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In healthy individuals, the right ventricular-pulmonary
circulation is a low-pressure, high-compliance system. In
high afterload states, the right ventricle (RV) adapts by
increasing contractility (homeometric autoregulation) and
preload (heterometric autoregulation) [1, 2]. Pulmonary
hypertension (PH), defined as a mean pulmonary artery
pressure [25 mmHg, results from any physiologic pro-
cess that increases RV afterload, most commonly left
ventricular (LV) disease resulting in a high left atrial
pressure and post-capillary pulmonary venous congestion
[3]. Pre-capillary PH (PAH) results from high RV loading
despite normal pulmonary venous pressure. PAH may
present with RV dysfunction, a physiologic state where the
RV ventriculo-vascular unit is unable to perform some
necessary functions. However, many patients with PAH
present to the intensive care unit (ICU) in overt RV failure.
In this condition, regardless of etiology, the RV is unable
to meet increased loading demands leading to RV dilation,
tricuspid regurgitation, and increased right atrial pressure
reducing forward flow, coronary perfusion, and perhaps
systemic hypotension [4]. This presents unique problems

for hemodynamic optimization, intubation, and ventilator
management. This paper offers strategies to address the
complicated physiology of PH with RV failure in the ICU.
See Fig. 1 for a summary of our recommendations.

Hemodynamic optimization

Fluid management

In most patients presenting with decompensated RV
function, regulatory mechanisms have reached their
maximum, rendering interventions that augment con-
tractility or volume loading of limited utility. Volume
overloading an already failing RV not only adds to dia-
stolic wall tension and worsens LV filling directly, but it
also leads to acute LV diastolic dysfunction and further
reduction in stroke volume [5]. Consequently, euvolemia
is critically important, yet assessment of volume respon-
siveness is quite challenging as traditional methods are
unreliable. If the patient shows signs of hepatic or renal
congestion, or severe RV dilation on initial echo assess-
ment, fluid loading is contraindicated.

Volume responsiveness is often indicated by high
stroke volume variation or Doppler velocity–time integral
(VTI); however, in the failing RV, the LV will usually be
preload-responsive. Some patients present with RV vol-
ume overload and organ congestion, despite a preload-
responsive LV, and may require diuresis rather than fluid
resuscitation. Data suggest that VTI or stroke volume
variation alone may indicate RV dysfunction [6]. If VTI is
used as an index of responsiveness, it may be done very
cautiously at the RV outflow tract and determined before
and after a small fluid challenge [6]. We recommend
250 ml or a passive leg raise. In intubated patients, RV
outflow variability can be induced by the mechanical
ventilator exclusive of volume responsiveness.
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Fig. 1 Summary of challenges
and recommendations
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Assessment of RV function

Numerous quantitative measurements of RV contractile
function have been proposed. Pre-ejection phase mea-
surements may be superior to more load-dependent
measurements such as tricuspid annular plane systolic
excursion (TAPSE) in the measurement of contractility,
adaptation, and perhaps clinical outcome [7, 8]. Our
experience is that isovolumic contraction velocity
(IVV) [10 cm/s obtained using tissue Doppler of the RV
lateral wall can predict contractile reserve. In this setting,
we are more likely to conduct fluid challenge and/or
incorporate inotropic therapy early versus hasty referral
for extracorporeal membrane oxygenation (ECMO).

Afterload reduction and hemodynamic support

Reversing correctible causes of increased RV loading and
afterload reduction are the mainstays of therapy [9]. This
often presents a problem, as many pulmonary vasodilators
have systemic effects and systemic hypotension should be
avoided. Accordingly, agents such as inhaled nitric oxide
(iNO), inhaled epoprostenol, or inhaled milrinone are
often the preferred pulmonary vasoactive agents due to
their limited effect on the systemic circulation [10, 11].
Systemic hypotension due to a drop in systemic vascular
resistance (SVR) can lead to a detrimental drop in RV
coronary perfusion [12]. Strict vasoconstrictors (i.e.
phenylephrine or vasopressin) should be avoided in favor
of norepinephrine, which has been shown to maintain
stroke volume with little change in pulmonary afterload
[13]. As RV stroke work in PH patients is often exceed-
ingly high, inotropic agents serve little role other than
‘‘bridging’’ until afterload reduction, ECMO, or transplant
occur [14, 15].

Intubation and mechanical ventilation

Recently, it was shown that the need for mechanical
ventilation was the strongest unadjusted risk factor for
mortality in patients with PAH admitted to the ICU [16].
Intrathoracic pressure changes with respiration have an
exaggerated effect on hemodynamics in the patient with
PH, worsening cardiopulmonary interactions, and making
intubation extremely risky. Increased intrathoracic pres-
sure with positive pressure ventilation decreases venous
return, especially in the hypovolemic patient. Combined
with increased RV afterload from positive pressure ven-
tilation, RV performance can worsen with transition to
mechanical ventilation, worsening shunt and hypoxemia,
and precipitating cardiovascular collapse [3]. When pos-
sible, work of breathing and gas exchange should be
supported with non-invasive positive pressure ventilation
(NIPPV) and positive end-expiratory pressure (PEEP).

Careful preparation prior to intubation is critical.
Hypoxemia and hypercapnea increase pulmonary
artery vasoconstriction and RV afterload [17, 18].
Preoxygenation can be difficult due to shunt physiol-
ogy from intracardiac lesions and/or VQ mismatch,
and should be performed with the goal of hyperoxia
using NIPPV [19]. During intubation, apneic oxygen-
ation with a high-flow nasal cannula should be
performed [20]. Pulmonary vasodilators (iNO) can
augment oxygenation at low concentrations
(20–30 ppm), and can be delivered in-line continu-
ously during the intubation process. The concentration
can be increased afterwards for maximal pulmonary
artery vasodilation.

During preoxygenation, respiratory alkalosis should be
attempted to avoid apnea-induced hypercapnea. Premed-
ication with fentanyl may be considered to blunt the
hypertensive response to laryngoscopy. In low SVR
states, norepinephrine should be started prior to induction
with a mean arterial pressure goal [ pulmonary artery
pressure. Hemodynamically neutral sedatives such as
etomidate should be used for induction. Neuromuscular
blocking agents should be considered as they may
improve intubating conditions and first-attempt success
rate. When choosing post-intubation sedation and anal-
gesia, the goal should be to maintain normotension and
SVR.

The goals of mechanical ventilation are: (1) avoid
hypoxemia and hypercapnea, (2) maintain a low
mean airway pressure, and (3) avoid alveolar col-
lapse, all of which increase RV afterload [17, 18, 21,
22]. A cycle of RV failure occurs when any of the
above changes result in an increased RV afterload
and decreased cardiac output, resulting in further
hypoxia and under-filling of the LV. Hypotension
ensues from the decreased cardiac output, further
compromising the RV. PEEP and spontaneous
breathing can obviate some of these difficulties.
Prone positioning may relieve RV afterload by
improving oxygenation, especially in patients with
RV preload reserve [23]. ECMO can be used until
definitive RV reduction or transplant is achieved, as
patients can be kept awake, extubated, and sponta-
neously breathing after cannulation [14, 15].

Summary

In decompensated PH, regardless of etiology, the treat-
ment of choice is afterload reduction through modification
of secondary causes and pulmonary vasoactive therapy.
When faced with intubation, attention to hemodynamic
optimization, preoxygenation, and induction is critically
important. It is important to continue all PH-targeted
therapy the patient is taking for pulmonary hypertension
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prior to intubation, including parenteral and subcutaneous
medications. Ultimately, rescue therapies (ECMO, right-
ventricular assist device) may be required as a bridge to
transplant in the suitable patient.
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