
Luciano Silvestri
Miguel A. de la Cal
Hendrick K. F. van Saene

Selective decontamination of the digestive
tract: the mechanism of action is control
of gut overgrowth

Received: 30 April 2012
Accepted: 3 August 2012
Published online: 22 September 2012
� Copyright jointly held by Springer and
ESICM 2012

L. Silvestri
Department of Emergency, Unit of
Anesthesia and Intensive Care, Presidio
Ospedaliero di Gorizia, Via Fatebenefratelli
34, 34170 Gorizia, Italy

M. A. de la Cal
Department of Intensive Care Medicine,
CIBER Enfermedades Respiratorias,
Hospital Universitario de Getafe, Carretera
de Toledo km 12.5, 28045 Getafe, Spain

H. K. F. van Saene ())
Institute of Ageing and Chronic Diseases,
University of Liverpool, Duncan Building
Daulby Street, Liverpool L69 3GA, UK
e-mail: nia.taylor@liv.ac.uk;

nia.taylor@liverpool.ac.uk

Abstract Purpose: Gut over-
growth is the pathophysiological
event in the critically ill requiring
intensive care. In relation to the risk
of developing a clinically important
outcome, gut overgrowth is defined
as C105 potential pathogens includ-
ing ‘abnormal’ aerobic Gram-
negative bacilli (AGNB), ‘normal’
bacteria and yeasts, per mL of
digestive tract secretion. Surveillance
samples of throat and gut are the only
samples to detect overgrowth. Gut
overgrowth is the crucial event which
precedes both primary and secondary
endogenous infection, and a risk fac-
tor for the development of de novo
resistance. Selective decontamination
of the digestive tract (SDD) is an
antimicrobial prophylaxis designed to
control overgrowth.
Methods: There have been 65 ran-
domised controlled trials of SDD in
15,000 patients over 25 years and 11
meta-analyses, which are reviewed.
Results and conclusions: These
trials demonstrate that the full SDD
regimen using parenteral and enteral

antimicrobials reduces lower airway
infection by 72 %, blood stream
infection by 37 %, and mortality by
29 %. Resistance is also controlled.
Parenteral cefotaxime which reaches
high salivary and biliary concentra-
tions eradicates overgrowth of
‘normal’ bacteria such as Staphylo-
coccus aureus in the throat. Enteral
polyenes control ‘normal’ Candida
species. Enteral polymyxin and
tobramycin, eradicate, or prevent gut
overgrowth of ‘abnormal’ AGNB.
Enteral vancomycin controls over-
growth of ‘abnormal’ methicillin-
resistant S. aureus. SDD controls
overgrowth by achieving high anti-
microbial concentrations effective
against ‘normal’ and ‘abnormal’
potential pathogens rather than by
selectivity.
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Introduction

In 1996, Konrad Falke invited us to write an update on
selective decontamination of the digestive tract (SDD), in
particular, to explain the results of randomised controlled
trials (RCTs) not showing a benefit of the technique [1].
He was convinced that negative RCTs teach more than

positive ones. Over 50 RCTs had been published up to
2003 when Mervyn Singer encouraged us to write a fol-
low-up. He thought that the reader would benefit if we
compared the evidence of efficacy, safety and costs of
SDD with traditional parenteral antibiotic-only approach
to control infection in the intensive care unit (ICU) [2].
By the end of 2011, there have been 65 RCTs [3–67]
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(Fig. 1) and 11 meta-analyses of only RCTs on SDD
[68–78] (Table 1) in approximately 15,000 patients over a
period of 25 years. The full protocol using parenteral and
enteral antimicrobials has been assessed in one-third of
RCTs [5, 10, 11, 16–19, 23, 31, 32, 34, 37, 41, 47, 49, 53,
57–59, 61, 63, 66]. Among the 65 RCTs, 52 are from
Europe and 13 from non-European countries (1 South
America, 1 China, 2 Africa, 9 North America). The
Netherlands (15), Spain (10) and Britain (8) are the
leading countries from Europe. All except one meta-
analyses are European (1 from The Netherlands and 9
from Italy). Massimo Antonelli convinced us that the time

has come to write a third review on SDD. The emphasis
would be on the mechanism of action of SDD that
underlies the significant reduction of severe infections of
lower airways and blood and the survival benefit with
resistance being controlled.

Definitions

Carriage or carrier state exists when the same potential
pathogen is isolated from at least two consecutive

65 Randomised Controlled Trials [RCT] 
and 11 Meta-Analyses of SDD over 25 years [1987-2011]
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Fig. 1 65 Randomised
controlled trials (RCT) and
meta-analyses

Table 1 Overview table efficacy of SDD: 65 RCTs and 11 meta-analyses

Author No
RCTs

Sample
size

Lower airway
infection
OR (95 % CI)

Bloodstream
infection
OR (95 % CI)

Multiple Organ
Dysfunction Syndrome
OR (95 % CI)

Mortality
OR (95 % CI)

Vandenbroucke-Grauls [68] 6 491 0.12 (0.08–0.19) NR 0.92 (0.45–1.84)
D’Amico [69] 33 5,727 0.35 (0.29–0.41) NR 0.80 (0.69–0.93)
Safdar [70] 4 259 NR NR 0.82 (0.22–2.45)
Liberati [71] 36 6,922 0.35 (0.29–0.41) NR 0.78 (0.68–0.89)
Silvestri [72] 42 6,075 NR 0.89 (0.16–4.95)a NR
Silvestri [73] 51 8,065 NR 0.63 (0.46–0.87) 0.74 (0.61–0.91)
Silvestri [74] 54 9,473
G -ve 0.07 (0.04–0.13) 0.36 (0.22–0.60) NR
G ?ve 0.52 (0.34–0.78) 1.03 (0.75–1.41) NR

Silvestri [75] 21 4,902 NR NR 0.71 (0.61–0.82)
Liberati [76] 36 6,914 0.28 (0.20–0.38) NR 0.75 (0.65–0.87)
Silvestri [77] 7 1,270 NR NR 0.50 (0.34–0.74) 0.82 (0.51–1.32)
Silvestri [78] 12 2,252 0.54 (0.42–0.69)b NR NR

SDD selective decontamination of the digestive tract, RCT randomised controlled trial, No number, OR odds ratio, CI confidence interval,
G -ve Gram-negative, G ?ve gram-positive, NR not reported
a Yeast infection
b Tracheobronchitis
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surveillance samples in any concentration over a period of
at least 1 week. Low grade carriage is defined as \105

potential pathogens per millilitre or gram of digestive
tract secretions. High grade carriage or overgrowth is
defined as C105 potential pathogens per millilitre or gram
of digestive tract secretions. Overgrowth is a risk factor
for developing infection and resistance [79, 80].

SDD is an antimicrobial prophylaxis using parenteral
and enteral antimicrobials. It prevents endogenous infec-
tions of lower airways and blood and reduces mortality in
ICU patients [81].

SDD is based on the observation that critical illness
profoundly affects the body flora, both qualitatively and
quantitatively, promoting a shift from (1) normal to
abnormal carriage, and (2) low to high grade carriage
(overgrowth) of ‘normal’ and ‘abnormal’ flora [79–81].
There are five microorganisms that belong to the
‘normal’ flora as they are carried by healthy individuals:
Streptococcus pneumoniae, Haemophilus influenzae, and
Moraxella catarrhalis are carried in the throat; Esche-
richia coli is carried in the gut; and Staphylococcus
aureus and Candida albicans are carried in both throat
and gut. There are nine ‘abnormal’ bacteria carried by
individuals who suffer from underlying diseases: they
include eight aerobic Gram-negative bacilli (AGNB)
(Klebsiella, Enterobacter, Citrobacter, Proteus, Mor-
ganella, Serratia, Acinetobacter and Pseudomonas
species), and methicillin-resistant Staphylococcus aureus
(MRSA). ‘Abnormal’ bacteria are carried in both throat
and gut [80]. In 1969, Johanson et al. [82] demonstrated
that the main factor associated with oropharyngeal AGNB
carriage was the severity of illness. Similarly, Chang et al.
[83] showed that in cirrhotic patients the severity of
liver disease was independently associated with MRSA
carriage.

Detection of gut carriage and overgrowth

The traditional microbiological approach of obtaining
and culturing diagnostic samples, such as tracheal aspi-
rate and urine, can never detect overgrowth, as these
samples only confirm the clinical diagnosis of infection,
and its preceding stage of colonisation. Surveillance
samples of throat and gut are the only samples that
allow the detection of overgrowth [84]. The standard

procedure includes, albeit not mandatory, a broth-
enrichment stage to detect very low concentrations of
micro-organisms [85, 86].

Critical illness related carriage in overgrowth
concentrations (CIRCO)

CIRCO is common on ICU admission [87]. Primary
endogenous infections are the most frequent ICU infec-
tions (approximately 55 %). They are caused by both
normal and abnormal potential pathogens imported into
the ICU by the patient’s admission flora in overgrowth
concentrations. These infections generally occur early,
during the first week of ICU treatment. Normal potential
pathogens are the etiological agents in previously healthy
individuals requiring intensive care following an acute
event, such as (surgical) trauma, pancreatitis, acute
hepatic failure, and burns. Abnormal bacteria can cause
primary endogenous infections in patients with previous
underlying disease, such as chronic obstructive pulmon-
ary disease. Patients transferred from another ward/
hospital or nursing home belong to this category.

CIRCO often develops during treatment in ICU [88].
Apart from critical illness, opiates, histamine2-receptor
antagonists, and antimicrobials promote gut overgrowth
by reducing peristalsis [89], increasing the gastric pH [4
[90, 91], and suppressing the normal indigenous, mainly
anaerobic, flora required to control abnormal flora [92],
respectively. Secondary endogenous infections are
invariably caused by the nine ‘abnormal’ bacteria,
accounting for one-third of ICU infections. These infec-
tions, generally, occur late, after 1 week of ICU
treatment. These abnormal bacteria are first acquired in
the oropharynx, and subsequently in stomach and gut.
CIRCO readily develops in both oropharynx and gut.

Obviously, CIRCO is not the issue in exogenous
infections, i.e. without previous carriage. Exogenous
infections (approximately 15 %) are invariably caused by
‘abnormal’ bacteria, and may occur at any time during
ICU treatment. Typical examples are lower airway
infection caused by Acinetobacter or Pseudomonas fol-
lowing the use of contaminated ventilation equipment.
Surveillance samples are negative for the potential
pathogens that readily appear in diagnostic samples [75]
(Table 2).

Table 2 Characteristic features of infections seen in ICU

Type of infection Potential pathogens Onset Incidence (%) Controlling manoeuvre

Primary endogenous Normal/abnormal \1 week 55 Parenteral antimicrobials
Secondary endogenous Abnormal [1 week 30 Hygiene ? enteral antimicrobials
Exogenous Abnormal Anytime during ICU-treatment 15 Hygiene ? topical antimicrobials
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Gut overgrowth harms the critically ill

Gut overgrowth, in particular of AGNB, has been
acknowledged to cause immuno-suppression and gener-
alised inflammation [93]. Gut overgrowth is the crucial
event preceding endogenous infections and is a risk factor
for the development of de novo antimicrobial resistance.
There is a qualitative and quantitative relationship
between surveillance cultures of throat and rectum, and
diagnostic cultures of lower airway secretions and blood
[85, 88].

Dynamics of antibiotic resistance are driven by three
mechanisms:

1. Importation. The patient is admitted to the ICU with
resistant micro-organisms in overgrowth concentra-
tions in the gut [87];

2. Acquisition from other patients with overgrowth
following transmission via the hands of carers.
Thirty-three percent of patients admitted as normal
carriers to a medical/surgical ICU developed abnormal
carriage of multi-drug-resistant K. pneumoniae and/or
A. baumannii, the two abnormal AGNB endemic in the
ICU during the study [94]. A higher severity of illness
score on admission was a significant risk factor. Similar
results were reported by Spanish researchers [95].

3. De novo development. Gut overgrowth has been
identified as a risk factor for the development of de
novo resistance [96]. The gut of the critically ill patient
with microbial overgrowth is the ideal site for the de
novo development of new clones, following increased
spontaneous mutation, termed hypermutation. In
hypermutation, microbial populations start mutating
vigorously at random, presumably as an adaptive
mechanism that may cause a mutant to arise that would
enable them to overcome the unfavourable surround-
ings, resulting in polyclonality. A high proportion of
long-term ICU patients receive parenteral antimicro-
bials, which are invariably excreted via the bile into
the gut. Although low and fluctuating, the antibiotic
levels will kill sensitive clones, but allow mutating
ones to become resistant to antibiotics [97]. Over-
growth not only promotes mutation but also increases
the probability of transfer of genes coding for resis-
tance between micro-organisms.

Each mechanism is responsible for approximately one-
third of the resistance problem, the common denominator
being overgrowth.

Control of overgrowth

In the mid-1970s, Bodey [98] realised that many systemic
antimicrobials may sterilise lungs, blood and bladder but

often fail to eradicate identical potential pathogens in
overgrowth concentrations from the throat and/or gut.

A classical study by Bodey was the assessment of the
old parenteral antifungal 5-fluorocytosine in eradicating
Candida carriage [98]. He wrote that ‘‘5-fluorocytosine
has substantially reduced the proportion of patients with
persistent fungi in their stools and throats’’. However,
resistance readily occurred. Similarly, systemic prophy-
laxis with fluconazole also failed to eradicate yeast gut
overgrowth [99], probably due to low biliary concentra-
tions of fluconazole [100]. Bodey introduced the enteral
administration of polyenes, nystatin and amphotericin B,
to control fungal overgrowth [101–103]. Faecal speci-
mens of healthy volunteers contained nystatin
concentrations of \100 mg/L of faeces following the
daily intake of 8 9 106 units of nystatin [102]. The faecal
samples of healthy individuals taking 2,000 mg of
amphotericin B daily showed 60 mg/L of faeces of
amphotericin B [103]. These faecal levels are due to the
high faecal binding of polyenes (Table 3).

Bodey was also the first to assess the enteral antimi-
crobials polymyxin E and tobramycin in controlling
AGNB carriage [104]. The combination of polymyxin
[105] and tobramycin [106] was chosen because it covers
most abnormal AGNB, including Pseudomonas species,
and is an in vitro synergistic combination [107]. Com-
pared to polymyxin, tobramycin is less inactivated by
mucosal cells, fibres and faeces [108]. Faecal specimens
contained tobramycin levels of minimally 100 mg/L of
faeces following the daily intake of 300 mg of tobramycin
(Table 3) [109]. The faecal samples of individuals taking
600 mg of tobramycin daily showed C500 mg/L of fae-
ces [110]. Polymyxin is moderately inactivated by faeces
and, hence, faecal concentrations vary. Polymyxin was
not detected in one-third of individuals who took 600 mg
of polymyxin daily. One-third had faecal levels exceeding
1,000 mg/L of faeces, whereas the remaining individuals
showed polymyxin concentrations between 16 and
1,000 mg/L of faeces [111].

Table 3 Antimicrobials selected for SDD to control overgrowth of
both ‘normal’ and ‘abnormal’ flora

Antimicrobials selected for SDD Concentrations (mg/L)

Saliva Bile Faeces

‘Normal’ flora
Bacterial overgrowth Cefotaxime 6 20
Yeast overgrowth amphotericin B

or nystatin
60
\100

‘Abnormal’ flora
AGNB overgrowth polymyxin E

with tobramycin
16–1,000
100

MRSA overgrowth vancomycin 3,000–24,000

SDD selective digestive decontamination, AGNB aerobic Gram-
negative bacilli, MRSA methicillin-resistant Staphylococcus aureus
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At the beginning of the 1980s, Stoutenbeek, in
designing the SDD protocol, searched for a parenteral
antimicrobial with adequate spectrum and pharmacoki-
netic properties. Cefotaxime was chosen because:

i. Its spectrum included both ‘normal’ and most ‘abnor-
mal’ bacteria [112];

ii. Its pharmacokinetic properties included a high excre-
tion in saliva and bile, possibly associated with
eradication of overgrowth [113]. Salivary and biliary
samples were obtained from adult patients requiring
biliary surgery and receiving 1 g of cefotaxime
intravenously four times daily. High concentrations
were measured: 6 mg/L of saliva and 20 mg/L of bile
(Table 3).

Stoutenbeek subsequently evaluated the decontami-
nating properties of cefotaxime in trauma patients
rendered free from yeasts and AGNB following the
administration of enteral amphotericin B and polymyxin
E/tobramycin in throat and gut [114]. Cefotaxime was
found to eradicate oropharyngeal overgrowth of ‘normal’
bacteria such as S. aureus, H. influenzae, S. pneumoniae
and M. catarrhalis. This original finding was confirmed
by German researchers [115].

Parenteral antibiotics active against P. aeruginosa
include ceftazidime, ciprofloxacin, piperacillin-tazobac-
tam and meropenem. None of these anti-pseudomonal
agents have ever been shown to clear P. aeruginosa from
the throat and/or gut following intravenous administration
[116, 117].

MRSA endemicity is defined as at least one new case
per month of MRSA infection. Under these circum-
stances, the enteral SDD prophylaxis may be extended by
enteral vancomycin. In early 2000, Silvestri et al. [118]
observed that parenteral vancomycin failed to clear
MRSA carriage from throat and gut, whilst enteral van-
comycin eradicated MRSA gut carriage, and was
effective in controlling a MRSA outbreak. Two grams of
enteral vancomycin lead to faecal vancomycin levels of
up to 24,000 mg/L of stool (Table 3) [119]. In contrast,
2 g of parenteral vancomycin were associated with stool
vancomycin concentrations varying between 3 and
95 mg/L [120].

The inability to control exogenous infections is an
inherent limitation of SDD. Indeed, tracheotomised
patients can acquire abnormal bacteria directly into the
tracheal site via the tracheostomy, without previous oro-
pharyngeal carriage. A South African SDD RCT, in
which there were 24 and 26 exogenous infections due to
A. baumannii in SDD and controls, respectively, was the
first to demonstrate the failure to control exogenous
infections [29]. Up to 40 % of patients received a tra-
cheostomy [121, 122]. In 2000, Morar et al. made the
original observation that exogenous infections due to
abnormal bacteria can be controlled by the topical

application of antimicrobials. They prevented exogenous
infections in tracheotomised patients by applying 0.5 g of
a paste containing 2 % polymyxin E/tobramycin and 4 %
vancomycin four times a day onto the tracheostomy [123,
124]. Topical antimicrobials are not part of the routine
SDD protocol, but they are added to parenteral and enteral
antimicrobials in case of endemicity of exogenous
infections.

Clinical impact of SDD using enteral antimicrobials
for control of overgrowth

The immuno-suppression reverted to normal in animals
which were successfully decontaminated. SDD, after the
initial experimental burn injury to rats, decreased sensi-
tivity to a second infectious challenge of S. pneumoniae
and indirectly decreased the cardiac inflammation and
dysfunction associated with a septic challenge [125].
Patients who were free from AGNB following the enteral
intake of polymyxin and tobramycin were able to control
generalised inflammation [126]. Gut overgrowth of
abnormal AGNB is the major source of endotoxin in the
human body yielding up to 10 mg of endotoxin per gram
of faeces [127]. The enteral antimicrobials of polymyxin/
tobramycin significantly reduce the faecal endotoxin load
by a factor of 104 [128]. It has been suggested that SDD
may reinforce the anti-inflammatory effects of cortico-
steroids [129].

Enteral antimicrobials control overgrowth preventing
colonisation and infection of the normally sterile internal
organs. As a first step of a pneumonia prevention study,
Stoutenbeek et al. [114] administered a 10-ml suspension
of polymyxin E 100 mg, tobramycin 80 mg and ampho-
tericin B 500 mg by nasogastric tube four times daily in
17 trauma patients. Ten patients (59 %) developed 13
lower airway infections, 10 primary and 3 secondary
endogenous infections. P. aeruginosa and A. baumannii
caused the secondary endogenous and S. pneumoniae,
H. influenzae, M. catarrhalis and S. aureus were respon-
sible for the primary endogenous lower airway infections.
SDD of stomach and gut did not affect pneumonia [130].

Stoutenbeek’s second step was the assessment of the
efficacy of enteral antimicrobials applied in both oro-
pharynx and gut on the pneumonia rate [114]. Twenty-
five trauma patients each received daily 2 g of a 2 %
polymyxin/tobramycin/amphotericin B paste applied in
the oropharynx combined with 40 ml of a solution of the
same antimicrobials into the stomach and gut, divided
into 4 doses. The pneumonia rate was 52 %; 13 patients
developed a total of 13 lower airway infections, all of
them were invariably due to ‘normal’ bacteria. Although
the overall reduction was not significant, it was striking
that secondary endogenous pneumonias due to ‘abnormal’
AGNB were completely prevented by the oropharyngeal
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decontamination, which eradicated oropharyngeal over-
growth of AGNB [131].

The third and final step of the pneumonia prophylaxis
study [114] involved 63 trauma patients, who received
enteral antimicrobials in throat/gut combined with par-
enteral cefotaxime (50–100 mg/Kg/day) to eradicate
oropharyngeal overgrowth of ‘normal’ bacteria. Five
patients (8 %) developed exogenous lower airway infec-
tions, primary endogenous infections disappeared, and
there were no secondary endogenous lower airway
infections. Six of the 11 meta-analyses had the endpoint
of pneumonia (Table 1) [68, 69, 71, 74, 76, 78], and all
invariably demonstrated a significant pneumonia reduc-
tion due to both Gram-positive and Gram-negative
bacteria. The meta-analysis from the Italian Cochrane
Centre demonstrated that enteral and parenteral antimi-
crobials of SDD reduced lower airway infections by 72 %
[odds ratio (OR) 0.28; 95 % confidence interval (CI)
0.20–0.38] [76]. Lower airway infections due to both
Gram-negative and Gram-positive bacteria were reduced
by 89 % (OR 0.11; 95 % CI 0.05–0.20) and 48 % (OR
0.52; 95 % CI 0.34–0.78), respectively [74]. Interestingly,
the use of the full protocol of parenteral and enteral
antimicrobials was more effective in reducing Gram-
negative lower airway infections than solely enteral
antimicrobials (OR 0.07; 95 % CI 0.04–0.13, and OR
0.28; 95 % CI 0.11–0.68, respectively). Additionally, a
recent meta-analysis showed that SDD reduces ventilator-
associated tracheobronchitis by 46 % (OR 0.54; 95 % CI
0.42–0.69) [78].

In 1989, 5 years after Stoutenbeek published the first
SDD study [79], Langer et al. reported their landmark
RCT on pneumonia prevention [132]. No statistically
different rates of pneumonia or death were found amongst
three groups receiving either intravenous cefoxitin, peni-
cillin G, or no antibiotic. Stoutenbeek explained this
failure by the omission of oropharyngeal and intestinal
antimicrobials [133]. In leaving overgrowth intact, resis-
tance against cefoxitin and penicillin G readily developed
followed by lethal superinfections. Liberati et al. [76]
confirmed the validity of Stoutenbeek’s revolutionary
concept that only the combination of parenteral and ent-
eral antimicrobials impacts morbidity and mortality in
critically ill ICU patients.

Bloodstream infection was the endpoint of three meta-
analyses [72–74] (Table 1). Bloodstream infections due to
AGNB were significantly reduced (OR 0.36, 95 % CI
0.22–0.60) [73], fungaemia was also reduced (OR 0.89,
95 % CI 0.16–4.95) but not significantly due to the low
event rate in the control group [72]. Although Gram-
positive bloodstream infections increased due to the SDD
spectrum of activity primarily being against AGNB, this
was not significant (OR 1.03, 95 % CI 0.75-1.41) [74].

de la Cal et al. [18] demonstrated that SDD provided a
significant survival benefit in burn patients. There are
only three RCTs of SDD in burn patients [3, 7, 18]; a

recent meta-analysis recruiting 440 patients (289 SDD,
151 controls) showed that SDD significantly reduced
mortality by 78 % (OR 0.22; 95 % CI 0.12–0.43;
p \ 0.001) [134].

The largest RCT to date is Dutch, and includes 6,000
patients [19]. It compares SDD and selective oropharyn-
geal decontamination (SOD), a modified SDD protocol
without the parenteral and gut component, with standard
care. The main endpoint was mortality. Both SDD and SOD
significantly reduced mortality compared to standard care
(OR 0.83 p = 0.02, and 0.86 p = 0.045, respectively).
Although this RCT was the first to demonstrate a survival
benefit of SOD, the mortality reduction was higher, albeit
not significantly, with SDD than SOD. Additionally, a
recent meta-analysis, including nine SOD RCTs and 4,733
patients, failed to show any significant reduction in mor-
tality (OR 0.93; 95 % CI 0.81–1.07) [135]. In contrast, an
Italian meta-analysis, including only RCTs using the full
SDD protocol, showed a mortality reduction of 29 % (OR
0.71; 95 % CI 0.61–0.82) [75]. This effect achieved a 42 %
mortality reduction in studies where carriage was eradi-
cated (OR 0.58; 95 % CI 0.45–0.77).

Remarkably, the design of the study determines the
magnitude of the survival benefit of SDD. In the study in
which all eligible patients received the full SDD protocol,
the significant reduction in the OR for mortality was 40 %
[17]. If half the patients received SDD due to the RCT
design, the significant reduction in the OR for mortality
was 29 % [75]. In the most recent Dutch study, one-third
of the patients received SDD and reduction in the OR for
mortality was still significant, albeit at 17 % [19]. As a
practical guideline, SDD should be applied to all venti-
lated patients of the unit, as mixing non-decontaminated
with decontaminated patients still allows transmission of
potential pathogens and hence exogenous infections in
successfully decontaminated patients.

Impact of SDD on resistance

The main category of potential pathogens in which anti-
microbial resistance is a problem in the ICU are AGNB.
There are two scenarios:

1. AGNB sensitive to the decontaminating agents poly-
myxin/tobramycin.

de Jonge et al. [17] conducted an RCT in 934 critically
ill adult patients. The in-hospital mortality rate was sig-
nificantly lower for SDD compared with controls (24 vs.
31 %; p = 0.002). Carriage of AGNB resistant to poly-
myxin E, tobramycin, ceftazidime, ciprofloxacin and
imipenem was significantly reduced in SDD patients
compared with controls (16 vs. 26 %; p = 0.001). Simi-
larly, de Smet et al. [19] showed that there were fewer
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patients with AGNB in rectal swabs resistant to the
marker antibiotics in the SDD than the SOD group.
Additionally, bloodstream infections due to highly resis-
tant pathogens was significantly reduced by SDD
compared with SOD (OR 0.37, 95 % CI 0.16–0.85) [136].

2. AGNB resistant to decontaminating agents polymyxin/
tobramycin.

• Serratia spp are the only potential pathogens
intrinsically resistant to polymyxin/tobramycin. In
the case of endemic Serratia, polymyxin/tobramycin
should be replaced by polymyxin/paromomycin or
gentamicin [104].

• Extended-spectrum beta-lactamase (ESBL) produc-
ing AGNB are often resistant to tobramycin but
always sensitive to polymyxin [137]. In the case of
endemicity of ESBL-producing AGNB, tobramycin
may be replaced by an active aminoglycoside [138].

The concept of exposing vast numbers of critically ill
patients to broad-spectrum antibiotics runs counter to
existing theoretical models (and dogma) related to the
genesis and promotion of antimicrobial resistance in
pathogens acquired in the healthcare setting [139].
Indeed, the experts are concerned that SDD may lead to
an ecological catastrophe. In contrast, the best evidence is
that long-term use of SDD is safe. It actually reduces
resistance rather than increasing it [140]. Indeed, tradi-
tionalists reject this evidence for four reasons: (1) the
absence of resistance is counterintuitive; (2) the evidence
comes from ICUs with an unusually low level of resis-
tance; (3) the observation period is too short; and (4)
many resistant potential pathogens are not covered by the
SDD prophylaxis [141]. We would like to counteract
these four arguments [142]. The first argument results
from experience of only parenteral, rather than enteral,
antibiotic use in the ICU. Critically ill patients invariably
have overgrowth of potential pathogens with a high
capacity for antimicrobial resistance, exacerbated by the
excretion of most parenteral antimicrobials via bile in
sublethal concentrations. In contrast, the aim of enteral
antimicrobials of the SDD protocol, particularly poly-
myxin/tobramycin, is the eradication of overgrowth, the
major risk factor for the emergence of antimicrobial
resistance in particular against cefotaxime. Several
European ICUs have implemented SDD for over
20 years. None have reported an outbreak of infection due
to micro-organisms resistant to SDD. Finally, SDD has
been assessed in ICUs with endemic vancomycin-resis-
tant enterococci and Aspergillus fumigatus. Investigators
reported no difference between test and control groups
[6, 30]. American experts [143] consider the Oostdijk
study [144] as proof that SDD causes resistance.

However, that study is a point-prevalence survey in which
all patients in the unit, whether enrolled or not in the
study, were included. This type of ecological study is
labelled as a low level evidence study (2C) [145, 146].

SDD use is increasing in Europe, in contrast, its use is
uncommon in the United States. We believe the main
reason is the ‘‘primacy of opinion over evidence’’ [147,
148]. Indeed, there are opinion leaders who assert that
SDD does not provide a survival benefit, whilst it pro-
motes an ecological resistance disaster [148]. The other
major impediment to the widespread use of SDD is the
lack of support by any pharmaceutical company,
explaining why paste, gel and suspension of SDD are not
available on the shelf [148].

Selectivity is not required

There is still some uncertainty of how SDD achieves its
significant benefits [149]. It now seems clear that ‘SDD’
was an inappropriate choice of terminology. Rather than
selectively removing aerobic bacteria and leaving the
anaerobic intestinal microbes unaffected, as the name
misleadingly implies, SDD actually works by achieving
high antimicrobial concentrations effective against over-
growth of both normal and abnormal flora. It is a
contradiction in terms to be both selective and yet achieve
effective decontamination or eradication of aerobic
overgrowth. However, the term SDD is now so well
established that to change it would cause too much con-
fusion. It has been hypothesised that eradication of
aerobic overgrowth would lower the rate of oxygen con-
sumption permitting an increase in pO2 of the gut lumen
content from 5 to 60 mmHg: under such conditions,
strictly anaerobic micro-organisms can no longer survive
even though they may not themselves be sensitive to the
decontaminating agents [150].

Future lines of SDD research

Future lines of SDD research may include (1) the impact
of the traditional SDD protocol of polymyxin/tobramycin
on ICUs to which patients who may carry multi-resistant
AGNB are regularly admitted [151]; (2) the impact of
polymyxin/tobramycin/vancomycin on ICUs with ende-
mic vancomycin resistant enterococci [6, 30]; (3) the
impact of the traditional SDD protocol of polymyxin/
tobramycin/amphotericin B on ICUs to which neutropenic
patients with mucositis are regularly admitted [152]; and
(4) the impact of overgrowth control on the severity of the
systemic inflammatory response syndrome [77, 126, 153].
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Conclusion

SDD is the most studied manoeuvre in intensive care
medicine. There have been 65 RCTs of SDD, in about
15,000 patients, and 11 meta-analyses of RCTs, over a
period of 25 years. SDD using parenteral and enteral
antimicrobials has been shown to reduce lower airway
infection by 72 %, bloodstream infection by 37 %, and
mortality by 29 %, with resistance being controlled.

SDD controls overgrowth by achieving high antimi-
crobial concentrations effective against ‘normal’ and’

abnormal’ potential pathogens rather than by selectivity.
However, whatever its precise mechanism, withholding
SDD from critically ill patients must now surely be eth-
ically questionable given the vast evidence base.
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de la Bellacasa J, El-Ebiary M, Roca
M, Gatell JM, Rodriguez-Roisin R
(1994) Utility of selective digestive
decontamination in mechanically
ventilated patients. Ann Intern Med
120:389–395

23. Finch RG, Tomlinson P, Holliday M,
Sole K, Stack C, Rocker G (1991)
Selective decontamination of the
digestive tract (SDD) in the prevention
of secondary sepsis in a medical/
surgical intensive care unit. In: 17th
International Congress of
Chemotherapy, Berlin, Abstract 0474

24. Flaherty J, Nathan C, Kabins SA,
Weinstein RA (1990) Pilot trial of
selective decontamination for
prevention of bacterial infection in an
intensive care unit. J Infect Dis
162:1393–1397

25. Gastinne H, Wolff M, Delatour F,
Faurisson F, Chevret S (1992) A
controlled trial in intensive care units
of selective decontamination of the
digestive tract with nonabsorbable
antibiotics. The French Study Group
on Selective Decontamination of the
Digestive Tract. N Engl J Med
326:594–599

26. Gaussorgues PH, Salord F, Sirodot M,
Tigaud S, Cagin S, Gerard M, Robert
D (1991) Efficacite de la
decontamination digestive sur la
survenue des bacteriemies
nosocomiales chez les patients sous
ventilation mecanique et recevant des
betamimetiques. Rean Soins Intens
Med Urg 7:169–174

27. Georges B, Mazerolles M, Decun JF,
Rouge P, Pomies S, Cougot P, Andrieu
P, Virenque CH (1994)
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38. Martinez-Pellús AE, Merino P, Bru M,
Conejero R, Seller G, Muñoz C,
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