbiological 
clearance when combining colistin with rifampin or fos-
fomycin. A recent meta-analysis, however, demonstrated 
survival benefit in bacteremic patients who were receiv-
ing high doses of colistin (more than 6 MIU per day) in 
combination with another agent [116].

Continuous prolonged or intermittent administration 
of beta‑lactams and other time‑dependent antimicrobials
The proportion of the interdose interval with drug con-
centration above the pathogen MIC is predictive of 
efficacy for time-dependent antibiotics, including beta-
lactams. This parameter may be increased by reducing 
the interdose interval and/or by using extended infusions 
(EI) over 3–4  h or continuous infusion (CI). Stochas-
tic models show that prolonged beta-lactam infusions 
increase the probability of target attainment against iso-
lates with borderline MIC, especially in patients with 
ARC or increased volume of distribution [117].

Most RCTs comparing intermittent versus prolonged 
beta-lactam infusions could not find significant differ-
ences in outcomes. However, in a recent meta-analysis of 
RCTs comparing prolonged (EI or CI) and intermittent 
infusions of antipseudomonal beta-lactams in patients 
with sepsis, prolonged infusion was associated with 
improved survival, including when carbapenems or beta-
lactam/beta-lactam inhibitor combinations were ana-
lyzed separately [118]. Prolonged infusions might only 
be needed in some patients—e.g., those with beta-lactam 
underdosing using intermittent administration schemes, 
or infections caused by isolates with elevated MICs. 
Because these features cannot be anticipated, it seems 
reasonable to consider the use of prolonged infusions of 
sufficiently stable antipseudomonal beta-lactams in all 
patients with sepsis.

For some other drugs such as vancomycin, the 
ratio area under the curve/MIC is considered the PK/
PD parameter predictive of efficacy (Fig.  3). A recent 

meta-analysis suggested that continuous vancomycin 
infusion is associated with lower nephrotoxicity but not 
better cure or lower mortality than intermittent infusions 
[119]; nevertheless, included studies had many limita-
tions and further investigations are needed to address 
this issue.

De‑escalation: impact in practice
Conceptually, de-escalation is a strategy whereby the pro-
vision of effective antibiotic treatment is achieved, while 
minimizing unnecessary exposure to broad-spectrum 
agents that would promote the development of resist-
ance. Practically, it consists in the reappraisal of anti-
microbial therapy as soon as AST results are available. 
However, no clear consensus on de-escalation compo-
nents exists and various definitions have been used (e.g., 
changing the “pivotal” agent for a drug with a narrower 
spectrum and/or lower ecological effects on microbiota, 
or discontinuing an antimicrobial combination), resulting 
in equivocal interpretation of the available evidence [120, 
121].

De-escalation is applied in only 40–50% of inpatients 
with bacterial infection [121]. This reflects physician 
reluctance to narrow the covered spectrum when car-
ing for severely ill patients with culture-negative sepsis 
and/or MDRB carriage [120]. Importantly, the available 
evidence does not suggest a detrimental impact of de-
escalation on outcomes [120, 122], including in high-
risk patients such as those with bloodstream infections, 
severe sepsis, VAP, and neutropenia [123, 124]. However, 
further well-designed RCTs are needed to definitely solve 
this issue.

Increasing physician confidence and compliance with 
de-escalation has become a cornerstone of ASP. Para-
doxically, there is a lack of clinical data regarding the 
impact of de-escalation on antimicrobial consumption 
and emergence of resistance [120]. While this strategy 
has been associated with reduced use of certain antimi-
crobial classes [125, 126], no study demonstrated that it 
may allow a decrease in overall antimicrobial consump-
tion, and an increase in antibiotic exposure has even 
been observed [123, 125, 127]. Similarly, the few studies 
that addressed this point reported no impact—or only a 
marginal effect—of de-escalation on the individual haz-
ard of MDRB acquisition or local prevalence of MDRB 
[125–127].

In light of these uncertainties, efforts should focus on 
microbiological documentation to increase ADE rates 
in patients with sepsis. New diagnostic tools should be 
exploited to hasten pathogen identification and AST 
availability. Lastly, human data on the specific impact 
of each antimicrobial on commensal ecosystems and 
the risk of MDRB acquisition are needed to optimize 
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antibiotic streamlining and further support de-escala-
tion strategies [37, 128].

Duration of antibiotic therapy and antibiotic resistance
Prolonged durations of antibiotic therapy have been 
associated with the emergence of antimicrobial resist-
ance [129]. Yet, short-course antibiotic therapy has 
been shown to be effective and safe in a number of 
infections, including community-acquired pneumo-
nia, VAP, urinary tract infections, cIAI, and even some 
types of bacteremia [130–136]. The shortening of anti-
biotic durations on the basis of PCT kinetics has also 
been shown to be safe, including in patients with sep-
sis [51, 52]. However, the recent ProACT trial failed 
to confirm the ability of PCT to reduce the duration 
of antibiotic exposure compared to usual care in sus-
pected lower respiratory tract infections [137]. Given 
the importance of overruling in available RCTs and the 
relatively long duration of therapy in control groups, 
the question remains unresolved. In particular, the 
efficacy and costs of PCT if an active ASP is in place 
remain to be evaluated.

Many national and international guidelines encourage 
physicians to shorten the overall durations of antibiotic 
therapy for a number of infections. Shorter courses are 
now recommended for pneumonia, urinary tract infec-
tions, and cIAI with source control [49, 138–142]. How-
ever, despite the presence of these recommendations, 
recent studies suggest that excessive durations of antibi-
otics are still being administered, thereby offering further 
opportunities for ASP [143, 144]. However, clinicians 
should also be aware that, under some circumstances, 
short-course therapy may be detrimental to patient out-
comes, especially in case of prolonged neutropenia, lack 
of adequate source control, infection due to XDR Gram-
negative bacteria, and endovascular or foreign body 
infections [130, 145].

Source control
Source control to eliminate infectious foci follows prin-
ciples of drainage, debridement, device removal, com-
partment decompression, and often deferred definitive 
restoration of anatomy and function [146]. If required, 
source control is a major determinant of outcome, more 
so than early adequate antimicrobial therapy [147–
149], and should never be considered as “covered” by 
broad-spectrum agents. Therefore, surgical and radio-
logical options for intervention must be systematically 
discussed, especially in patients with cIAI or SSTI. The 
efficacy of source control is time-dependent [150–153] 
and adequate procedures should therefore be performed 
as rapidly as possible in patients with septic shock [49], 

while longer delays may be acceptable in closely moni-
tored stable patients. Failure of source control should 
be considered in cases of persistent or new organ failure 
despite resuscitation and appropriate antimicrobial ther-
apy, and requires (re)imaging and repeated or alterna-
tive intervention. Importantly, source control procedures 
should include microbiological sampling whenever pos-
sible to facilitate ADE initiatives.

Antibiotic stewardship programs in the ICU
Implementing ASP in the ICU improves antimicrobial 
utilization and reduces broad-spectrum antimicrobial 
use, incidence of infections and colonization with MDRB, 
antimicrobial-related adverse events, and healthcare-
associated costs, all without increase in mortality [26, 
154, 155]. According to the ESCMID Study Group for 
Antimicrobial Stewardship, ASP should be approached 
as “a coherent set of actions which promote using anti-
microbials in ways that ensure sustainable access to effec-
tive therapy for all who need them” [156]. Therefore, ASP 
should be viewed as a quality improvement initiative, 
requiring (1) an evidence-based, ideally bundled, change 
package, (2) a clear definition of goals, indicators, and 
targets, (3) a dynamic measurement and data collection 
system with feedback to prescribers, (4) a strategy for 
building capacity, and (5) a plan to identify and approach 
areas for improvement and solve quality gaps. This neces-
sarily implies the appointment of a member of the ICU 
staff as a leader with expertise in the field of antimicro-
bial therapy and prespecified functions for the imple-
mentation of the local ASP.

Three main kinds of interventions may be used in ASP 
[157–159]:

 – Restrictive, in which one tries to reduce the number 
of opportunities for bad behavior, such as formulary 
restrictions, pre-approval by senior ASP doctor (either 
an external infectious disease specialist or a specified 
expert in the ICU team), and automatic stop orders

  – Collaborative or enhancement, in which one tries to 
increase the number of opportunities and decrease 
barriers for good behavior, such as education of pre-
scribers, implementation of treatment guidelines, pro-
motion of ADE, use of PK/PD concepts, and prospec-
tive audit and feedback to providers

 – Structural, which may include the use of computer-
ized antibiotic decision support systems, faster diag-
nostic methods for antimicrobial resistance, antibiotic 
consumption surveillance systems, ICU leadership 
commitment, staff involvement, and daily collabora-
tion between ICU staff, pharmacists, infection control 
units, and microbiologists
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The implementation of ASP should take into account 
the need for a quick answer from the system in case of 
severe infections (e.g., regarding as unacceptable the 
delay in the first antimicrobial delivery due to too restric-
tive pharmacy-driven prescription policies).

An ASP should consensually rest on multifaceted 
interventions to achieve its fundamental goals (Table 5), 
namely improving outcomes and decreasing antimi-
crobial-related collateral damage in infected patients. 
Yet, the weight of each component must be customized 
according to the context and culture of every single ICU 
in terms of habits for antibiotic prescription, MDRB 
prevalence, local organizational aspects, and available 
resources. For this purpose, concepts of implementa-
tion science should be applied—that is, identifying bar-
riers and facilitators that impact the staff’s compliance 
to guidelines in order to design and execute a structured 
plan for improvement [160].

The appropriate dashboard in the ICU
The availability of constantly updated information is piv-
otal to improve decision-making processes in the ICU 

[161, 162]. As the epidemiology of MDRB is continuously 
evolving, close monitoring of local resistance patterns 
may help to rationalize the empirical use of broad-spec-
trum antibiotics in this setting. With the expanding uti-
lization of electronic medical records and applications 
specifically developed for the ICU, streaming analytics 
can provide dashboards containing real-time and eas-
ily accessible data for intensivists [162, 163]. Such dash-
boards should capture data from medical records and 
microbiology systems, display an intuitive and user-
friendly interface, and be available on both ICU comput-
ers and mobile devices to allow easy access to actionable 
data at the bedside. Finally, a complete dashboard should 
include information not only on dynamics of resistance 
patterns but also on local antimicrobial consumption, 
adherence to protocols of care and antibiotic guidelines, 
healthcare-associated infections (e.g., source, type, sever-
ity), and general patient characteristics (e.g., comor-
bidities, severity of illness, main diagnosis, and length 
of the ICU stay) (Fig.  4). Although studies demonstrat-
ing the efficacy of such dashboards in reducing resist-
ance have not been published so far, these tools could 

Table 5 Implementation and objectives of antibiotic stewardship programs in the ICU

Implementation of ASP

Pre‑requisites Evidence‑based, ideally bundled change package
Dynamic data collection systems with feedback to prescribers
Strategy for building capacity, including the appointment of an ICU staff member as ASP leader

Pre‑implementation phase Identification of determinants for antibiotic prescription and opportunities for improvement at the ICU 
level

Implementation phase Building of a customized plan to solve quality gaps, based on educational and behavioral interventions
Continuous collaboration between ICU staff members, microbiologists, pharmacists, and infection control 

units
Clear definition of goals and indicators

Pragmatic objectives of ASP

Stewardship of empirical antibiotic therapy Distinction between bacterial infections, non‑bacterial infections, and non‑infectious inflammatory 
syndromes

Early identification of sepsis (antibiotic initiation might be delayed pending microbiological data in certain 
patients without new or worsening organ failure)

Consideration of local resistance patterns and patient’s individual risk factors for MDRB for the choice of 
empirical drugs

Efforts to obtain early microbiological documentation (including rapid diagnostic tools, conventional 
cultures, and source control when appropriate)

Optimization of PK/PD
Promotion of single‑drug regimen whenever possible for patients without septic shock and/or risk factors 

for MDRB
Restricted use of broad‑spectrum, costly, and/or potentially toxic antibiotics

Stewardship of definite antibiotic therapy Reappraisal of the diagnosis of bacterial infection at day 2–3 (microbiological and radiological data, clinical 
evolution)

Early antibiotic cessation in patients without confirmed infection
In patients with likely or confirmed infection: dosing adaptation when appropriate (e.g., if changes in Vd 

and/or renal clearance), routine discussion for de‑escalation (e.g., spectrum narrowing and switching 
from combination to single‑drug regimen) and shortening of treatment duration (e.g., PCT‑based algo‑
rithms, adequate source control, favorable clinical evolution)

Overall objectives Improvement in patient outcomes
Reduction in ecological and non‑ecological (e.g., toxicity or allergy) side effects of antibiotics
Reduction of antibiotic‑ and resistance‑related costs
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allow a structured audit-feedback approach that is one 
of the cornerstones of ASP implementation in the ICU 
[164–166].

Concluding remarks
Both the poor outcomes associated with bacterial sepsis 
and the current epidemiology of MDRB urge the need 
for improving the management of antibiotic therapy in 
ICU patients. Well-designed studies remain warranted 
to definitely address several aspects of this issue, notably 
the clinical input of rapid diagnostic tools and TDM, the 
potential benefit of combination versus single-drug ther-
apies, the optimal dosing regimens before the availability 
of AST results or for patients with culture-negative sep-
sis, and the prognostic yield of ASP. Although beyond the 
scope of this review, the exploitation of other research 
axes may further help to control the spread of MDRB in 
the ICU setting, including optimization of infection con-
trol policies [167], a comparative appraisal of the impact 
of broad-spectrum antibiotics on the gut microbiota 
through novel metagenomics approaches [168], and the 

evaluation of emerging options such as orally adminis-
tered antimicrobial-adsorbing charcoals, probiotics, or 
fecal microbiota transplantation to protect or restore the 
commensal ecosystems of ICU patients [29, 169, 170].
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