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A recruitment maneuver (RM) is the process of inducing
an intentional transient increase in transpulmonary pres-
sure aimed at reopening non-aerated or poorly aerated
alveoli. The immediate expected benefits are improve-
ments in oxygenation and respiratory system compliance
[1].

During an RM the transpulmonary pressure should
overcome the critical opening pressure of at least a sub-
stantial proportion of closed alveoli. Once these alveoli
are re-opened, pressure needed to avoid re-collapse is
lower because during deflation a greater lung volume is
achieved at a certain pressure level (Fig. 1a). The dif-
ference between pressure–volume (P–V) curves during
inflation and deflation is the hysteresis. Thus, as long as
positive end-expiratory pressure (PEEP) is kept above a
critical pressure level, recruited alveoli will remain
opened [1].

A series of patients with early acute respiratory distress
syndrome (ARDS) receiving RM monitored by tomog-
raphy showed that with zero end-expiratory pressure
(ZEEP) there is a huge amount of collapsed alveoli at the
gravitational-dependent lung zones [2]. With PEEP set
2 cmH2O above the critical opening pressure, 20–30 % of
the lung is still collapsed [2]. After RM achieving plateau

pressures as high as 55 or 60 cmH2O, less than 5 % of the
total lung mass remains collapsed. The lungs showed less
alveolar collapse on the deflation limb of the P–V curve
(after RMs) when equivalent pressures were applied
during the inflation (Fig. 1a).

The effect of RMs on oxygenation is marked [2, 3],
thus RMs have a clear role as rescue therapy for patients
with severe hypoxemia, refractory to protective ventila-
tion strategies and prone position. Indeed, the LOV Study
compared ventilation strategy including RM plus higher
levels of PEEP to a control strategy with no recruitment
and lower PEEP levels and showed decreased risk of
death due to refractory hypoxemia in the experimental
group [4]. It is important to note that most studies with
RMs not followed by titrated PEEP observed rapid
decline in PaO2/FiO2 [5]. Conversely, in patients venti-
lated with an optimal titrated PEEP after the RM, the
oxygenation gains were sustained for days [2, 3].

Response to RMs is not homogenous in ARDS patients
[6]. ARDS-associated fibroproliferation is more prevalent
in late ARDS and may impair response to RMs; thus,
although clear time cutoffs have not been established,
these maneuvers are unlikely to benefit patients with more
than 5 days of ARDS [7]. Other factors associated with
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poorer response to RMs are more focal as opposed to
diffuse morphology [8], higher PaO2/FiO2 ratios and
respiratory-system compliance, and lower levels of dead
space [6].

Although RMs are useful for improving oxygenation,
only a few patients with ARDS die because of refractory
hypoxemia [4]. Thus, a more relevant question is whether
RMs may improve ventilator-induced lung injury (VILI)
and clinical outcomes. The two independent main
mechanisms of VILI are overdistention and atelectrauma,
which is local shear injury attributed to cyclic opening
and closing of distal small airways and alveoli [9].

Ventilation strategies using low tidal volumes but also
low PEEP levels such as the ARDSNet protocol aim to
prevent VILI by overdistention. However, this approach
may lead to substantial cyclic opening and closing of
alveolar units with worsening of VILI [9]. Positron
emission tomography studies of experimental models of
ARDS revealed that early inflammation is more pro-
nounced in intermediate gravitational zones
corresponding to normally or poorly aerated regions, as
opposed to posterior collapsed or anterior overdistended
zones [10]. These findings suggest that tidal stretch is a

major mechanism in VILI. Indeed, experimental models
of ARDS have shown that keeping higher PEEP levels
may decrease further lung damage even when animals
were ventilated at lower tidal volumes [9].

Alveolar fluid clearance is also impaired in most
patients with ARDS [11]. Inhibition of fluid clearance is
probably caused by hypoxia and by injured alveolar
epithelium with disrupted cells. RMs may decrease lung
edema, possibly by improving oxygenation and decreas-
ing VILI [12].

Markers of inflammation and of alveolar epithelial
type I cell injury decrease after RM and PEEP titration in
ARDS [3, 13]. In addition, by re-opening collapsed
alveoli, RMs can also increase respiratory system com-
pliance and, as a consequence, reduce driving pressure
which is the pressure needed to deliver a given tidal
volume [14]. Finally, the reduction in driving pressure
may ultimately improve survival of patients with ARDS
[14].

Many RM techniques have been described, including
sighs, sustained inflation, stepwise increase of inspiratory
pressure and/or of PEEP. Intermittent sighs involves
increasing tidal volume or level of PEEP for one of
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Fig. 1 Pressure–volume curve (a). During inflation (full line)
transpulmonary pressure overcomes the critical opening pressure
(upper inflection point). After recruitment maneuver, during
deflation (dotted line), lung volume is greater at a certain pressure
level, and alveoli remain opened as long as positive end-expiratory
pressure (PEEP) is kept above a critical pressure level (lower
inflection point). Pressure–time (seconds) curve (b) showing a
sustained inflation recruitment maneuver using continuous positive
airway pressure (CPAP) of 40 cmH2O for 40 s. Pressure–time

(minutes) curve showing a stepwise recruitment maneuver (c) using
both inspiratory pressure and PEEP increases, keeping driving
pressure fixed at 15 cmH2O, achieving peak pressure after recruit-
ment of 50 cmH2O and PEEP of 35 cmH2O. After recruitment,
figure shows a decremental PEEP titration and a new recruitment
maneuver performed after an optimal PEEP is identified (i.e., the
PEEP associated with best compliance of respiratory system or best
oxygenation). After the new recruitment, PEEP is set 2 cmH2O
above the optimal level
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several breaths. Effectiveness of sighs is short-lived and
they may lead to increased levels of inflammation mark-
ers [15]. Sustained inflation is the most commonly
investigated method and involves use of continuous pos-
itive airway pressure (CPAP) of 40 cmH2O for about 40 s
(Fig. 1b) [5]. Compared with sustained inflation, methods
involving stepwise increases in pressures lead to less
hemodynamic compromise and less microscopic and
biochemical signs of lung injury [16]. Furthermore, the
best results in terms of recruitability have been obtained
with stepwise increases in PEEP up to 45 cmH2O with
driving pressure fixed at 15 cmH2O (Fig. 1c) [2].

RMs may be performed in supine or prone position. In
the later case, RMs and prone position have additive
effects on oxygenation and respiratory system compli-
ance. This is important, since the use of prone positioning
has become the standard of care for patients with ARDS
and PaO2/FiO2 B150 mmHg [17].

Although there is no standardization regarding the
method to adjust PEEP after RMs, some method should
be employed to identify a PEEP level capable of avoiding
new collapse. A valuable bedside method, which does not
require imaging, is decremental PEEP titration according
to the best dynamic or static compliance [1]. Once the

optimal PEEP is identified, lungs are recruited again, and
PEEP is set 2 cmH2O above the optimal level [1].

The effects of RMs on clinical outcomes have been
assessed in a meta-analysis of ten randomized trials,
which suggested that RMs may reduce hospital mortality
without increasing the risk of barotrauma in patients with
moderate or severe ARDS [18]. However, our confidence
in the estimate of effect is low, especially because most
trials are at high risk of bias. Another systematic review
found that the common adverse events after RM are
hypotension, acidosis, and desaturation, but they are
usually self-limited and without serious sequelae [5].

In summary, there is uncertainty regarding the clinical
effectiveness of RMs to improve clinical outcomes of
ARDS patients. Ongoing multicenter randomized trials
should provide a reliable answer to this question. There-
fore, although there is a role for RMs as a rescue therapy
in refractory hypoxemia in patients with moderate to
severe ARDS, there is currently no solid basis for their
routine use in other patients.
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