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Abstract 

Purpose: Reliable biomarkers for predicting subsequent sepsis among patients with suspected acute infection are 
lacking. In patients presenting to emergency departments (EDs) with suspected acute infection, we aimed to evalu‑
ate the reliability and discriminant ability of 47 leukocyte biomarkers as predictors of sepsis (Sequential Organ Failure 
Assessment score ≥ 2 at 24 h and/or 72 h following ED presentation).

Methods: In a multi‑centre cohort study in four EDs and intensive care units (ICUs), we standardised flow‑cytometric 
leukocyte biomarker measurement and compared patients with suspected acute infection (cohort‑1) with two 
comparator cohorts: ICU patients with established sepsis (cohort‑2), and ED patients without infection or systemic 
inflammation but requiring hospitalization (cohort‑3).

Results: Between January 2014 and February 2016, we recruited 272, 59 and 75 patients to cohorts 1, 2, and 3, 
respectively. Of 47 leukocyte biomarkers, 14 were non‑reliable, and 17 did not discriminate between the three 
cohorts. Discriminant analyses for predicting sepsis within cohort‑1 were undertaken for eight neutrophil (cluster 
of differentiation antigens (CD) CD15; CD24; CD35; CD64; CD312; CD11b; CD274; CD279), seven monocyte (CD35; 
CD64; CD312; CD11b; HLA‑DR; CD274; CD279) and a CD8 T‑lymphocyte biomarker (CD279). Individually, only higher 
neutrophil CD279 [OR 1.78 (95% CI 1.23–2.57); P = 0.002], higher monocyte CD279 [1.32 (1.03–1.70); P = 0.03], and 
lower monocyte HLA‑DR [0.73 (0.55–0.97); P = 0.03] expression were associated with subsequent sepsis. With logistic 
regression the optimum biomarker combination was increased neutrophil CD24 and neutrophil CD279, and reduced 
monocyte HLA‑DR expression, but no combination had clinically relevant predictive validity.

Conclusions: From a large panel of leukocyte biomarkers, immunosuppression biomarkers were associated with 
subsequent sepsis in ED patients with suspected acute infection.

Clinical trial registration: NCT02188992.
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Introduction

Sepsis is life-threatening organ dysfunction caused by a 
dysregulated host response to infection [1]. Host immune 
responses result from leukocytes sensing pathogen- and 
tissue damage-associated danger signals [2, 3]. Sepsis-
related immune responses involve both humoral and leu-
kocyte components of the innate and adaptive immune 
systems, with excessive inflammation and immunosup-
pression occurring simultaneously in most patients [2, 3]. 
These are thought to influence the resulting clinical phe-
notypes and outcomes [3, 4].

Leukocyte responses in sepsis measured using flow 
cytometry detect leukocyte biomarkers, including sur-
face markers and/or leukocyte subsets [5]. Previous flow 
cytometry-based leukocyte biomarker studies in sepsis 
were mostly small, single-centre studies in patients with 
sepsis, typically focusing on a limited panel of biomark-
ers. These studies rarely evaluated biomarker reliabil-
ity and reproducibility, which is methodologically and 
clinically relevant as it influences diagnostic validity [6]. 
In addition, few studies used robust unbiased designs to 
assess predictive ability for clinically relevant outcomes 
in unselected populations with suspected infections prior 
to developing organ dysfunction and established sepsis.

We hypothesized that among patients with clinically 
suspected acute infection, but without established sep-
sis, leukocyte biomarkers would identify patients who 
subsequently deteriorate clinically and develop sepsis, 
when measured within a few hours of presentation to the 
emergency department (ED). Our study objectives were: 
(1) to identify reliable leukocyte biomarkers; (2) to ascer-
tain which of the reliable biomarkers could discriminate 
[6] acutely unwell patients with suspected infection from 
patients with community acquired sepsis-related critical 
illness in the intensive care unit (ICU) and/or ED patients 
with non-infective acute illness requiring hospitalisation; 
and (3) to ascertain whether any of the reliable biomark-
ers with cross-cohort discrimination could predict which 
patients with suspected infection in the ED subsequently 
develop sepsis. We also undertook a post hoc extreme 
phenotype analysis [7], to compare the biomarker profiles 
between acutely unwell patients with suspected infection 
who subsequently developed most severe illness with 
those who recovered rapidly.

Methods
Study sites and ethics
We performed a prospective, multi-centre, observa-
tional cohort study at four sites in the United King-
dom. Ethical approval was granted by the Scotland A/
Oxford C Research Ethics Committees (13/SS/0023;13/

SC/0266). Consent was provided by patients or surro-
gate decision-makers according to capacity. We reg-
istered the study (NCT02188992) and published the 
protocol including the analysis plan [8].

Cohort definitions and eligibility criteria
We recruited three distinct patient cohorts using an 
a priori sampling method to achieve similar age and 
sex profiles across the ED cohorts. Detailed inclu-
sion/exclusion criteria are listed in the electronic sup-
plement and published protocol (emethods-1) [8]. 
Cohort-1 comprised acutely unwell patients with sus-
pected infection and systemic inflammation present-
ing to ED and formed the “discovery cohort”. Patients 
considered by clinical teams to already have established 
severe sepsis and/or require ICU admission when 
screened were excluded. Cohort-2 comprised ICU 
patients with established community acquired sepsis-
related critical illness and formed the “true positive” 
cohort. Cohort-3 comprised acutely ill patients pre-
senting to ED without infection or systemic inflamma-
tion, but requiring hospitalization and formed the “true 
negative” cohort. Inclusion criteria used throughout 
the study were based on the sepsis definitions by Levy 
et  al. [9], as our study was designed prior to the Sep-
sis-3 definitions [1, 10]. All ED patients were enrolled 
within 12 h of hospital presentation. For all cohorts, 
we excluded patients with acute pancreatitis, haemato-
logical malignancy, chemotherapy in the past 2 weeks, 
myelodysplastic syndromes, known neutropenia, HIV 
infection, viral hepatitis infection, pregnancy, blood 
transfusion > 4 units in the past week, oral corticoster-
oids for > 24 h prior to enrolment, or a decision not to 
have active therapy/for palliative care [8].

Take‑home message 

In this first study of standardised multi‑site flow cytometry in acutely 
unwell patients with suspected infections attending emergency 
departments, we explored which of 47 leukocyte biomarkers reliably 
discriminates which patients develop sepsis over the next 3 days, 
defined according to the Sepsis‑3 sepsis criteria.

After highlighting the importance of test reliability (14 biomarkers lacked 
measurement reliability) and comparator cohorts (a further 17 biomark‑
ers did not discriminate acutely unwell patients with suspected infec‑
tion from patients with established sepsis‑related critical illness and/
or non‑infective acute illness), we found that none of the remaining 
16 biomarkers had clinically relevant predictive ability for subsequent 
sepsis or other important clinical outcomes. However, markers of early 
immune suppression (neutrophil and monocyte CD274 and CD279; 
monocyte HLA‑DR) had the strongest associations with clinical out‑
comes. The optimum biomarker combination associated with clinical 
deterioration to sepsis was increased neutrophil CD24 and CD279 and 
reduced monocyte HLA‑DR expression.
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Leukocyte surface biomarkers and cross‑site 
standardization of flow cytometry
We devised five separate flow cytometry panels to 
assess 47 leukocyte biomarkers with biological plausi-
bility for having predictive validity for subsequent sep-
sis (eMethods-1; eTable-1; eFigure-1). We developed, 
standardized and harmonized flow cytometry proce-
dures across all four study sites [8]. We performed flow 
cytometry within 4 h of sample acquisition. All anti-
human antibodies conjugated to fluorochromes for flow 
cytometry were from the same batch and clones [all 
Becton–Dickinson Biosciences (BDB)], standardized on 
the same platform (FACSCanto II; BDB, San Jose, CA, 
USA), using a common batch of Cytometer Setup and 
Tracking beads with the same beads for daily internal 
quality controls, at all clinical sites. All flow cytometry 
standard (FCS) files were read by expert technicians 
using standardized gating procedures developed for 
each biomarker prior to analysis. The gating strategy 
for estimating median fluorescence intensity (MFI) or 
proportions is reported in eMethods-1. All FCS analy-
sis technicians were blinded from clinical data.

Sample size
We based sample size estimates on the confidence 
interval (CI) widths for positive and negative predictive 
values (PPV and NPV). The initial design had a primary 
outcome of septic shock, with an estimated event rate 
of 5–10% in cohort-1 [11, 12]. For a range in test per-
formance for PPV/NPV of 50–90% we planned a sam-
ple size of: cohort-1, n = 300; cohort-2, n = 100; and 
cohort-3, n = 100, to give a CI width between ± 4.6% 
to ± 9.8% for PPV and ± 3.4% to ± 6.3% for NPV. At an 
interim analysis of clinical event rates, the incidence of 
septic shock was substantially lower than anticipated. 
We decided by consensus to change the primary out-
come to severe sepsis (and subsequently adopted the 
sepsis-3 sepsis criteria [1] of Sequential Organ Failure 
Assessment (SOFA) score ≥ 2), with critical care admis-
sion a key secondary outcome, to ensure adequate clini-
cally relevant events in the discriminant analyses. These 
changes occurred prior to study completion and were 
reported in the published protocol [8].

Statistical analysis
The primary study cohort was cohort-1. The primary 
exposure was suspected infection. The cohorts-2 and 3 
were comparator populations for cross-cohort discrim-
ination and biomarker selection.

Outcomes
The primary outcome was sepsis, defined as SOFA 
score ≥ 2 at 24  h and/or 72  h following presentation 

to hospital in patients with suspected infection in the 
ED (cohort-1) [1]. Secondary outcomes were: critical 
care admission or death within 72  h of presentation; 
SOFA ≥ 4 at 24 h and/or 72 h following presentation to 
hospital; development of septic shock; discharge home 
within 72  h; discharge to home or in hospital with no 
organ failure within 72 h; death from sepsis; confirmed 
infection and length of hospital stay [8]. All cohort-1 
data are based on blood samples taken in the ED after 
recruitment.

Biomarkers selection strategy
Our analytic approach to discover biomarkers with 
potential diagnostic discrimination for risk of subse-
quent sepsis occurred in three a priori planned stages 
and one post hoc analysis.

Stage one: reliability
Inter- and intra-reader reliability for 47 different bio-
markers was established according to the protocol 
[8]. To be included in subsequent evaluation stages, 
biomarkers needed to demonstrate both inter- and 
intra-reader reliability at the pre-defined intra-class 
correlation coefficient (ICC) between readers ≥ 0.9; see 
Fig. 1 and eMethods-2; eTable-2). For intra-reader reli-
ability the ICC for each reader was calculated as the 
ratio of within-reader variability to the total variance 
(within-reader plus residual variance) from the normal 
linear mixed model. For inter-reader reliability the ICC 
was calculated as the ratio of between-reader variability 
to the total variance (between-reader plus residual vari-
ance) from the normal linear mixed model. Reliability 
analyses were done prior to linking leukocyte biomark-
ers data and clinical outcome data.

Stage two: cross‑cohort discrimination
For reliable biomarkers, statistically significant inter-
group differences between the three cohorts were 
explored using Kruskal–Wallis analysis of variance 
(ANOVA) tests (eTable-3) and visual inspection of data. 
Biomarkers that discriminated between cohort-1 and 
either cohort-2 (true-positive) and/or cohort-3 (true neg-
ative) and had variability within cohort-1 consistent with 
potential to discriminate clinical outcomes were selected 
for Stage-3 analysis. Other factors considered were cell 
counts, the magnitude of MFI, and potential linkage and 
co-linearity between groups of biomarkers. This was 
done in consensus meetings by researchers blinded from 
clinical outcomes within cohort-1.

Stage three: prediction of clinical outcomes in cohort‑1
Within cohort-1 patients, the ability of the selected bio-
markers to predict the primary and secondary outcomes 
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was calculated using univariate logistic regression. For 
the secondary outcomes of death from sepsis, septic 
shock and length of stay, we provided a descriptive sum-
mary as per the analysis plan [8]. The odds ratio (OR) 
for the outcome per standard deviation increase in bio-
marker, receiver operating characteristic (ROC) curves, 
and area under ROC curve (AUROC) were used to assess 
predictive ability. Youden’s index identified the optimal 
cut-off point for each marker [13]. Candidate biomark-
ers that showed consistent inclusion were then taken for-
ward for multivariable modelling.

We used best subsets regression [14] to identify opti-
mal combinations of predictive markers. Specifically, 
models containing a given number of biomarkers were 
fitted for all potential biomarker combinations. The five 
best-fitting models of a given size, according to the Chi 
squared score statistic, were identified. Biomarkers that 
consistently appeared in the best-fitting models were 
selected for the final model. The change in Chi squared 
score statistic between the best fitting models containing 
different numbers of biomarkers was used to determine 
the number of biomarkers to be included in the final 
model. Linearity of biomarker associations on the logis-
tic scale was checked using plots of deviance residuals. 
Based on consistency and model fit we identified optimal 
combinations of predictive markers.

Post hoc extreme phenotype comparison
On the recommendation of a pre-planned independent 
expert group (see eTable-4), we compared biomarker 
profiles between sub-populations within cohort-1 with 
extreme clinical phenotypes of organ dysfunction and 
outcome to further explore associations for the biomark-
ers evaluated. We defined well and sick extreme pheno-
types [7] by consensus among clinical investigators using 
clinical data without knowledge of group differences 
in biomarkers (eFigure-2). The well phenotype had no 
positive microbiology, a SOFA score ≤ 2 at 24 and 72  h 
post-enrolment and were either discharged home by 
72 h or were in hospital but no longer receiving antibiot-
ics. The sick phenotype had a confirmed infection, SOFA 
score ≥ 2 at both 24 and 72  h post-enrolment and were 
still in hospital and receiving antibiotics at 72 h. We com-
pared biomarker expression between the two phenotypes 
using two-sample t-tests or Mann–Whitney tests as 
appropriate, applying Bonferroni correction for multiple 
testing.

For additional comparison, we also measured C-reac-
tive protein (CRP) and procalcitonin (PCT) concen-
trations at the same time point for cohort-1 patients, 
given the widespread clinical use of these biomarkers 
in assessing infection. We constructed ROC curves for 
CRP and PCT and estimated similar univariate predictive 

performance characteristics of these for outcomes 
reported, to enable direct comparison of predictive valid-
ity with the more novel biomarkers.

Results
Patient characteristics
Between January 2014 and February 2016, we recruited 
272, 59 and 75 patients (N = 406) to cohorts 1, 2, and 3, 
respectively. The clinical characteristics for the three 
cohorts and the cohort-1 outcomes are shown in Table 1. 
Cohorts-1 and 3 had a similar age and sex distribu-
tion. Cohort-2 patients tended to be older. The primary 
outcome in cohort-1, clinical deterioration to sepsis, 
occurred in 139 patients (51.1%).

Stage one: reliability
The step-wise assessment of intra-reader and then inter-
reader reliability resulted in rejection of 14 biomarkers 
as non-reliable, leaving 33 reliable biomarkers for cross-
cohort comparison (Fig. 1; eTable-2).

Stage two: cross‑cohort discrimination
Statistical comparison, expert review, and cohort-1 data 
distribution resulted in rejection of a further 17 biomark-
ers (Fig. 1; eTable-2; eTable-3). The cross-cohort compar-
isons plots for the 16 selected biomarkers are shown in 
eFigure-3. Based on the stage-1 and -2 selections, eight 
neutrophil biomarkers [cluster of differentiation antigens 
(CD) CD15; CD24; CD35; CD64; CD312; CD11b; CD274; 
CD279], seven monocyte biomarkers (CD35; CD64; 
CD312; CD11b; HLA-DR; CD274; CD279) and one CD8 
T-lymphocyte biomarker (CD279) were selected for eval-
uation of discrimination for clinical outcomes. Biological 
relevance of these markers in sepsis are summarized in 
Table 2.

Stage three: prediction of clinical outcomes in cohort‑1
Most biomarkers lacked any clinically or statistically sig-
nificant discrimination for predicting primary and sec-
ondary outcomes within cohort-1 patients. Amongst the 
individual biomarkers, clinical deterioration to sepsis was 
associated with higher neutrophil CD279 expression, 
higher monocyte CD279 expression and lower mono-
cyte HLA-DR expression. The optimal MFI cutoff for 
neutrophil CD279 was 239 [sensitivity 0.88 (95% confi-
dence interval 0.82–0.93); specificity 0.35(0.26–0.43)]; for 
monocyte CD279 was 141 [sensitivity 0.83(0.77–0.90); 
specificity 0.39(0.30–0.47)]; and for monocyte HLA-
DR was 3572 [sensitivity 0.43(0.34–0.51); specificity 
0.69(0.60–0.77)]. Although these associations were sta-
tistically significant, discriminant ability was poor and 
unlikely to be clinically useful in isolation.
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With best subsets logistic regression, the optimum 
combination for predicting clinical deterioration to sepsis 
included increased neutrophil CD24; increased neutro-
phil CD279; and reduced monocyte HLA-DR expression 

[sensitivity 0.72(0.64–0.79); specificity 0.56(0.48–0.65)]. 
With best subsets logistic regression, the optimum combi-
nation for predicting the secondary outcome of discharge 
to home within 72 h, included increased neutrophil CD15, 

Table 1 Cohort characteristics and cohort‑1 outcomes

FCI functional co-morbidity index, qSOFA quick sepsis organ failure assessment, SOFA sepsis organ failure assessment, APACHE II Acute Physiology And Chronic Health 
Evaluation II, ICU intensive care unit, ED emergency department
1 N = 3 missing data for primary outcome

Cohort‑1 (infected ED 
cohort)
N = 272

Cohort‑2 (ICU‑septic)
N = 59

Cohort‑3 (non‑
infected ED 
controls)
N = 75

Cohort characteristics

 Age in years mean (SD) 62.1 (19.1) 67.9 (12.8) 61.6 (20.0)

 Female N (%) 133 (48.9%) 23 (39.0%) 33 (44.0%)

 FCI Score median (IQR) 2 (1,3) 2 (1,4) 1 (0,2)

 White cell count median (IQR)

  Total 13.5 (10.7, 16.2) 16.9 (10.1, 19.6) 7.7 (6.4, 9.1)

  Neutrophils 11.2 (8.5, 14.1) 14.1 (8.2, 17.5) 4.9 (4.1, 6.4)

  Lymphocytes 0.9 (0.6, 1.4) 0.9 (0.6, 1.3) 1.7 (1.3, 2.1)

 C‑reactive protein median (IQR) 64 (21,168) 212 (86,309) 13 (2,27)

 Procalcitonin Median (IQR) 29.4 (0.0, 337.3) No data No data

 Confirmed infection 238 (87.5%) 59 (100%) 0

 qSOFA score >=2

  At ED presentation 44 (16.2%) No data No data

  At 24 h 6 (2.2%)

  At 72 h 5 (1.8%)

 APACHE II score median (IQR) 9 (6, 13) 16 (12, 21) 6 (3, 9)

 SOFA score median (IQR) 2 (1, 3) 7 (5, 9) 1 (1, 2)

 Site of infection N (%)

  Respiratory 124 (45.6%)

  Urinary 44 (16.2%)

  Unknown 40 (14.7%)

  Musculoskeletal, skin and soft tissue 32 (11.7%)

  Abdominal (including biliary) 28 (11.0%)

  Neurological 4 (1.5%)

Outcomes for Cohort‑1

 Primary  outcome1

  SOFA ≥ 2 at 24 or 72 h 139 (51.1%)

 Secondary outcomes

  ICU admission or death within 72 h of hospitalization 22 (8.1%)

  SOFA >=4 at 24 or 72 h 36 (13.2%)

  Discharged home within 72 h of hospitalization 86 (31.6%)

  Discharged home or in hospital with no organ failure 148 (54.4%)

  Hospital mortality N (%) 1 (0.4%)

  Development of septic shock 1 (0.4%)

 Organ support

  On antibiotics at 72 h 144 (52.9%)

  Vasopressors 2 (0.7%)

  Ventilation invasive 2 (0.7%)

  Ventilation non‑invasive 5 (1.8%)

 Hospital length of stay (days) median (IQR) 5 (2, 9)
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reduced neutrophil CD274 and increased total monocyte 
HLA-DR expression. No biomarkers had significant dis-
criminant value for the outcome of critical care admission 
or death within 72 h. The performance of individual and 
optimized combinations of biomarkers for predicting the 
primary and secondary outcomes are shown in Table 3. No 
marked non-linearities in biomarker effects were identi-
fied. Overall, although statistically significant associations 
were demonstrated, discrimination of clinical outcomes 
was unlikely to be clinically useful (Fig. 1). 

Extreme phenotype analysis
From 272 patients in cohort-1, we identified 40 “well’ 
and 52 “sick” phenotypes (eFigure-2). “Sick” phenotype 
patients were characterized by being older, more often 
male, with a higher frequency of co-morbidities, more 
frequently lymphopenic, with higher APACHE II and 
SOFA scores at baseline. After Bonferroni correction 
for multiple comparisons, “sick” phenotypes had signifi-
cantly higher monocyte CD279 and neutrophil CD279 in 
the ED, but no other biomarkers were different (Table 4; 
eFigure-4).

For both CRP and PCT, there was also no statistically 
or clinically significant discrimination for subsequent 
sepsis with univariate analysis (Table 3).

Discussion
In this multi-site cohort study, we reduced a candidate 
panel of 47 leukocyte biomarkers to 16 reliable biomark-
ers with potential for discriminating the risk of develop-
ing sepsis in patients with suspected infection presenting 
to the ED. The combination of higher neutrophil CD24, 
higher neutrophil CD279, and a lower monocyte HLA-
DR expression best predicted the clinical deterioration to 
sepsis. Consistent with this association, a lower neutro-
phil CD279 expression and higher monocyte HLA-DR 
expression were associated with discharge home within 
72 h (implying rapid recovery). Although our pre-defined 
biomarker discovery strategy identified these biomarkers 
as associated with development of sepsis and more severe 
illness, their discriminant value was insufficient to sug-
gest utility for decision-making in routine clinical care.

Our findings have potential clinical relevance. The key 
pathophysiological insight is that leukocyte biomarkers 
of immunosuppression such as check-point inhibitors 
(CD279; CD274) and antigen processing ability (HLA-
DR) were altered even in patients with suspected infection 
presenting to ED. We also demonstrate the importance 
of assessing reliability when standardising flow cytom-
etry for large-scale time critical use. The development of 
clinically useable tests is likely to require a form of cross-
platform calibration (such as multiparametric version of 
the Quantibrite system, BD Bioscience). Our study shows 

it is feasible to implement flow cytometry as a means of 
undertaking precision medicine in sepsis, for example 
to guide novel therapeutic interventions such as those 
tested recently in immunotherapy trials [15] and high-
lighted in recent expert reviews [16, 17]. However, our 
data suggest that for patients with suspected infection the 
predictive validity of panels of leukocyte biomarkers are 
unlikely to be useful as general clinical decision-making 
tools. Of note, both CRP and PCT also performed poorly.

Strengths of our study were well-defined hypothesis, 
pre-published protocol [8], internationally accepted pri-
mary outcome [1], clinically relevant secondary outcomes 
and hierarchical analytic approach to reduce biomarker 
selection bias. Reliability of multi-site flow cytometry is 
potentially problematic due to measurement error bias 
[18], which we addressed rigorously with fluorochrome-
conjugated antibody titrated for optimal signal and kept 
constant throughout the study. Using hospitalized non-
infected patients and ICU-sepsis patients as compara-
tors during biomarker selection increased the chance of 
detecting infection related host responses and is superior 
to using healthy volunteer controls. Our blood sampling 
time point in the ED was prior to severe illness, before 
major clinical interventions, and much earlier than in 
previous studies of sepsis biomarkers, and we excluded 
patients who clinicians considered to have already estab-
lished sepsis and/or critical illness. As such, our popu-
lation was different from other recent studies, which 
evaluated leukocyte biomarkers for prediction of sepsis 
trajectory (by including patients with sepsis-2 defined 
sepsis, severe sepsis and septic shock) [19, 20] and strati-
fied nosocomial infection risk in ICU patients [21] (see 
eTable-5, which highlights important differences). The 
post hoc extreme phenotype analysis enhanced face 
validity by considering multiple clinical variables simulta-
neously for phenotype definition.

Our study has potential weaknesses. Although we could 
not include all potential leukocyte biomarkers, we stud-
ied a range of leukocyte biomarkers (such as complement 
pathway receptors (CD35, CD11b), G protein-coupled 
receptors (CD312), Fc-gamma-receptors (CD64 [22, 23]), 
factors delaying neutrophil apoptosis (CD24 [22]), check-
point molecules (CD274, CD279) [24]; HLA-DR expres-
sion [25–27]), that previous studies highlight association 
with adverse outcomes in established sepsis. We enrolled 
a smaller sample size than planned due to time and fund-
ing constraints. However, this had a limited impact since 
substantial differences in biomarker levels across cohorts 
still enabled selection of candidate biomarkers for further 
discriminant analysis. Supervised classification methods 
such as classification and regression trees (CART) is a 
valid alternative analytic approach for this research ques-
tion. However, CART  requires approximately 50 events 
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Table 3 Candidate biomarkers and combinations for predicting outcomes in cohort‑1

Biomarker Marker 
expression 
in cohort‑1 
as Median 
MFI (IQR)

Primary outcome [OR (95% 
CI) per SD increase in MFI; p 
value]

Secondary  outcomes1 [OR (95% CI) per SD increase in MFI; p value]

SOFA score ≥ 2 
at 24 h and/
or 72 h fol‑
lowing pres‑
entation 
to  hospital2

AUROC (95% 
CI)

ICU admis‑
sion or death 
within 72 h 
of presenta‑
tion

SOFA >=4 
at 24 or 72 h 
after presen‑
tation

Discharge 
home 
within 72 h 
of presenta‑
tion

Discharge 
home 
within 72 h 
of presen‑
tation or 
in‑hospital 
with no 
organ failure

Confirmed 
infection

Neutrophils

 CD15 31,148 (22,261, 
39,622)

0.94 (0.69–1.28); 
0.70

0.50 (0.41–
0.59)

1.36 (0.82–
2.22); 0.23

1.01 (0.65–
1.58); 0.97

1.38 (0.99–
1.91); 0.06

1.13 (0.83–
1.56); 0.42

0.89 (0.57, 1.41); 
0.63

 CD24 22,261 (16,398, 
28,565)

1.20 (0.94–1.54); 
0.15

0.56 (0.49–
0.63)

1.26 (0.84–
1.90); 0.17

1.48 (1.08–
2.05); 0.01

1.00 (0.77–
1.30); 1.00

0.79 (0.62–
1.02); 0.07

1.31 (0.85, 2.04); 
0.22

 CD35 17,363 (10,021, 
26,452)

0.98 (0.77–1.25); 
0.87

0.51 (0.44–
0.58)

1.18 (0.76–
1.83); 0.45

0.90 (0.62–
1.31); 0.59

1.18 (0.91–
1.53); 0.21

1.15 (0.90–
1.47); 0.28

1.34 (0.88, 2.06); 
0.17

 CD64 2384 (1353, 
5522)

0.95 (0.71–1.29); 
0.75

0.49 (0.41–
0.58)

0.98 (0.55–
1.75); 0.94

0.88 (0.53–
1.45); 0.61

0.97 (0.70–
1.33); 0.83

0.95 (0.71–
1.28); 0.74

1.62 (0.84, 3.12); 
0.15

 CD312 685 (451, 845) 1.29 (0.99–1.67); 
0.06

0.57 (0.50–
0.64)

0.74 (0.43–
1.29); 0.29

0.82 (0.55–
1.23); 0.34

0.79 (0.59–
1.06); 0.12

0.85 (0.67–
1.09); 0.21

1.10 (0.73, 1.67); 
0.64

 CD11b 20,583 (13,210, 
28,737)

1.25 (0.97–1.62); 
0.08

0.56 (0.49–
0.63)

1.45 (0.97–
2.16); 0.07

1.36 (0.98–
1.60); 0.57

1.12 (0.86–
1.45); 0.39

0.84 (0.66–
1.08); 0.18

1.27 (0.83, 1.96); 
0.27

 CD274 269 (207, 320) 1.25 (0.96–1.61); 
0.10

0.57 (0.50–
0.64)

0.91 (0.55–
1.49); 0.70

1.16 (0.83–
1.61); 0.39

0.70 (0.51–
0.95); 0.02

0.77 
(0.59–0.99); 
0.045

1.56 (0.97, 2.52); 
0.07

 CD279 569 (300, 640) 1.78 (1.23–2.57); 
0.002

0.59 (0.52–
0.66)

0.96 (0.57–
1.61); 0.86

1.06 (0.77–
1.46); 0.72

0.57 
(0.39–0.83); 
0.003

0.60 
(0.41–0.87); 
0.007

1.06 (0.68, 1.66); 
0.78

Monocyte

 CD35 21,018 (13,818, 
28,565)

1.15 (0.89–1.48); 
0.28

0.55 (0.48–
0.62)

0.99 (0.62–
1.57); 0.95

1.33 (0.97–
1.83); 0.07

0.91 (0.70–
1.20); 0.52

0.94 (0.73–
1.20); 0.60

1.19 (0.77, 1.84); 
0.44

 CD64 30,848 (24,499, 
39,622)

1.04 (0.77–1.39); 
0.80

0.57 (0.49–
0.66)

1.25 (0.77–
2.03); 0.36

1.12 (0.74–
1.71); 0.59

0.95 (0.69–
1.30); 0.73

0.92 (0.69–
1.24); 0.58

2.24 (1.11, 4.52); 
0.02

 CD312 1087 (649, 
1617)

0.91 (0.71–1.16); 
0.43

0.54 (0.47–
0.61)

0.73 (0.41–
1.29); 0.29

0.79 (0.52–
1.21); 0.28

1.24 (0.96–
1.61); 0.09

1.06 (0.83–
1.36); 0.64

0.94 (0.65, 1.36); 
0.73

 CD11b 22,705 (14,413, 
28,651)

1.21 (0.94–1.57); 
0.14

0.58 (0.51–
0.65)

1.25 (0.83–
1.88); 0.28

1.27 (0.91–
1.76); 0.16

1.15 (0.89–
1.49); 0.30

0.87 (0.68–
1.12); 0.27

1.24 (0.80, 1.93); 
0.33

 HLA‑DR 4435 (2379, 
8001)

0.73 (0.55–0.97); 
0.03

0.56 (0.49–
0.63)

0.69 (0.34–
1.40); 0.30

0.76 (0.46–
1.24); 0.27

1.35 (1.04–
1.75); 0.02

1.34 
(1.00–1.80); 
0.052

0.96 (0.66, 1.38); 
0.82

 CD274 60 (0, 166) 0.90 (0.70–1.16); 
0.41

0.50 (0.43–
0.56)

1.06 (0.69–
1.61); 0.80

1.03 (0.73–
1.46); 0.85

0.84 (0.62–
1.15); 0.28

0.99 (0.78–
1.27); 0.95

0.89 (0.64, 1.23); 
0.48

 CD279 240 (129, 280) 1.32 (1.03–1.70); 
0.03

0.58 (0.51–
0.65)

0.89 (0.56–
1.43); 0.31

1.21 (0.84–
1.75); 0.27

0.68 
(0.52–0.90); 
0.006

0.80 (0.62–
1.02); 0.07

0.98 (0.67, 1.44); 
0.92

CD8 T cells 117 (72, 169) 1.16 (0.81–1.66); 
0.43

0.48 (0.41–
0.55)

0.23 (0.02–
2.29); 0.21

0.94 (0.58–
1.93); 0.80

0.79 (0.43–
1.45); 0.45

0.82 (0.55–
1.23); 0.34

2.00 (0.44, 9.06); 
0.37 CD279

Neutrophil 
CD24 +

1.48 (1.10 –1.98); 
0.009

0.64 (0.58– 
0.71)

* * 1.32 (0.94 
–1.85); 0.10

0.65 (0.49–0.87); 
0.004

*

Neutrophil 
CD279

2.23 (1.47 
–3.38); < 0.001

0.67 (0.60–
0.74)

0.59 (0.41 
–0.86); 0.006

0.47 
(0.31–0.71); 
0.0004

Neutrophil 
CD24 +

1.49 (1.10 –2.00); 
0.009

1.48 (1.03–
2.13); 0.04

Neutrophil 
CD279 + 

2.37 (1.54 
–3.64); < 0.001
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2SOFA score sequential organ failure assessment score; MFI median fluorescence intensity; CD Cluster of differentiation; ICU intensive care unit
*  Best subsets regression did not identify any combination models which provided better fit than individual marker models
1  As pre-specified, secondary outcomes of hospital mortality, occurrence of septic shock and length of stayare not reported

Table 3 continued

Biomarker Marker 
expression 
in cohort‑1 
as Median 
MFI (IQR)

Primary outcome [OR (95% 
CI) per SD increase in MFI; p 
value]

Secondary  outcomes1 [OR (95% CI) per SD increase in MFI; p value]

SOFA score ≥ 2 
at 24 h and/
or 72 h fol‑
lowing pres‑
entation 
to  hospital2

AUROC (95% 
CI)

ICU admis‑
sion or death 
within 72 h 
of presenta‑
tion

SOFA >=4 
at 24 or 72 h 
after presen‑
tation

Discharge 
home 
within 72 h 
of presenta‑
tion

Discharge 
home 
within 72 h 
of presen‑
tation or 
in‑hospital 
with no 
organ failure

Confirmed 
infection

Monocyte 
HLA‑DR

0.72 (0.53–0.97); 
0.03

Neutrophil 
CD15 +

Neutrophil 
CD274 +

Monocyte 
HLA‑DR

Other markers#

 CRP 1.20 (0.94–1.54): 
p = 0.15

0.56 (0.49, 
0.63)

0.88 (0.55–
1.42); 0.60

0.99 (0.69–
1.42); 0.94

0.74 (0.55–
0.99); 0.04

0.85 (0.66–
1.08); 0.19

1.16 (0.99–2.65); 
0.06

 PCT 0.94 (0.72–1.21); 
p = 0.61

0.53 (0.46, 
0.60)

0.93 (0.54–
1.61); 0.57

0.81 (0.48–
1.36); 0.42

0.83 (0.60–
1.15); 0.27

1.02 (0.79–
1.32); 0.89

4.00 (0.78–20.5); 
0.10

Fig. 1 Overview of selection of leukocyte biomarkers for discriminant analysis through the pre‑defined stages of the study. For a detailed descrip‑
tion of the rationale for biomarker selection see eMethods‑1 and eMethods‑2. Non‑reliable refers to the analysis of cell populations that are not 
sufficiently distinct in bimodal FACS plots, are difficult to reliably standardize for a uniform gating approach and need further development. We are 
proposing that these biomarkers are necessarily of limited value
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Table 4 Extreme phenotype description

Well phenotype (N = 40) Sick phenotype (N = 52) p value

Age, median (IQR) 37.5 (27.3–56.8) 70.0 (56.0–81.0) < 0.001

Female, n (%) 26 (65%) 19 (37%) 0.009

FCI Score Median (IQR) 1 (0–2) 2 (1–3) 0.03

White cell count Median (IQR)

 Total 13.2 (10.3–14.4) 13.1 (9.1–16.5) 0.78

 Neutrophils 10.3 (8.1–12.0) 11.2 (7.5–15.1) 0.29

 Lymphocytes 1.2 (0.7–1.8) 0.8 (0.5–1.2) 0.01

C‑reactive protein
Median (IQR)

58.5 (24.0–107.3) 56.0 (16.5–191.0) 0.85

qSOFA score ≥ 2

 At ED presentation 3 (7.5%) 10 (19.2%) 0.11

 At 24 h 0 4 (7.7%) 0.07

 At 72 h 0 2 (3.8%) 0.22

Source of infection*, n (%)

 Respiratory 13 (40.6%) 30 (57.7%) 0.13

 Neurological 1 (3.1%) 2 (3.8%) 0.87

 Urinary 2 (6.3%) 7 (13.4%) 0.31

 Abdominal 5 (15.6%) 5 (9.6%) 0.41

 Skin 9 (28.1%) 3 (5.8%) 0.005

 Biliary 0 (0%) 5 (9.6%) 0.005

 Sepsis of unknown origin 2 (6.3%) 0 (0%) 0.07

Baseline APACHE 2 score, median (IQR) 4.5 (2–7) 11.5 (9–16) < 0.001

Baseline SOFA, median (IQR) 1 (1–1) 3 (2–4) < 0.001

Discharged home within 72 h, n (%) 32 (80%) 0 < 0.001

Admitted to HDU/ICU within 72 h, n (%) 0 14 (26.9%) < 0.001

Neutrophil biomarkers (MFI) median (IQR)

 Neutrophil CD15 30,848 (24,499–45,352) 30,848 (19,116–41,992) > 0.10

 Neutrophil CD24 23,815 (18,299–29,261) 24,034 (18,741–30,710) > 0.10

 Neutrophil CD35 19,485 (7985–26,580) 15,636 (10,988–25,117) > 0.10

 Neutrophil CD64 3098 (1528–6272) 2150 (1693–5378) > 0.10

 Neutrophil CD312 565.8 (382.7–712.9) 670.9 (493.6–853.9) > 0.10

 Neutrophil CD11b 16,089 (13,664–25,552) 22,154 (13,510–30,737) > 0.10

 Neutrophil CD27 s 279.0 (101.4–322.8) 284.3 (233.8–327.7) > 0.10

 Neutrophil CD279 326.4 (152.7–584.2) 584.2 (383.7–648.8) 0.005
Monocyte biomarkers (MFI) median (IQR)

 Monocyte CD35 16,556 (9974–27,488) 22,476 (15,067–27,681) > 0.10

 Monocyte CD64 29,685 (21,843–45,021) 33,323 (29,405–45,352) > 0.10

 Monocyte CD312 1243 (694–2001) 817.0 (470.5–1560.0) > 0.10

 Monocyte CD11b 20,205 (12,102–26,644) 26,660 (16,984–32,741) > 0.10

 Monocyte CD274 50.7 (0–167.2) 78.6 (0–199.7) > 0.10

 Monocyte CD279 151.2 (94.8–262.1) 245.4 (161.1–287.0) 0.05
 Monocyte HLA‑DR 6172 (3516–11,544) 4016 (2692–7170) 0.12

CD‑8 T cell biomarker (MFI) median (IQR)

 CD8 T‑Lymphocyte CD279 112.2 (78.7–153.3) 115.6 (58.5–167.9) > 0.10

Categorical variables are given as numbers with percentages. Continuous variables are given as mean with standard deviation where data are parametric, and median 
with interquartile range otherwise. Comparisons between phenotypes were performed with Fisher exact test between percentages for categorical variables, unpaired 
t-test for continuous normally-distributed variables, and Mann–Whitney test for other continuous variables

Significant differences are shown in bold (p-value of <0.05 taken as significant). For biomarker comparisons, Bonferroni method was used to correct for multiple 
comparisons and the corrected p-values are reported

* For the well phenotype, the denominator for the ‘source of infection’ variable is 32, as only 32 patients had a final diagnosis of infection. Biomarker comparisons are 
also reported as dot plots in eFigure-4
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per variable when predicting a dichotomised outcome, 
before predictions become stable and over-optimism is 
minimised [28]. As our observed number of sepsis events 
did not reach this threshold we opted to use the best sub-
sets logistic regression approach as pre-specified in our 
statistical analysis plan [8]. As our cohort-1 inclusion 
criteria mandated SIRS, we have excluded SIRS nega-
tive patients with infection, who could have progressed 
to develop sepsis. However, this is unlikely to bias the 
results, as the prevalence of SIRS negative sepsis-3 sepsis 
in ICUs in England is only 3% [29]. As our objective was 
to study leukocyte biomarkers at an earlier time point 
than previously achieved and to identify biomarkers that 
predict deterioration within 72  h of hospitalisation, we 
excluded patients planned for direct admission to ICU 
from the ED at enrolment, which explains the lower than 
expected event rate for death and septic shock. Findings 
might be different for more severely ill patients studied 
later in sepsis, as observed in other recent flowcyometric 
studies (eTable-5) [19–21].

Our findings have biological plausibility, as the leuko-
cyte biomarkers that best predicted the risk of develop-
ing sepsis in our study were on the key innate immune 
cells, namely neutrophils and monocytes, which are 
first responders to infection. The strongest biomarker 
predicting subsequent sepsis and extreme phenotypes 
was higher levels of CD279 (programmed death recep-
tor 1, PD-1) on monocytes and neutrophils. CD279 
expression is associated with neutrophil and monocyte 
suppressor subsets [30], memory lymphocyte subsets 
[31], is thought to regulate T cell responses and induce 
an inhibitory signal characterized by cell cycle arrest 
and reduced cytokine synthesis [2, 32]. This early role 
for CD279/PD-1 is consistent with animal models of 
sepsis [33] and sepsis cohorts [30]. CD279/PD-1 acts 
in conjunction with its ligand CD274 (PD-L1). In our 
study, lower CD274, together with lower CD279, higher 
monocyte HLA-DR, and lower neutrophil CD24, 
emerged as a predictor for rapid recovery sepsis pheno-
type. These novel findings require further confirmatory 
studies.

Although none of the biomarkers we studied had dis-
criminant ability that could be used to guide clinical 
decision-making, our data imply that immunosuppres-
sion in infected patients precedes established sepsis 
and that higher CD279/PD-1 and lower HLA-DR are 
potential theragnostic and enrichment markers [34–37] 
for anti-PD-1/PDL-1 agents and granulocyte-monocyte 
colony stimulating factor [25], respectively, for carefully 
designed immunotherapy trials [3, 38].

Conclusions
We conclude that in a population of patients presenting 
with suspected infection prior to established sepsis, a 
sequential approach to identifying reliable potential leu-
kocyte biomarkers from a large candidate panel that may 
predict the subsequent development of sepsis identified 
only a small number with discriminant properties. These 
were markers of immune suppression, namely CD279 
and HLA-DR, suggesting this may be an early event, 
prior to development of sepsis.
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