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Abstract The receptor for advanced
glycation end products (RAGE) is a
pattern-recognition receptor and evo-
lutionary member of the
immunoglobulin superfamily that is
involved in the host response to
infection, injury, and inflammation. It
exists in two forms: membrane-bound
and soluble forms (sRAGE). RAGE
recognizes a variety of ligands and,
via a receptor-driven signaling cas-
cade, activates the transcription factor
NF-jB, leading to the expression of
proinflammatory cytokines. The sol-
uble form, sRAGE, is a decoy
receptor and competitively inhibits
membrane RAGE activation. RAGE
is constitutively expressed abundantly
in the lung under basal conditions.
This expression is enhanced during
inflammatory states such as with

acute lung injury (ALI) and acute
respiratory distress syndrome
(ARDS). This review summarizes the
characteristics of RAGE, RAGE iso-
forms, RAGE ligands, and signaling
pathways in the pathogenesis of ALI
and ARDS. Additionally, the review
explores the potential of RAGE as an
important therapeutic target in ALI/
ARDS.
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Introduction

Acute lung injury (ALI), and its more severe form, acute
respiratory distress syndrome (ARDS), are syndromes of
acute respiratory failure associated with severe inflam-
mation and diffuse alveolar damage. Clinically, they are
characterized by rapid onset of respiratory failure. ALI/
ARDS may occur as a consequence of diverse risk factors
including direct injury to lung, such as bacterial or viral
pneumonia, gastric aspiration, lung contusion, toxic
inhalation, or near drowning. Additionally, there are
indirect systemic insults such as sepsis, massive blood
transfusion, burn, pancreatitis, or, less frequently, gyne-
cological insults that can predispose to lung injury. The
American-European Consensus Committee in 1994

defined ALI/ARDS as radiologically bilateral lung field
infiltrates, and physiologically PaO2/FiO2 B 300 mmHg
for ALI and B200 mmHg for ARDS, with exclusion of
left atrial hypertension (pulmonary capillary wedge
pressure\18 mmHg) [1]. During the last decade, despite
improvements in intensive care, ALI/ARDS still carries a
high mortality rate of 29–42 % [2].

The pathophysiology of ALI/ARDS is related to the
endothelial injury and increased vascular permeability
[3]. Airway epithelium provides a physical and anatomic
border between host and environment and protects the
host from injurious and infectious stimuli that gain access
to the respiratory tract through inspiration or aspiration.
Histologically, type I epithelial cells comprise 95 % of
the surface area of the alveolus and play a pivotal role in
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epithelial integrity and alveolar fluid clearance [4]. Given
these important functions, impaired integrity of alveolar
type I epithelial cells due to a pathological insult could
result in significant functional disruption, leading to ALI/
ARDS. Newman et al. [5] first described the use of the
alveolar type I cell-selective proteins as markers to
investigate injury and repair of the alveolar epithelium.

Recent studies have demonstrated that the receptor for
advanced glycation end products (RAGE) plays an
important role in the pathogenesis of ALI/ARDS, due to
the fact that it is abundant in the lung and its expression is
primarily located on the basal membranes of alveolar type
I epithelial cells [6]. The RAGE–ligand interaction leads
to intracellular signaling, with activation of the proin-
flammatory transcription of NF-jB. This review will
focus on recent advances in understanding of the role of
RAGE in the pathogenesis of ALI/ARDS.

RAGE and its interaction with ligands

The RAGE is a multi-ligand, immunoglobulin-type trans-
membrane protein, which serves as one of the pattern-
recognition receptors (PRRs) of the innate immune system.
RAGE was first characterized almost 20 years ago [7] and
has since been actively studied in diverse fields of bio-
medical research. It was initially identified as a receptor for
predominantly advanced glycation end products (AGEs), a
heterogeneous group of compounds either formed sponta-
neously in the body via non-enzymatic glycol-oxidative

reactions between reducing sugars, proteins, and lipids [8],
or obtained directly from intake of AGE-rich food. Later, it
was noted that RAGE also interacts with diverse non-gly-
cated endogenous peptide ligands such as high mobility
group box 1 protein (HMGB-1), S100/calgranulin family,
amyloid fibrils [9–12], LPS [13], and phosphatidylserine
[14]. As shown in Fig. 1, RAGE–ligand interaction results
in cellular activation via signaling cascades, which include
the proinflammatory transcription factor nuclear factor-jB
(NF-jB), the mitogen activated protein (MAP) kinases, and
phosphoinositide 3-kinase (PI3K). There is a unique feature
of RAGE-induced NF-jB signaling cascade, which is de
novo synthesis of NF-jBp65 [15]. These intracellular sig-
nalings lead to induction of inflammatory cytokines,
proteases, and oxidative stress [16, 17]. Different RAGE–
ligand interactions can initiate and stimulate chronic stress
pathways and repair, depending on the ligand and
environment.

RAGE and the danger signals

The host immune system has complete signaling path-
ways for the detection, containment, and repair of damage
caused to cells. The emerging concept of pattern recog-
nition involves RAGE and Toll-like receptors (TLRs) in
sensing the danger signals, including pathogen associated
molecular patterns (PAMPs) [18] and endogenous dam-
age associated molecular patterns (DAMPs), or Alarmins
[19]. PAMPs are a diverse set of microbial molecules

Fig. 1 Schematic
representation of the cell
membrane receptors (TLR, and
RAGE) and their ligands. The
ligation of the receptors with
ligands (DAMPs, PAMPs, and
AGEs) leads to the activation of
the NF-jB pathway and the
release of adhesion molecules
and proinflammatory cytokines
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which share a number of different recognizable bio-
chemical features and alert the host immune system to
invading pathogens [18]. These exogenous PAMPs are
recognized by cells of the innate and acquired immune
system through the pattern recognition receptors (PRRs).
On the other hand, DAMPs, the endogenous equivalents
of PAMPs, are a pleiotropic group of intracellular pro-
teins released actively or passively upon the non-
programmed cell death, or necrosis, into the extracellular
compartment [20–22]. Recent study suggests that
DAMPs, including formyl peptides and mitochondrial
DNA, are released during injury [23]. DAMPs become
‘‘danger signals’’ by activating PRRs. The best-known
DAMPs are high mobility group box-1 (HMGB-1),
S100A8 (MRP8, calgranulin A), S100A9 (MRP14, cal-
granulin B), and serum amyloid A (SAA) [24] (Table 1).
As mentioned previously, these molecules are ligands of
RAGE.

Although TLRs are the best-studied PRRs for PAMPs
and DAMPs [18], RAGE is regarded as a prototypic
DAMP receptor. Studies have shown that RAGE plays a
key role in the PRR-dependent mechanisms of ALI.
RAGE is involved in the recognition of HMGB1- and
DNA-containing immune complexes which stimulates
TLR9 [25]. The ligation of PAMPs and DAMPs with
PRRs leads to oxidative stress and sustained activation of
nuclear factor-kappa B (NF-jB). Interestingly, interac-
tions of TLR and RAGE with ligands all lead to activation
of NF-jB and the mitogen-activation protein kinase
pathway [16], suggesting that both receptor usage and
signaling pathways evoke similar responses, when acti-
vated by PAMPs and DAMPs. The interaction of RAGE
and TLR with their ligands is depicted in Fig. 1. It is
possible that RAGE functions as a ‘‘non-canonical Toll’’
that binds with AGEs and other DAMPs, and triggers the
host inflammatory response.

The lung is uniquely situated to become a target organ
for injury, constantly bombarded by a wide range of
infectious pathogens, foreign antigens, and host-derived
danger signals. The innate immune mechanism expresses
a complete repertoire of PRRs such as RAGE and TLRs,
among others, to recognize both PAMPs and DAMPs
[26]. Schmidt et al. [10, 27] has posited a ‘two-hit’ model
for the inflammatory change and tissue injury mediated by
RAGE and its ligands. The engagement of RAGE by its
ligands can be considered the ‘first hit’, as discussed

above. The ‘second hit’ of cellular perturbation is medi-
ated by superimposed accumulation of invading bacterial
pathogens, immune/inflammatory stimuli, modified mol-
ecules, ischemic stress, and other factors. During
infection, innate immunity is activated by PAMPs
expressed on invading microorganisms.

As a result of the expression of proinflammatory
cytokines and chemokines, this cellular activation leads to
inflammatory processes or tissue injury. This is frequently
seen in diabetic complications, neurodegenerative disor-
ders, atherosclerosis, amyloidosis, and immune–
inflammatory processes [10, 28, 29]. In ALI, host defense
systems encounter PAMPs from exogenous pathogens,
and DAMPs after cell death or following immune cell
activation and matrix degradation products [21, 22].

RAGE in the lung

It is noteworthy that RAGE is constitutively expressed at
low levels in all cells but ubiquitously high in the lung
[30–33], even in the physiologic state. In the lung,
although primarily located on the basal membranes of
alveolar type I epithelial cells [6, 34], RAGE is also
expressed in the bronchiolar epithelium, alveolar type II
epithelial cells, alveolar macrophages, and vascular
endothelial cells [35, 36]. We do not know why RAGE,
one of the PRRs to sense environmental and endogenous
cues, would be on the basal membrane and not the apical
surface. RAGE may have lung-specific functions distinct
from the role of RAGE in other organ systems. One study
demonstrated that RAGE enhances the adherence of
epithelial cells to collagen-coated surfaces and has a
striking capacity for inducing cell spreading, and sug-
gested that RAGE might assist AT I cells to acquire a
spreading morphology, thereby ensuring effective gas
exchange and alveolar stability [37].

Because of its ability to interact with a wide range of
endogenous ligands, RAGE may function as a sensor for
the environmental cues. Two recent genome-wide asso-
ciation studies for lung function identified multiple gene
loci for RAGE acting as one of the important determi-
nants of the pulmonary function [38, 39]. The study also
suggested that RAGE coupled with ICAM-1 as a new set
of functionally linked adhesion molecules in mediating
leukocyte recruitment and adhesion during the acute
trauma-induced inflammatory response in vivo [40].
These findings might imply that the lung is highly
responsive to RAGE ligands that are associated with
potential dangers, so that the lung can rapidly respond to
and defend the host from the insults. However, the
RAGE–ligand interaction may also act as a double-edged
sword. Persistent inflammation from RAGE activation
can tilt the protective innate immunity towards harmful
effects, resulting in ALI.

Table 1 List of DAMPs [24]

High-mobility group box 1 (HMGB-1)
S100 protein family (S100A8/A9/A12)
Serum amyloid A (SAA)
Interleukins, e.g., IL-1a
Heat-shock proteins
Formyl peptides and mitochondrial DNA
Purine
Metabolites (ATP, adenosine, uric acid)
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Soluble RAGE as a biomarker in ALI/ARDS

In addition to its full-length membrane-bound form of
RAGE (mRAGE), soluble RAGE (sRAGE) is a secreted
isoform of RAGE that lacks the transmembrane domain
and cytoplasmic tail while containing the same V-type
and C-type regions found in mRAGE [32]. Consequently,
sRAGE is found in the extracellular space. Circulating
sRAGE either is produced by receptor ectodomain shedding
[41] or represents a splice variant of RAGE, such as
endogenous secreted RAGE (esRAGE) [35]. Like mRAGE,
sRAGE has a very high level of expression in the lung under
normal conditions [30–33]. Indeed, sRAGE has been shown
to be both a biomarker for type I alveolar epithelial cell
injury, and a key mediator of inflammation. This is important
because epithelial injury and inflammation are all involved
in the mechanism of ALI, and RAGE is involved in both
pathways in the mechanism of ALI.

In 2006, Uchida et al. [42] first conducted animal and
human studies on the role of RAGE in lung injury. In their
animal study, RAGE was released into the BAL and
serum as a single soluble isoform sized approximately
48 kDa. The RAGE levels in the blood circulation and
BAL increased rapidly following lung injury induced by
intratracheal administration of hydrochloric acid. In a
murine model of lung injury induced by intratracheal
lipopolysaccharide (LPS) administration, sRAGE was
detected in the BAL [43]. In the study by Su et al. [44],
ALI in mice was induced after exposure to[95 % oxygen
at 72 and 96 h. The authors found that the elevations of
excess lung water (ELW) and extravascular plasma
equivalents (EVPE; an index of lung vascular perme-
ability) correspond to the BAL RAGE levels (Fig. 2). All
these animal studies demonstrate that sRAGE is a useful
biomarker for type I alveolar epithelial cell injury, and
sRAGE correlates with the severity of ALI.

Similarly, observations in human subjects suggest that
sRAGE is a biomarker of severity of ALI/ARDS
(Table 2). Uchida and colleagues [42] first illustrated that
the RAGE levels in the pulmonary edema fluid from

patients with ALI were higher than the levels from
patients with hydrostatic pulmonary edema, and the
plasma RAGE level in patients with ALI were signifi-
cantly higher than the healthy volunteers or patients with
hydrostatic pulmonary edema. These findings suggest that
the vast majority of RAGE in these samples was pre-
dominantly from the lung, and that RAGE is a biomarker
of acute pulmonary inflammatory response. Jabaudon
et al. [45] specifically designed their study to determine
whether RAGE was associated with patients who had
severe sepsis without ALI or only those with ALI. They
found that RAGE levels were higher in those who had
ALI independent of their sepsis status. This would imply
more of an association with epithelial injury than with
inflammation. Elevated plasma levels of sRAGE were
also associated with primary graft dysfunction after lung
transplantation [46].

Additionally, the levels of sRAGE were found to be of
prognostic value in patients with ALI. In the study by
Cohen et al. [47], plasma levels of sRAGE were found to
increase within 30 min of severe trauma and correlated
with the severity of injury, early post-traumatic coagula-
tion, hyper-fibrinolysis, and endothelial cell activation. In
a large, randomized, controlled trial of lower tidal volume
ventilation in ARDS, increases in the baseline plasma
sRAGE levels were associated with worse clinical out-
comes in patients randomized to higher tidal volumes
(12 mL/kg predicted body weight) [48]. In other words,
patients with high RAGE were those who benefited
especially from low tidal volume and lung protection. In
addition, the higher RAGE levels are associated with
higher radiographic and physiological indices of ALI
severity as well as the non-pulmonary Acute Physiology
and Chronic Health Evaluation (APACHE III) scores
[48]. These data suggest that baseline plasma RAGE
levels are strongly associated with clinical outcomes in
patients with ALI.

Although RAGE may be a biomarker of disease
severity, the potential predictive value of RAGE mea-
surement needs to be tested in patients at risk of developing

Fig. 2 Mice developed ALI
after exposure to[95 % oxygen
at 72 and 96 h as indicated by
an increase in excess lung water
(ELW) and extravascular
plasma equivalents (EVPE; an
index of lung vascular
permeability). Corresponding to
the severity of lung injury, BAL
RAGE levels were increased at
72 and 96 h. *P \ 0.01. (The
figure is adapted from Su et al.
[44] and used with permission
from the American
Physiological Society)
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ALI. Further animal and clinical investigation is needed to
study the sensitivity and specificity of RAGE in the diagnosis
and prognosis of ALI. Conceivably, it would identify sub-
groups of patients who would benefit from specific therapies
targeted at relevant pathogenetic pathways.

Interestingly, Gefter et al. [49] reported that lung
exclusively expressed four predominant RAGE protein
isoforms which were not found elsewhere, suggesting that
those lung-specific RAGE isoforms may play an impor-
tant role in the pulmonary homeostasis, i.e., to maintain
internal equilibrium by adjusting its physiological pro-
cesses including alveolar inflammatory response. Further
investigation to elucidate the expression of RAGE iso-
forms unique to the lung is warranted.

On the other hand, sRAGE is fully capable of ligand
(i.e., AGE) binding, but is devoid of signaling function,
giving it a potential protective role in the pulmonary
inflammatory response. More details will be discussed in
the ‘‘sRAGE’’ section.

RAGE ligands in ALI/ARDS

The ligand–RAGE ligation in the lung has been suggested
to play a significant role in the pulmonary pathophysiol-
ogy [50]. On the other hand, an increased RAGE
expression leads to the ligand accumulation [10]. RAGE is
able to bind to a variety of endogenous molecules including
DAMPs that alert the host immune system and trigger a
defensive inflammatory response [51]. Major ligands of
RAGE comprise heterogeneous groups of molecules,
such as proinflammatory cytokine-like mediators of the

S100/calgranulin family (S100A12 and S100B), ampho-
terin, and b-sheet fibrils of amyloid. RAGE expression is
upregulated when there is an elaboration of endogenous
host-derived ligands (proteins, lipids, and other products of
oxidative stress) [52].

AGEs

AGEs are the prototypal ligand of RAGE. AGEs form
spontaneously by the Maillard reaction via non-enzymatic
glycol-oxidative reactions between reducing sugars, pro-
teins, and lipids [8]. AGEs have been implicated in various
chronic diseases characterized by sustained oxidant stress
and multi-organ low-level inflammatory injury [53]. The
production and accumulation of AGEs in the body could be
due to physiological or pathological conditions (such as
diabetes mellitus, renal failure, or aging process), lifestyle
habits (such as smoking and unhealthy diets), and environ-
mental pollution [54]. Therefore, by definition, AGEs can be
classified as PAMPS if they are from exogenous sources, or
DAMPs if are from endogenous sources. Studies have shown
that dietary AGEs play a significant role in the initiation and
pathogenesis of a variety of diseases, such as diabetes,
chronic renal failure, atherosclerosis, rheumatic arthritis, the
aging process, and neurodegenerative disorders [55, 56]. A
recent study by Tikellis [57] showed that the ‘‘Western diet’’
was associated with cardiac hypertrophy, inflammation,
mitochondrial-dependent superoxide production, and car-
diac AGE accumulation. The interaction of AGEs with
structural and cellular components has emerged as a poten-
tial mechanism of environmental toxicity for the general
adult population.

Table 2 Summary of clinical findings and measurement of RAGE/sRAGE in human subjects

Authors Years Patient factors Measurement Specimen(s) Findings

Jabaudon et al. [45] 2011 ALI/ARDS sRAGE Plasma : during ALI/ARDS regardless of presence
of severe sepsis

Mauri et al. [80] 2010 ALI/ARDS sRAGE Plasma/alveoli : with worsen oxygenation and increased
ventilator support

Higher when associated with infection
Kikkawa et al. [63] 2010 ALI sRAGE Blood No increase immediate postoperatively,

: on postoperative day #1 in ALI(-) group
Cohen et al. [47] 2010 Severe trauma sRAGE Plasma : after severe trauma, not correlated with ALI
Determann et al.

[81]
2010 Ventilator-associated

ALI
sRAGE Plasma No increase

Briot et al. [82] 2009 Isolated perfused lungs RAGE Alveolar
perfusate

: inversely correlated with alveolar fluid
clearance

Calfee et al. [48] 2008 ALI RAGE Plasma In high TV patients, : correlated with severity,
mortality, vent day and organ failure

In low TV patients not associated with
outcomes.
15 % ; in low TV cf. high TV

Uchida et al. [42] 2006 ALI/ARDS RAGE Pulmonary
edema
fluid/plasma

Pulmonary edema fluid/plasma = 105:1
: ALI [ hydrostatic pulmonary edema

TV tidal volume
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In our laboratory, with a mouse model of ALI induced
with combined acid and small food particle aspiration, we
were the first to demonstrate that a diet high in AGEs
exacerbates ALI as evidenced by a significant increase in
BAL albumin concentration, the pulmonary PMN counts,
and lung parenchymal MPO activity [58]. High AGEs
also impaired the pulmonary mechanical compliance.
With the most prominent transcription of RAGE being in
the lung and the wide range of AGE sources in the body
and in the environment, it is speculated that the RAGE–
AGE axis plays an important role in mediating pulmonary
inflammation and determining the extent of lung injury.

S100/calgranulins

S100 proteins, or calgranulins, are a family of over 20
related calcium-binding proteins. Many of the S100 pro-
teins have been found to bind to RAGE [59]. In particular,
S100A8 (calgranulin A), S100A9 (calgranulin B), and
S100A12 (EN-RAGE) are expressed by phagocytes and
secreted at the sites of inflammation [60]. These proteins
induce a specific inflammatory pattern in endothelial cells
with increased vascular permeability and pro-thrombotic
effects [59].

On the other hand, S100A12 is expressed in the
cytoplasm of neutrophils, monocytes, and lymphocytes
[61], and solely binds to RAGE. Therefore, the expression
may reflect neutrophil activation during lung inflamma-
tion and contribute to pulmonary inflammation and
endothelial activation via binding to RAGE. As an
example, patients with ARDS had significantly enhanced
pulmonary S100A12 expression and higher S100A12
protein and RAGE concentrations in bronchoalveolar
lavage fluid when compared with controls [62]. Even in
healthy individuals, inhalation of LPS increased the BAL
levels of S100A12 [62]. In patients who developed ALI
after emergency surgery for lower gastrointestinal tract
perforation, the blood S100A12 levels were significantly
higher in the immediate postoperative period in the group
that developed ALI [63].

High mobility group box-1 (HMGB-1)

High mobility group (HMG) proteins are nuclear, non-
histone chromosomal proteins. Among them, HMGB-1 is
the only one that has been shown to activate RAGE, as
well as TLR 4 and 9 [64]. HMGB-1 can be either pas-
sively released from necrotic cells or actively secreted by
activated immune cells. HMGB-1 is a potent innate
‘‘danger signal’’ for triggering sterile inflammation and
the initiation of host defense or tissue repair [64, 65].
HMGB-1 release is associated with both cellular necrosis
and apoptosis as well as via a non-classical pathway in
immune and non-immune cells [65]. HMBG-1 has been

found to be a later mediator of endotoxin-induced ALI in
mice [66], and serum levels of HMGB1 were increased in
septic shock patients and positively associated with sep-
sis-related organ failure assessment score [67]. HMGB-1
administered intratracheally in mice produces an acute
inflammatory lung injury, with increased production of
IL-1b, TNF-a, macrophage-inflammatory protein-2, neu-
trophil accumulation, and the development of lung edema
[66]. Additionally, in endotoxin-induced lung injury,
administration of anti-HMG-1 antibodies either before or
after endotoxin exposure decreased the migration of
neutrophils to the lungs, as well as lung edema [66]. In
human subjects, the plasma levels of HMGB-1 were
increased within 30 min following severe trauma. These
levels correlated with the severity of injury, tissue hypo-
perfusion, early post-traumatic coagulopathy, and
hyperfibrinolysis. Non-survivors had significantly higher
plasma levels of HMGB-1 than survivors [68]. Among
mechanically ventilated patients, those with long-term
ventilator support due to respiratory failure demonstrated
higher levels of HMGB-1 in BAL as compared to those
with short term ventilation for less than 5 h (for an
elective surgical procedure) [69]. These results suggest
that HMGB-1 is the archetypal mediator of cellular
DAMPs after stress and ALI.

b-sheet fibrils of amyloid and other ligands

RAGE also binds to ligands such as leukocyte b2 integrin
Mac-1, b-amyloid peptide, and serum amyloid A [70]. In an
animal model of thioglycollate-induced acute peritonitis,
RAGE-/- mice showed that leukocyte recruitment was
significantly impaired when compared to wild-type animals
[70]. An in vitro study by the same authors demonstrated that
the ligation of RAGE withb2 integrins mediated recruitment
of leukocytes [70]. RAGE-dependent leukocyte adhesion to
endothelial cells was initiated by a direct interaction of
RAGE with the b2 integrin Mac-1. Interestingly, the RAGE–
Mac-1 interaction was augmented by another RAGE ligand,
S100 protein. Mac-1 ligation of RAGE probably defines a
novel pathway of leukocyte recruitment relevant in the host
inflammatory response. However, to date, there is no infor-
mation regarding the role of the interaction of RAGE with
these ligands in ALI/ARDS. Further research on the role of
these ligands will be useful in understanding the role of
RAGE in the pathogenesis of ALI/ARDS, as well as pro-
viding a basis for the development of novel therapeutic
applications.

RAGE as a therapeutic target

ALI/ARDS remain an important source of morbidity,
mortality, and healthcare costs. Ventilation strategies,
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fluid management strategies, a wide range of anti-
inflammatory, antioxidant, anticoagulant, and other drug
therapies, and extracorporeal assist devices are among
many interventions for ALI/ARDS. However, only
reducing mechanical ventilation-induced lung injury
(VILI) has been shown to be beneficial in improving
morbidity and mortality. Clinically, before the full-blown
ALI/ARDS, the patients are usually not intubated, which
makes the low tidal volume ventilation strategy impos-
sible in this subset of patients. Therefore, the urgent need
to identify novel approaches to treatment has significant
potential for clinical benefit.

Since there is significant upregulation of RAGE
expression in the pulmonary epithelial cells during ALI/
ARDS, decreasing RAGE activation could be a thera-
peutic strategy in decreasing the severity of the lung
injury secondary to ALI/ARDS. To this end, there are
three possible approaches: (1) Decrease the ligand con-
centration in the blood or BAL. (2) Block RAGE to avoid
RAGE–ligand interaction, by administration of anti-
RAGE antibody. (3) Competitive binding of RAGE
ligands by administration of decoy receptors, i.e., sRAGE.

RAGE ligand interference

The AGE cross-linkage breaker, alagebrium, or ALT-711,
has been shown to reduce RAGE expression, improve
endothelial function in patients with hypertension, and
have an antioxidative stress (OS) effect [71, 72]. Other
compounds for preventing AGEs binding with RAGE are
aminoguanidine and pyridoxamine, inhibitors of AGE
formation. In CD1 mice with end stage renal disease,
aminoguanidine and pyridoxamine significantly inhibit
glomerular lesions [73]. In a study of obese patients with
hepatic steatosis, aminoguanidine and pyridoxamine
inhibited the formation of endogenous N-e-carboxy-
methyllysine (CML) and increased the concentrations of
RAGE, PAI-1, IL-8, IL-6, and CRP expression [74]. As
mentioned above, RAGE is a receptor with multiple
ligands. Thus, minimizing one potential ligand (AGEs)
will probably not be very efficient in limiting the over-
whelming inflammatory response in the lung. Interference
of other ligand formation has not yet been reported.
Future focus on development of pharmacologic com-
pounds targeting DAMPs also deserves special attention.

Anti-RAGE antibody

In a sepsis model, genetically deficient (RAGE-/-) mice
that do not express RAGE had a survival advantage fol-
lowing cecal ligation and puncture (CLP) or colon
ascendens catheter placement compared with wild-type
mice [75]. Subsequently, a neutralizing antibody to the
receptor for the advanced glycation end products (anti-

RAGE antibody) has been developed as a potential
treatment of acute and chronic inflammatory conditions.
Using a similar model, Lutterloh et al. [75] concluded that
the rat anti-RAGE monoclonal antibody effectively
decreased mortality compared with control animals, even
when given 24 h after cecal ligation and puncture (CLP). A
recent study also demonstrated that a humanized anti-RAGE
monoclonal antibody significantly protected mice from
pneumococcal pneumonia-induced mortality, even if the
treatment was given 6 h after intratracheal infection with
Streptococcus pneumonia [76]. The conclusions from the
study strongly suggest that inhibition of RAGE ligation and
its subsequent activation of inflammatory signaling path-
ways by anti-RAGE antibody may be a promising
therapeutic target in the management of pneumonia and ALI.

sRAGE

Yet another promising approach to neutralize RAGE–
ligand interaction is the application of C-terminal trun-
cated RAGE (sRAGE). sRAGE acts as a decoy receptor
and fully retains the capacity to bind RAGE ligands
which would otherwise interact with mRAGE. Generally,
mRAGE is thought to promote disease pathogenesis and
injury by activating the NF-jB pathway. In contrast,
sRAGE is thought to be protective by preventing mem-
brane RAGE signaling in the systemic diseases, such as
tumor growth, metastasis, and diabetic wound healing
[11, 12, 77–79]. Indeed, sRAGE administration in a
number of cell culture and animal models of RAGE-
mediated disorders has been found to successfully prevent
or reverse RAGE-associated pathology [77–79]. Specifi-
cally in mice with LPS-induced lung injury, treatment
with sRAGE significantly attenuated the increases in
neutrophil infiltration, lung permeability, proinflamma-
tory cytokine production, NF-jB activation, and number
of apoptotic cells [43].

Conclusions

Recent published data strongly suggest a prominent role
for RAGE in the pathogenesis of ALI and ARDS. The
ligation of RAGE is a double-edged sword, which plays
an important role in resolving the pathogenesis of an
offending insult but also leads to tissue destruction.
During this process, RAGE expression in the pulmonary
epithelial cell is upregulated. sRAGE is secreted into the
BAL and is detectable in the serum, serving as a bio-
marker for the degree of lung injury and acting as a decoy
receptor to downregulate the injurious pulmonary
inflammatory response.

Current measures of pharmacotherapy in ALI/ARDS
have been limited in lowering morbidity and mortality. A
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complete understanding of the relationship between
RAGE and other receptors such as TLRs will be benefi-
cial in formulating potential therapeutic approaches. As of
now, modification of the RAGE–ligand activation path-
way seems to be a promising target for therapeutic
intervention. Limiting the RAGE ligation (i.e., by anti-

RAGE antibody of sRAGE) may modulate the intensity
of an overwhelming pulmonary inflammatory response.
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